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Abstract

Farsighted stability of Chwe (1994) is discussed while attention is played on the computational
framework of finding farsightedly stable coalition structures. The idea of farsightedness means that
one should check for multi-step stability by comparing the profits of a coalition member after a series
of deviations has come to an end. The deviation is possible only if players display a cooperate atti-
tude by forming a coalition in order to increase their payoffs. The connections of farsighted stability
with a positive, negative spillover property and profitability condition are shown. Algorithms are
developed, which can find all farsighted stable coalition structures.
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1 Introduction

Farsighted stability developed further the notation of stable sets of von Neumann and Morgenstern
(1947). Stable sets are defined to be self-consistent. The notion is characterized by internal and external
stability. Internal stability guarantees that the solution set is free from inner contradictions, that is, any
two outcomes in the solution set cannot dominate each other and external stability guarantees that every
outcome excluded from the solution is accounted for, that is, it is dominated by some outcome inside
the solution. Harsanyi (1974) criticizes the von Neumann and Morgenstern solution also for its failing to
incorporate foresight. He introduced the concept of indirect dominance to capture foresight. An outcome
indirectly dominates another, if there exists a sequence of outcomes starting from the dominated outcome
and leading to the dominating one, and at each stage of the sequence the group of players required to
enact the inducement prefers the final outcome to its status quo. His criticism inspired a series of works
on abstract environments, including among others those of Chwe (1994); Mariotti (1997) and Xue (1998).
Chwe (1994) introduces the notation of farsighted stability, which is applied to the problem of IEAs by
Diamantoudi and Sartzetakis (2002), Eyckmans (2003) and Osmani and Tol (2009).
We investigate what outcomes are stable, which implies that they cannot be replaced by any coalition of
rational, farsighted and selfish countries. The selfishness of players shapes the aspects of non-cooperative
approach. The idea of farsightedness means that one should check for multi-step stability by comparing
the profits of a coalition member after a series of deviations has come to an end. The deviation is possible
only if players display cooperate attitude (by forming a coalition) to each-other in order to increase their
welfare.
Different from Chwe (1994), who established the coalitional farsighted stability and presented a powerful
theorem which proves the existence of it, we are more interested in applying aspects of farsighted stability
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in real world problems like climate change games etc where many asymmetric players interact. As there
are a lot of asymmetric players, there are far more non-profitable coalitions compared to profitable (or
individual rational) coalitions. It indicates that all non-profitable farsighted stable coalitions are harder
to compute.
We introduce the direct connection to farsighted stability to profitability condition. We show that there
is a relation between positive spillover property and profitable farsighted stable coalitions. We show also
one that it is possible to calculate the non-profitable farsighted stable coalitions starting from profitable
coalitions. We build algorithms which can find farsighted stable coalition structure with many coalitions.
The computational complexity is exponential in the number of players, so it is not advisable to aim finding
of arbitrary farsighted stable coalitions. Other conceptual tools are necessary like focal points suggested
from Schelling (1960).
There are also some minor differences compared to Chwe (1994) approach to farsighted stability. Chwe
defines the indirect dominance of Harsanyi (1974) in terms of consistence set. We say that if a coalition
structure is not indirectly dominated, then it is farsighted stable. Furthermore, in spirit of Consistent Set
of Chwe (1994), we define Dynamic Farsighted Coalition Structure Set (DFCS); if a coalition structure
does not belong to DFCS, then is is indirectly dominated by a another coalition structure which belongs
to DFCS. Being aware of cycles Chwe builds a weak solution, in the sense that outcome belonging to
the Large Consistent Set are only possible stable. We differently say that every outcome (or a coalition
structure) which is not indirectly dominated is farsightedly stable. So a cycle is impossible any further,
and we obtain a slightly different solution concept. We still think that the difference is more of technical
nature than of a conceptual one.
The paper is organized as follows. The second section introduces the game, defines indirect internal,
external and sub-coalition dominance, and further more expresses them in terms of partition function.
Computational aspects of farsighted stability are discussed in the third and fourth section. In fourth
section an example for finding multiple farsighted stable coalitions is introduced, which is taken from
Osmani and Tol (2009). The section five provides the conclusions. In Appendix, algorithms for finding
single and multiple farsighted stable coalitions are introduced; the numerical efforts for finding farsighted
stable coalitions in a general coalition structure are discussed, and a part of numerical computations of
our example of section four, are presented.

