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ABSTRACT: This paper shows the ability of artificial neural network technology to be used 

for the approximation and prediction of crop yields at rural district and federal state scales in 

different climate zones based on reported daily weather data. The method may later be used to 

construct regional time series of agricultural output under climate change, based on the highly 

resolved output of the global circulation models and regional models. Three 30-year 

combined historical data sets of rural district yields (oats, spring barley and silage maize), 

daily temperatures (mean, maximum, dewpoint) and precipitation were constructed. They 

were used with artificial neural network technology to investigate, simulate and predict 

historical time series of crop yields in four climate zones of  Germany. Final neural networks, 

trained with data sets of three climate zones and tested against an independent northern zone, 

have high predictive power (0.83 < R² < 0.9). Hindcasts, based on a 25-year training period 

and independent weather data of a 5 (3)-year future have a relative root mean square error of 

less than 9%. The model approximates and predicts historical reported yields in an area with a 

wide range of climatic variance and heterogeneous soil conditions. Mean temperatures during 

growing seasons ranged from 8.7° C (10.4°) to 19.3° C (21.1°) for April - July (May – 

September) and precipitation from 73 mm (141) to 548 mm (1016). The output of general 

circulation models and dynamical crop growth models can easily be integrated to simulate 

impacts of climate change. 
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1. INTRODUCTION 

Weather patterns in the short and climate in the long run are major components that influence 

crop production. Most climate change impact studies use expected changes of mean values of 

climate variables, but do not focus on interannual or intra-annual changes of climate variables 

and the consequences for agricultural production (Beniston & Tol 1998). Since earnings and 

losses will depend on the innerannual and intra-annual changes of climate variables and the 

CO2 fertilizer effect (Mendelsohn et al. 1996), the current general circulation models (GCMs) 

and regional models (REMOs) now give researchers the possibility to use dynamical 

agronomic models at subnational scales (county or rural district level) instead of the common 

static approaches (Mendelsohn et al. 1999). There exists a gap, however. Consistent crop 

growth simulation models with the ability to calculate yields in heterogeneous and fragmented 

regions under realistic farming conditions, have not been fully developed or validated yet (e.g. 

Landau et al. 1998). Calculations of the regional and national adaptation costs depending on 

the changing inventories or stock losses by an increase of extreme regional weather events 

like droughts, heavy rainfall, hailstorms or floods were not possible. What is needed, 

however, are time series of regional agricultural output to measure the intra-annual and spatial 

changes of future agricultural output, their costs or benefits. This paper describes a possible 

way to close the gap with a self-learning nonlinear statistical regression tool. 

 

This paper is empirical in nature. It is designed to demonstrate that artificial neural network 

(ANN) techniques can be a strong tool to transform the highly resolved weather output of the 

REMOs into realistic time series of intra-annual agricultural output and economic values at 

regional scales, so that the effects of climate change may be simulated at the same scale in the 

agricultural sector. This paper is organised as follows. Section 2 gives an overview of  

previous research, models and applications of ANNs in meteorological, agroecological and 
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economical modelling. Section 3 describes our database and ANN scheme. Section 4 

incorporates a description of the German agrarian characteristics, changes in the past 50 years 

and the development, training and validation of our ANN-application. Performances of the 

approximations and hindcasts are presented in section 5. Section 6 concludes and discusses. 

 

2. PREVIOUS RESEARCH 

2.1 Models and methods of crop yield-analysis and -prediction 

In the early 1920s simple descriptive approaches of the relationship between weather and crop 

growth appeared (Monteith 1999, Landau et al. 2000). In the late 1960s and early 1970s more 

and more statistical crop-weather models emerged based on (multi-)linear regression methods 

concomitant with the increasing power of computer systems (Hanus 1978, Hanus & Aimiller 

1978). Crop growth is a multifactorial nonlinear process and mechanistic integrated crop 

growth models and model families – e.g. the CERES-family for wheat, maize, soybeans etc. – 

have been developed for different purposes in agricultural management and economy (Guerif 

et al. 1985). With increasing knowledge about plant growing processes and how to express 

them by mathematical formulations these deterministic models have reached a high 

complexity. Simulations cover crop development stages or the duration between them and the 

plant reactions in different phenological stages to different environmental conditions by using 

empirical approximation functions. Sometimes the underlying assumptions are that the 

response of plant growth to temperature or other environmental parameters during 

approximated development stages is linear or constant (e.g. Porter 1985, Jame et al. 1999). In 

reality, the relations are curvilinear or unknown, factors act additively or interactively and the 

response function of plant growth to temperature and available soil moisture is nonlinear. A 

flawed implementation of nonlinear responses may be one possible explanation of the huge 

differences of simulated yields in diverse environments found by Otter and Ritchie (1985) and 

Landau et al. (1998) or reported by Goudriaan (1996). In tests with 10 (8) wheat models in 
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Minnesota (spring wheat) and in the Netherlands (winter wheat), the simulated yields ranged 

between 2.5 tons/ha to 8.0 t/ha or 5.4 t/ha to 10.3 t/ha, respectively (Goudriaan 1996).  

 

Furthermore the need of a lot of meteorological, soil and management inputs for regional 

validation, which are not available everywhere, has to be emphasized. Finally most crop 

models - McMaster (1997) counted more than 70 wheat models – are mainly developed to 

simulate crop growth on small and optimally managed experimental fields. For other 

objectives they have to be calibrated by statistical methods for cultivar properties, regions, 

farmers behaviour, local management practices and environments (Schultz & Wieland 1997). 

These models adopt a number of simplifications, too. Bouman et al. (1996 S. 189) claim that 

“Major gaps still exist in our knowledge of the effects of nutrient limitation and it is not yet 

possible to use mechanistic models directly for farm level applications.” Calibration of 

models with growth data of experimental fields and special cultivars - which often have yields 

higher than those currently typical under farming conditions – confines applicability with 

respect to the target region and environmental conditions. Mirschel et al. (2000) found that 

yields on experimental fields may be 10 to 30 % higher than those of commercial acreage due 

to greater soil and crop homogeneity under abnormal experimental conditions. These 

problems (e.g. more and severe pests or compacted soil by heavy machinery) cannot be 

addressed in single site experiments and hence cannot be considered in the models. 

Most of the previous impact studies (IPCC 1990, 1995, 1998, 2001, Parry & Rosenzweig 

1993 & 1998, Tubiello et al. 2002) were based on these models and in reality were mere 

single site studies using the output of different GCMs with low spatial resolution (distances of 

grid-points greater than two degrees latitude and longitude). Thorough validation of 

phenology models using empirical data sets of varieties grown across a wide range of 

environments is scarce (Stapper & Lilley 2001). There are only a few rigorous studies 

establishing the validity of the models (Monteith 1999). Studies on larger scales, for example 
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Otter & Ritchie (1985, World ), Landau et al. (1998 UK), Singh et al. (1998, Quebec), 

Tubiello et al. (2002, US), Chipanshi (1999, Saskatchewan), Supit (1997, EU15), Priya & 

Shibasaki (2000, India), Tan & Shibasaki (2003, World) or Harrison & Butterfield (1996, 

Europe), showed predicting accuracy measured by the correlation coefficient in a range from 

0.00 (Landau et al., 1998), 0.70 (Chipanshi 1999), 0.59 – 0.74 (Priya & Shibasaki 2000), 0.81 

(Otter & Ritchie 1985) to more than 0.96 (Hammer, see Monteith 1999).  

Consequently researchers tried to find other approaches to estimate impacts due to climate 

change, particularly (linear) regression techniques. We thus observe a retrograde tendency in 

crop growth modelling to the (multi-)linear statistical methods of the 70’s (see e.g. Jagtap & 

Jones 2001, 2002). This may not be the best way as the crop growing process is highly 

nonlinear.  

Mendelsohn et al. (1994) tried another statistical approach by estimating the impacts of 

climate change on US-agriculture with a “Ricardian” approach based on land prices at county 

resolution. They defined their Ricardian analysis, relying upon standard rent theory, as a 

regression of land values on climate, soil and socio-economic variables. The implementation 

was strongly criticised (Cline 1996, Darwin 1999, Quiggin & Horowitz 1999), as it is static, 

violating basic principles of agriculture or economics or have multicollinearity problems. 

Lang (1999a, 1999b) tried a similar way for measuring impacts on agriculture in Western 

Germany, based on 41 agroecological regions and 75 weather stations. However, agricultural 

socio-economic systems have regional or sub-national scales in wide parts of the world, 

depending on soil qualities, climate barriers, regional farm practices, farmers` experiences and 

regional economic structures, e.g. growing of spring barley in Germany near to breweries or 

intensive silage maize production in the vicinity of industrial livestock production. In addition 

vulnerability and economical structures are determined by government policy (e.g. taxes, 

subsidies and discouraging agricultural production, Gitay et al., 2001). Therefore most of the 

vulnerability is given at regional or sub-national scale. The Ricardian approach does not 
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capture regional changes of temperature, precipitation and the carbon fertilization effect 

(Mendelsohn et al. 1996), but includes farmers behaviour. Therefore the Ricardian approach 

is not an alternative of the principal need to have realistic predictions of crop yield potentials 

in any region of the world at any time to do a dynamic analysis based on calculations of future 

demand, supply and prices under climate change.  

Crop growth models or other common statistical models have not reached the necessary 

maturity of development, as they do not achieve simulations of crop growth in a wide variety 

of climate regions and real management practices at economically relevant scales (Jame & 

Cutforth 1996). Hence most studies are only valid for homogeneous regions (Harrison & 

Butterfield 1996). Special adaptations or modifications are needed to enable models to 

simulate the regional or nationwide realized yields, because crop models simulate the current 

range of agricultural technology including high-yielding varieties and cultivars (Rosenzweig 

et al. 1993, Mirschel & Schultz 2000, Rosenzweig et al. 2002). The crop growth modellers are 

implementing more and more empiricism (e.g. linear detrending, time series analysis, spatial 

interpolation) into their models (Jagtap & Jones 2001, Zalud & Dubrovský 2002). This 

approach is, however, strongly limited by the necessary input data (Hansen & Jones 2000). 

Thus it is legitimate to ask how much confidence we should have in the state of the art models 

for economic purposes at different spatial and time scales. With this question we do not 

repudiate these models.  

 

A promising alternative may be a nonlinear statistical approach with the ANN technique, 

which ideally should be combined later with the dynamical models. ANN models are able to 

solve highly nonlinear problems and can approximate virtually any smooth, measurable 

function (Hornik et al. 1989, cited by Gardner & Dorling 1998). In comparison to the state of 

the art crop models the requirements concerning the number of input parameters are low. 

Furthermore, we can use standard meteorological and yield data sets and later GCM-outputs 
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with the same spatial resolution (district scale and 50*50 km) as used by Mendelsohn et al. 

(1994) or Jagtap & Jones (2001).  

 

2.2 ANNs in meteorological, agroecological and economical modelling 

In the mid 1980s the ANN technology was rediscovered and neural network (NN) research 

became very popular in many fields and many applications of it have been done. For a 

description of what ANNs are and how they work we refer the reader to the substantial 

literature (e.g. Hertz et al.1993, Fu 1994, Gardner & Dorling 1997). NN techniques were 

found to outperform the Box-Jenkins models and other methods in forecasting time series 

(Hsieh & Tang 1998). NN techniques have been successful in text recognition, remote 

sensing, forecasting stock market prices (Knöpfel 2003) or the risk of insolvency of 

companies (Baetge1996). ANNs can represent nonlinear systems, are very data-driven and 

flexible and robust. All these are noteworthy assets in the domain of agroecology. However, 

ANNs are not a particularly favourite technique in agroecology (Schultz & Wieland, 1997) or 

in meteorology and oceanography (Hsieh & Tang 1998). Only few applications could be 

found. NN techniques were successfully used in forecasting Equatorial Pacific sea surface 

temperatures (Tang et al., 1999), monsoon rainfall (Navone & Ceccatto 1994, Sahai et al. 

2000), long-range precipitation (Silverman & Dracup 2000), short-term precipitation 

(Kuglikowski & Barros 1998) and wind stress fields (Tang et al. 2001). NN-techniques have 

been also successfully used for downscaling the output of GCM of simulated daily 

temperature (Trigo & Palutikof 1999), predicting corn (Uhrig et al. 1992) and maize yields 

(O`Neal et al. 2002), seeding dates (Major et al. 1996) and maturity of spring wheat (Hill et 

al. 2002).  
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3. DATA AND METHODS 

3.1 Crop yield and weather database 

We established a 30-year (1972 –2001) yield database of three spring seed cereals: oats, 

spring barley and silage maize. Official yield data from the state statistical offices of four 

different climate regions in Western Germany at rural district level were taken (see table 1and 

fig. 1). District level is the highest available spatial solution supported by all statistical offices 

of German federal states and comparable to the 0.5 degree (~50 km) GCM-resolution  

 
Table 1. Starting year of time series and number of used districts per federal state 

 
 

 

 

 

 

Federal State 
No. of 

districts 
Year 

1 
No. of 

districts 
Year 

1 
No. of 

districts 
Year 

1 
  Oats   Barley   Maize   
Schleswig-Holstein 9 1972 7 1972 11 1976 
Lower Saxony 14 1979 15 1979 12 1979 
Baden-Württemberg 7 1972 9 1972 8 1976 
Bavaria 12 1976 16 1976 14 1976 

Total 42   47   45   

 

Fig. 1. Chosen districts. Source: Wendland (1993) 

We selected districts with sufficient cultivated area of spring sown crops – oats, barley and 

silage maize – and representative soil characteristics omitting the low and high mountain 

regions and irrigated areas (e.g. the Luneburg Heath). Thereby uncertain influences on crop 
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yield due to local effects like orographic rain, irrigation by slope water and inhomogeneous 

soil conditions were minimized. The chosen districts of the federal states of Schleswig-

Holstein, Lower Saxony, Baden-Württemberg and Bavaria represent the whole climate 

variation from north (maritime) to south (continental) in Western Germany. The resolution is 

high enough, so that regional influences on crop growth like coastal effects below state level 

can be detected and simulated. The quality of reported yield data (oats and barley) is 

acceptable with a mean absolute deviation (MAD) of less than 3% and a maximum year to 

year fluctuation up to 40% (mean 12%). The reported yields of maize have higher deviations 

of approximately ± 5%, because they are only estimated by yield appraisers and not validated 

by random sampling (Grunwald 2002). Comparable data sets for the federal states in Eastern 

Germany (former German Democratic Republic) are shorter, starting in the mid-nineties and 

were therefore not used.  

Our weather pattern database includes effective daily mean (TM) and maximum temperature 

(TX), daily mean dewpoint temperature (TD) and precipitation (RR) of 131 official climate 

stations, provided by the German Weather Service (DWD). Hours of sunshine or solar 

radiation were not available for all districts and could not be used as model input. Where there 

were several stations within a district, we preferred stations located away from the big cities 

to avoid city-influence. Daily mean temperature is defined by   ∑
=

=
24

124
1

t
tTT   or  

∑ ++= 3*2
4
1

21 TTTT  (1 = 06 am, 2 = 01, 3 = 08 pm GMT - since 1987 + 30 min). The 

mean dewpoint is calculated by ∑
=

=
24

124
1

t
DD tTT   or ∑ ++= 321

3
1 TTTDT . Dewpoint 

Difference (TD) is defined as TX - TD. TM was formed by subtracting the vegetation threshold 

of 5° C (8° maize) from T . Missing data in the time series were substituted by data of the 

nearest available or comparable station. Altogether we used time series from 113 climate 

stations.  

 10 



3.2 The artificial neural network scheme 

The most widely used types of ANNs in economic and ecological applications are fully 

connected feedforward networks with one or two hidden layers. We chose a four-layer 

backpropagation network with two hidden layers without subnets and the ability to emulate 

the radial-basis crop response function (Mendelsohn et al. 1996).  The network runs with the 

Stuttgart Neural Network Simulator (SNNS). Other researchers (e.g. Uhrig et al. 1992, Liu et 

al. 2001) have modelled crop yield or other crop growth parameters with three-layer ANN. 

Our network’s activation functions of the neurons are “identity” or “logistic” (see tab. 2). 

Network training is done with the resilient propagation algorithm (rprop). The adaptation of 

the weights of the connections between the neurons is determined for each training cycle by 

this offline-training method (Zell et al. 1995) after the last pattern has been presented to the 

network. Its learning process follows the weight-decay technique. Rprop is a very fast process 

and superior to other well tested and robust backpropagation learning algorithms based on the 

gradient descent method, not only by speed but also by generalisation (Fu 1994, Zell 1994). 

Our general connection scheme is shown by fig. 2:  

 

Fig. 2. Principal construction of our networks (not all connections and neurons shown).  

Numbers below neurons are output, numbers between neurons are weights 
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Table 2. Parameters of the ANN 

Layer Parameter 
Activation 
Function Connection 

Max. No. of 
Neurons 

Min. No. of 
Neurons 

Input TM,TX,TD,RR Identity 1.Hidden 60 24 
Input Soil Identity Output 47 6 
Input Trend Identity Output 47 6 
1. Hidden - Logistic 2. Hidden 18 6 
2. Hidden - Logistic Output 18 6 
Output Yield Identity - 1 1 
 

Empirical patterns presented to the network included combinations of ten day sums of TM, 

TX,TD, RR, the yield and in one case an empirical trend function. The sums are normalized 

to values between 0 and 1.9 (requisite by the SNNS). Based on this scheme we developed and 

tested different network types to find the combination and number of meteorological input 

paramaters and hidden neurons that gave reasonable approximations to the reported yields, 

and length of growing season was then set to 120 (150 for maize) days, starting with April 1st 

(May 1st). 

 

4. GERMAN AGRICULTURE 

4.1. Agrarian characteristics of the research Area 

The agrarian countryside of Germany is heterogeneous with fertile marshlands, swamps and 

sandy heathlands in the north, low mountains in the central, southeast, southwest regions and 

high mountains in the south with interspersed rolling hills and plains. Thirty percent of the 

acreage is forest area and about 50% agricultural area. Soil characteristics like fertility and 

usable field capacity are varying greatly in some regions at a scale that is smaller than the 

rural district scale. Soils range from heavy clay over loess to sand and gravel. In the high and 

low mountain regions, in particular, temperature variance, humidity, precipitation, drainage 

and natural irrigation via ground and slope water is strongly influenced by regional and local 

orographic effects, which are mostly unknown or cannot be extrapolated to larger scales. 
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Main growing seasons for oats and barley start at end of march and for maize at the end of 

April and come to a close at the ends of the months of July (cereals) and September (maize). 

Our main validation area is the small federal state of  Schleswig-Holstein. We chose this state, 

because it is sited in the north of Germany, so that the influence of a northward shift of the 

climate due to climate change can be simulated. Furthermore it has 4 main soil characteristics 

and 22 specified ecoregions, determined by climate and soil characteristics (Fig. 3a), 11 rural 

districts and 4 independent cities (Fig. 3b). 
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ig. 3. Ecoregions (a) and Rural Districts (b) 
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4.2. Changes of crop production and prices in Germany 

Since the 1950`s agricultural production and grown crops changed dramatically in Western 

Germany and Europe, driven by economical constraints of agrarian politics and the “Green 

Revolution”. While in the fifties the main grown crops by area were rye, oats, potatoes, wheat 

and barley (see fig. 4a), in the nineties most grown crops were barley, wheat, (silage) maize 

and sugar beets. Based on estimated dry matter the most important crop nowadays is silage 

maize + corn with 27.5% of the yield (see fig. 4b). 
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Fig. 4. Harvested area (a) [mln ha] and dry matter (b) [mln t] of 7 important crops  

Source: Federal Statistical Office of Germany, Mitchell (1992), our calculations 

The harvested dry matter of the 7 main crops increased from 16 mill. to 44 mill. tons. The real 

producer prices in Western Germany decreased since the mid eighties, due to the agrarian 

policy of the European Union (see fig. 5b). While the yield per hectare of all other crops 

increased nearly with a linear trend due to progress in breeding, technical and management 

processes, harvested silage maize shows about four different major trends during research 

period (see fig. 5a). The reasons for these trends are complex. Influencing factors are the 

evaluation method of federal statistics, changing management practices, use of less fertilizers 

since the eighties and breeding progress. Due to farmers` increasing use of hybrid cultivars 
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with higher fractions of starch and bigger corn cobs (Kising 1962, Richter 2003), the better 

improved  
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Fig. 5. Yield (a) [dt/ha] of cereals and silage maize; Indexed producer prices (b) 

 Source: Federal Statistical Office of Germany, Mitchell (1992), our calculations  

management of their fields, optimized harvesting dates (Zscheisler 1979, Richter 2003) and 

growth of early maturing maize, the fraction of dry matter in total plant mass increased 

(Richter 2003) from roughly 20 to 25% up to 30 or 35%.  During this period the reported total 

yield stagnated or decreased. A slight increase of total plant mass can be observed since 1995. 

As we found similar trends in other European countries with rainfed agriculture, the nonlinear 

trends and their explanations seem to be realistic. The regional reasons and consequences of 

these trends for the construction of our ANN-model are described below. 

 

5. RESULTS 
 

5. 1 Running the ANN-crop-yield-model 

Since crop growth meteorologically is mostly determined by temperature, humidity and 

precipitation patterns, we used four parameters (TM, TX, TD and RR) to do a sensitivity 

analysis of different combinations and the performance of the approximation. We built 

reasonable combinations of the four available meteorological parameters and the reported 

yields in the districts from 1972 until 2001 (see table1). Four combinations of the parameters 
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make sense (TMRR; TMTXTDRR; TMTXRR; TMTDRR) to capture the influence on crop 

growth by temperature, humidity, heat stress and precipitation.  

Accounting for the unknown but also important influences of soil fertility and potential field 

capacity (relative soil quality), behaviour of farmers and breeding progress on crop growth 

(technical progress) is done by the network itself using a dummy construction. Every district 

is represented by two neurons, one for the soil quality and one for the yield trend. The 

corresponding values in the training patterns are set to one (relative soil quality) or to a 

linearly ascending value between 0 and 1.5 (technical trend), all others to zero (see fig. 2). As 

these neurons are directly and linearly connected to the yield neuron (see fig. 2 and table 2), 

the weight of the connections represents the relative base fertility of the district or the 

parameters of the linear yield trend due to technical progress and farmers’ behaviour.  

The networks has, depending on the length of the crop growth period, in the maximum 

version 60 (maize) or 48 (oats, barley) weather neurons, 36 neurons in two hidden layers, 94 

soil and trend neurons and one yield neuron. Different ANN constructions were trained with 

the regional and the overall pattern sets. That gave us a deeper insight into the influence of (1) 

the number of hidden neurons (2) the number of patterns (3) the combinations of 

meteorological parameters on the ability of the ANNs to approximate the reported yields. The 

performance was measured by the regional and overall correlation coefficients (R), their 

standard deviation (SD), the regional and overall root mean square error (RMSE), the mean 

average deviation (MAD) and the ability to approximate extreme yield deviations. A 

sensitivity analysis with other network constructions, for instance a third hidden layer or a 

subnet construction or other training algorithms showed us, that the 4-layer-feedforward-

backpropagation-network trained within 100 cycles by the rprop algorithm gave best results 

without overtraining. 
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As the SNNS allows us to extract the automatically determined weights (including bias) of the 

connections between the neurons, we could use ANN technique to identify districts with equal 

relative soil quality and similar trends of technical progress and farmers behaviour. So we 

were able to reduce the number of soil and trend neurons from 42 to 7 (oats) and 47 to 6 

(barley) by building soil and trend classes of the districts after training networks in the 

maximum size. This reduction was necessary to verify the suitability of the ANN for 

predictions across and outside the training area as independent average measures of soil 

quality at district level are not available. Then we found a huge difference (up to100 dt less 

yield per ha) between the maize yields Lower Saxony and Schleswig-Holstein (see fig. 6) 

within 150 km distance. This gradient cannot be explained by climate only even though maize 

cultivation in Schleswig-Holstein is at its temperature limits to reach maturity (Beinhauer & 

Günter). Class building across the four climate zones for maize was not possible, especially as 

farmers in Schleswig-Holstein now grow cultivars with very early maturity (based on 

temperature sums) and a corresponding lower yield potential but a higher content of starch 

and energy in the dry biomass. The mean yield/ha of total plant mass decreased between 1980 

and 1994 by 22 % and after that increased until 2001 by 15%. A slightly less pronounced 

tendency was observed in Lower Saxony, but not in Bavaria or Baden-Württemberg (see fig. 

6), where farmers have more experience in growing maize, because in the seventies more than 

60 % of maize acreage of Western Germany was located in these states until the mid of the 

1980s.  

300
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550

1979 1984 1989 1994 1999
Bavaria Baden-Württemberg
Lower Saxony Schleswig-Holstein

 

Fig. 6. Trends of Green Maize Yields: 5-Year Running Means [dt/ha] 
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Source: Federal Statistical Office of Germany; our calculations 

Therefore these trends in Schleswig-Holstein and lower Saxony and the high yield gradient 

are not only induced by lower temperatures. Some other reasons could be identified. A 

consulted expert (Jäger 2003) indicated, that in the northern parts of Germany up to 40% of 

the farmers are harvesting too late, so that the silage is dryer and has less total mass. Due to a 

slow change from the improper use of cultivars with late (Kising 1962) to those with earlier 

maturity, the estimated dry mass has changed from approximately 20% up to 35% or more 

while the total plant mass decreased. The standard linear trend adaptation by our model will 

not be correct in the northern parts of Germany. On that account we replaced the standard 

linear trend adaptation by three empirical determined linear functions. This corrected model 

gave better approximations over the whole research area and not only for districts in northern 

Germany. Since the mean yields and technical progress at district level are not comparable 

across the four regions, we were not able to build classes of districts across the regions and 

could not run a hindcast outside the training area. 

Special pattern sets were needed for training and validating the applicability of our model for 

predictions outside the training area and for future yields. The pattern sets were split into five 

pairs, one training and one validation set respectively. We cut out the patterns of the years 

1997 – 2001 (oats and barley) and 1999 – 2001 (maize) and the patterns of Schleswig-

Holstein (oats and barley). The reduced  pattern sets were used for training and the cutout for 

validation. In all series of runs we pruned the network manually by reducing the number of 

hidden neurons to find a network with a high over all R, a low SD of the regional correlation 

coefficients, a low MAD and RMSE in the training sets. It was not our objective to find the 

best network, as a the optimization has to be done manually. Therefore we did not prune on 

the input side single neurons or connections with low weights. A sensitivity analysis at the 

end of our final training cycles showed some potential to find networks with better 

generalization attributes if we would prune the input side, too.  
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5.2. Performance of approximations 

The performance of approximation of the reported yields was almost sufficient by the finally 

chosen and tested network configurations with mean variance higher than 0.85. Even only 

with two aggregated meteorological parameters (TM and RR) we achieved regional 

correlation coefficients between 0.68 and 0.97 for all crops by pruning. Performance of 

approximations differed slightly in our test series. Best meteorological input combinations 

seem to be for oats TMTDRR, spring-barley TMTXRR and silage maize TMRR (see table 3), 

but differences are marginal and may depend on the manual pruning technique and the 

 

Table 3. Performance of approximation over all districts and years 

Crop Input Variables 
Hidden 

Neurons
 Rl 

mean 
R² 

mean
R   

max 
R    

min 
Sdev  

R 

Mean 
Yield 
dt/ha 

MAD 
dt/ha

Rel. 
MAD 

% 
RMSE 
dt/ha 

Rel. 
RMSE 

[%] 
Oats TMTXTDRR 10  08 0,920 0,847 0,974 0,798 0,044 44,3 2,4 5,4 3,1 7,0 
Oats TMTXRR 12  08 0,909 0,827 0,972 0,776 0,047 44,3 2,6 5,9 3,3 7,4 
Oats TMTDRR 12  08 0,922 0,850 0,972 0,796 0,033 44,3 2,4 5,4 3,1 7,0 
Oats TMRR 12  08 0,917 0,840 0,970 0,806 0,043 44,3 2,4 5,4 3,2 7,2 

Barley TMTXTDRR 10  08 0,913 0,833 0,967 0,775 0,047 41,6 2,2 5,3 2,8 6,7 
Barley TMTXRR 12  06 0,919 0,845 0,971 0,804 0,049 41,6 2,1 5,1 2,7 6,5 
Barley TMTDRR 10  06 0,918 0,843 0,967 0,795 0,042 41,6 2,1 5,1 2,7 6,5 
Barley TMRR 12  10 0,912 0,832 0,972 0,781 0,049 41,6 2,0 4,9 2,8 6,7 
Maize TMTXTDRR 12  08 0,921 0,848 0,943 0,628 0,074 436,6 19,4 4,4 24,5 5,6 
Maize TMTXRR 12  06 0,915 0,838 0,956 0,630 0,069 436,6 18,6 4,3 24,2 5,5 
Maize TMTDRR 12  08 0,922 0,850 0,937 0,626 0,076 436,6 19,5 4,5 24,3 5,6 
Maize TMTDRR 15  10 0,927 0,859 0,952 0,613 0,072 436,6 18,3 4,2 23,2 5,3 
Maize TMRR 12  10 0,925 0,856 0,958 0,683 0,057 436,6 17,4 4,0 22,6 5,2 

 
 

random initial condition. Consistent, reproduceable and stable results for all crops through test 

series were achieved with three meteorological parameters (TMTDRR) and 12 neurons in the 

first and 8 in the second hidden layer, with the exception of maize. We found a second 

maximum with a 15 to 10 TMTDRR-network. Since the difference of maximum temperature 

and dewpoint temperature is highly correlated with the potential evapotranspiration, we ran 

the final hindcast tests for all crops in the TMTDRR1208 configuration. A sensitivity 
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analysis, starting with 18 neurons in each hidden layer and ending with 6 to 4, did not show 

significantly better results. We take it as a sign of robustness, that it was impossible to force 

the network to learn wrong data sets (e.g. districts with damages by hailstorms or heavy 

rainfall) producing regional correlation coefficients less or equal than 0.97 (average over all 

districts > 0.93). Furthermore the assumed length of the growing period of 150 days for maize 

to be representative for the reported lengths by DWD (1955 – 1993) from 140 to 170 days, 

seemed to have little influence as the optimum harvest time of today’s cultivars with a 

flexibility of 14 to 21 days (Spiekers, 2000). Districts with a flat topography or homogeneous 

soil characteristics had higher correlation coefficients and lower MAD and RMSE than those 

with heterogeneous soil conditions or rougher topography. Highest regional correlation 

coefficients were achieved for most districts of Schleswig-Holstein and Lower Saxony.  

Oats: Performance of Approximation
Rendsburg in Schleswig-Holstein, Network TMTDRR1208 
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t/h
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Reported    Approximated

Fig. 7. Comparison of reported and approximated yields: the Rendsburg district with high  

R = 0.97 
RMSE = 2.7 
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correlation. Source: Statistical Office of Schleswig-Holstein, our calculations 

Spring Barley: Performance of Approximation
Karlsruhe in Baden-Württemberg, Network TMTDRR1006
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Fig. 8. Comparison of reported and approximated yields: the Karlsruhe district with average  

correlation. Source: Statistical Office of Baden-Württemberg, our calculations 

Silaged Maize: Performance of Approximation
Augsburg in Bavaria, Network TMTXTDRR1210
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Fig. 9. Comparison of reported and approximated yields: the Augsburg district with low  

correlation. Source: Statistical Office of Bavaria, our calculations 

 

In some years our model showed for districts of Bavaria and Baden-Württemberg 

systematical overestimations for maize. We identified regional hailstorms as the cause of it, 

because maize is much more vulnerable to hailstorms than other cereals (Richter 2003).  

 

5.3. Performance of hindcasts 

The results of our realistic thirty year forecast simulation for a region with subnational scale 

outside the training sample are shown in fig. 10 and 11.  
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Hindcast Oats: 9 Districts of Schleswig-Holstein, Network TMTDRR1208
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Fig. 10. Performance of hindcasted yields for oats in Schleswig-Holstein. Source: Statistical 

Office of Schleswig-Holstein, our calculations 

Hindcast Barley: Schleswig-Holstein: 7 Districts: Network TMTDRR1208
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Fig. 11. Performance of hindcasted yields for barley in Schleswig-Holstein. Statistical Office 

of Schleswig-Holstein, our calculations 

 
The reported and hindcasted mean yields are calculated by interpolation of the cereal-grown 

area of the districts, reported every four years. The achieved R² higher than 0.8 are more than 

sufficient for economical purposes. They do not differ from other statements of the crop yield 

variability due to weather (Petr 1991, Fageria 1992, cited by Hoogenboom 2000). The ability 

of the model to give nearly perfect predictions of the yields in most of the arid years (1975, 

76, 83, 89 and 92) within our research period is remarkable. The model predicted for instance, 

compared to the linear trend of the 30 years, for the 1992 severe drought in Schleswig-

Holstein a 37% (33) loss for oats (barley) while a 33% (46) loss was reported. With the global 

economic conditions today, without subsidies by the EU, farmers would have a negative 

 22 



marginal return, which is correctly predicted by the model. The yields for oats (barley) in 

years with more or less normal growth conditions are hindcasted by the model with a MAD of 

2.7 (2.3) dt/ha and a relative of 5.5 (5.6)%. The relative RMSE of all hindcasts is about 7.6 

(7.0) %, a value sufficiently small to allow us to calculate the marginal costs of such extreme 

events due to possible climate change and increasing number of droughts. The other realistic 

simulation, predicting future yields across all 4 climate regions, based on the pattern until 

1996 (1998), gave nearly identical results and are shown in figs. 12, 13 and 14. 
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Fig. 12. Oats: Performance of hindcasted yields of 12 districts in 4

Statistical Offices of Schleswig-Holstein, Lower Saxony, B

Bavaria, our calculations 

 
 

 

NF = Nordfriesland S.-H. 
RD = Rendsburg  S.-H 
SE = Segeberg S.-H. 
E = Emsland L. S. 
CUX = Cuxhaven L. S. 
H = Hannover L. S. 
TBB = Main-Tauber-District B.-W. 
HD = Rhein-Neckar-District B.-W. 
RV  = Ravensburg B.-W. 
BA = Bamberg BY 
A = Augsburg BY 
SAD = Schwandorf BY 
S.-H. = Schleswig-Holstein 
L. S. = Lower Saxony 
B.-W.= Baden-Württemberg 
BY = Bavaria
 federal states. Source:  

aden-Württemberg and 
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Hindcast Silage Maize: Three Years in four Climate Zones
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Fig. 13. Silage maize: Performance of hindcasted yields of 12 districts in 4 federal states. 
 

Source: Statistical Offices of Schleswig-Holstein, Lower Saxony, Baden-Württemberg 

and Bavaria, our calculations 
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Fig. 14. Spring-Barley: Performance of hindcasted yields of 12 dis

Source: Statistical Offices of Schleswig-Holstein, Lower S

and Bavaria, our calculations 

 

 

RD = Rendsburg  (S.-H.) 
IZ  = Steinburg  (S.-H.) 
OD = Stormarn   (S.-H.) 
OS = Osnabrück  (L. S.) 
ROW = Rotenburg  (L. S.) 
SFA = Soltau-Fallingbostel (L. S.) 
HN = Heilbronn  (B.-W.)
UL =   Alb-Donau-District (B.-W.)
SIG = Sigmaringen (B.-W.)
BA  = Bamberg  (BY) 
AS  = Amberg-Sulzbach (BY) 
AN = Ansbach  (BY) 
S.-H. =  Schleswig-Holstein 
L. S. =  Lower Saxony 
B.-W. =  Baden-Württemberg 
BY =  Bavaria 
tricts in 4 federal states.  

axony, Baden-Württemberg 
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All runs showed the ability of the model to give good predictions for a presented weather 

pattern outside the training area and period and across a wide monthly mean temperature and 

precipitation variability, which is shown in table 4 and 5. The model predicted yields under 

the maritime climate of Schleswig-Holstein as well as under the continental of Bavaria or 

Baden-Württemberg. The district with the highest growing season mean temperature during 

research period was Heidelberg (Baden-Württemberg) with 15.9 °C (19.2 for maize), the 

coldest was Nordfriesland (Schleswig-Holstein) with 10.8 °C (13.0 for maize). Related to the 

monthly and seasonal mean temperatures and precipitation in other European Cities and in the 

northern US-states, the model would principally run after extra training to catch the extremes 

in these regions too. Precipitation during growing season ranged between 73 mm (141 for 

maize) and 548 mm (1016). 

 
Table 4. Monthly Mean Temperatures [C°] during Research Period  

  Source: DWD, our calculations  

 
Research Area April May June July Aug. Sep. Apr. - Jul. May - Sep. 
Min Mean Temp. 3,8 6,5 11,5 13,0 12,2 8,6 - - 
Max Mean Temp. 13,5 17,7 21,6 24,4 22,4 19,6 - - 
Mean Temp. 7,7 12,9 15,6 17,7 17,3 13,5 13,5 15,4 
Warmest Season 11,5 13,2 19,6 24,4 22,0 16,7 17,2 19,2 
Coldest Season 5,2 10,4 13,9 13,6 14,6 12,4 10,8 13,0 
Heidelberg Mean 9,9 14,6 17,1 19,7 19,5 16 15,3 17,4 

 
 
Table 5. Monthly Mean Precipitation [mm] during Research Period  

  Source: DWD, our calculations  
 

Research Area April May June July Aug. Sep. Apr. - Jul. May - Sep. 
Min. Prec. 2 2 2 4 3 9 2 2 
Max. Prec. 195 257 231 226 342 306 257 342 
Mean Prec. 50 59 78 76 77 75 263 365 
Driest (Oats) 13 14 28 18 -  -  73 -  
Driest (Maize) -  44 15 19 28 35 - 141 
Wettest (Oats) 146 50 126 226  - -  548 -  
Wettest (Maize)  - 120 370 130 240 157 -  1016 
Heidelberg (Mean) 52 73 77 80 49 70 282 349 
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6. CONCLUSIONS 

The objective of this paper was to show that the use of ANN technology is a possible way to 

close an existing gap between climate models and common site specific crop growth models 

to construct regional time series of agricultural output under climate change. The applicability 

of ANNs for regional crop yield simulation and prediction of  grain was evaluated in this 

study by developing a four-layer rprop-ANN and testing it in four different climate zones of 

Germany. The main advantage of this nonlinear empirical statistical modelling technique is, 

that no deep and particular knowledge about relationships between the variability of weather 

patterns, soil characteristics, farmers management practices and plant growth is necessary, as 

a proper design of the input-output pattern implicitly incorporates them. The requirements for 

the number of input parameters are low in comparison to other dynamical and sophisticated 

crop growth models. These parameters are in principle available worldwide. The model can 

be used in all regions where time series of temperature, precipitation and crop yields are 

reported at sufficient spatial scales. The benefits of this robust modelling system for the 

assessment of the impact of global warming on agricultural production are huge. On the one 

hand, the ANN technology has been shown to be a useful tool to investigate, approximate and 

predict spring crop yields in a heterogeneous climate region with wide ranges of temperature 

and precipitation. On the other hand, the ANN approach can be used for systems analysis in 

order to determine key variables without knowing the exact dependencies. Unknown base 

yields and technical trends due to changing soil fertility or farmer´s management practices can 

automatically be determined by the model or separately by traditional regression or estimation 

methods.  The same can be done with the CO2 fertilizer effect or improvement of plant 

breeding. With modern ANN software packages it is easy to construct different networks for 

these special purposes. Output of REMOs or GCMs can directly be used to simulate crop 

yields or yield potentials under climate change. A direct coupling with other dynamical crop 

growth models is possible. 
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There are limiting factors, however. To avoid the known overtraining effect ANNs need long 

and numerous time series of regional weather and yield pattern of heterogeneous regions. The 

ability to generalize and the accuracy of predictions outside the training area are limited by 

the ranges and the variability of input parameters of the training and prediction area and by 

the continuity and comparability of soil characteristics and management practices. 

Consequently special ANNs have to be developed for non comparable climate regions. For 

example our trained ANNs may give with some adaptations predictions for Denmark, Poland, 

France or Great Britain but would not work in Finland, as the length of growing season is up 

to 50 days shorter there than in Germany and the usable solar radiation is different. Another 

limiting factor are the unsufficient validation techniques (Schultz et al. 2000) and the black-

box character of the ANN. Nevertheless the presented examples show that the accuracy of 

ANN technology compared to other estimation methods for this are equal or better, so that 

traditional approaches can be substituted where needed. 
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