2 Definition of the Game, Direct and Indirect Domination

Similarly to Chwe (1994), a game Γ is defined as, Γ = (N, O, {≺i}i∈N , {→C}C⊂N,C 6=∅) where N is the
set of players, O is the set of all coalition structures (which are also outcomes), N 6= ∅, O 6= ∅ ; {≺i}i∈N

are the strong preference relation of players defined on O. Before explaining further the game, let define
the coalition structure:

Definition 2.1 A coalition structure a = {C1, C2, ..., Cm} is a partition of the set of players N =
{1, 2, ..., n} : Si ∩ Sj 6= ∅ where

⋃
i=1:m Ci = N .

A coalition structure fully describes how many coalitions are formed, how many members they have, and
also how many single players are. The relation →C1 introduces the actions that are available to coalition
C1; a1 →C1 a2 indicates that if coalition structure a1 is the status quo, coalition C1 can make a2 the
new status quo.
The game is ”played” in the following way; when the game starts, there is a coalition structure (or
outcomes) status quo called a1; the status quo is usually taken the full-noncooperative structure (aFNS ,
definition is going to be given later). If the member of coalition C decides to change the status quo from
a1 to a2, or a1 →C a2, then the new status quo becomes a2. This change of a status quo, we call a
coalition’s move or deviation, from a1 to a2. From this new status quo a2, other coalition might move,
and so forth. If a status quo a3 is reached, and no player prefers to move, then a3 is called stable and
game is over. The game does tell you if a move or deviation is possible, so if a coalition structure am is
possible or not.
The game is of a cooperative and noncooperative spirit. The selfishness of players shapes the aspects of
non-cooperative approach. The idea of farsightedness means that one should check for multi-step stability
by comparing the preference of a coalition member after a series of deviations has come to an end. The
deviation is possible only if players display cooperate attitude by forming a coalition which they mostly
preferred.
As the game is defined, we will go on with discussing direct and indirect domination.
If a1 ≺i a2, i ∈ C, we write a1 ≺C a2.
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Definition 2.2 A coalition structure a1 is directly dominated by the coalition structure a2, or a1 < a2,
if there exists an C1 such that a1 →C1 a2 and a1 ≺C a2

The definition of indirect dominance (taken from Harsanyi (1974) is introduced below:

Definition 2.3 A coalition structure a1 is indirectly dominated by the coalition structure am, or a1 ¿
am, if there exists a1, a2, a3, ..., am and C1, C2, C3, ..., Cm−1 such that ai →Ci

ai+1, and ai ≺Ci
am where

i = 1, 2, 3, ...,m− 1.

Henceforth and on, we will only focus on ”effective relation” that leads to indirect domination. This fits
to spirit of farsighted stability as the farsighted players can see all possible deviations ahead, and are
going to deviate only if they see ahead, further deviations which leads to a indirect dominance. Note
that if a1 < a2, then a1 ¿ a2.

Definition 2.4 A coalitions structure a1 is farsighted stable if it is not indirectly dominated.

Here is a difference with original farsighted coalitional stability of Chwe (1994). I simply consider any
coalition, which is not indirectly dominated, as farsighted stable. Chwe is more careful, he says in this
case, that the coalition is possible to be stable. My standpoint is that there is no reason for deviation,
if a coalition is not indirectly dominated, then better let call it stable in stead of possible stable.
This is also an essential point, as cycles cannot be formed, as cycles do not lead to an indirect dominance.

Definition 2.5 A cycle is a chain of coalitions structure a1 →C1 a2 →C2 a3 ... an−1 →Cn−1 an →Cn
a1

where every coalition structure ai | i ∈ N ∧ 1 ≤ i ≤ n is not indirectly dominated.

So cycles in our testing for farsightedly stable coalitions can not be formed, but every coalition structure,
which is a part of cycle can be found, as it is not indirectly dominated, and so it is farsightedly stable.
In order to compute farsighted stable coalitions, in the beginning we have to assume that only one
coalition is formed. There are three ways that coalition can change when one coalition is formed; coalition
get smaller, get bigger or some members leave coalition and some other join it. When a coalition get
smaller, this is the case for internal indirect domination; when a coalition get bigger, this is the case
of external domination; when some members leave coalition and some other join it, this is the case of
subcoalition domination. In order to find the farsightedly stable coalitions all types of indirect domination
(internal, external and subcoalition) are considered as combinatorial process. The definition of internal
indirect domination is introduced below.

Definition 2.6 a1 is internally indirectly dominated by am, or a1 ¿ am, if there exists a1, a2, a3, ..., am

and C1, C2, C3, ..., Cm−1 where C1 ⊃ C2 ⊃ C3, ..., Cm−2 ⊃ Cm−1 and ai →Ci ai+1, and aj ≺Cj am where
i, j = 1, 2, 3, ..., m− 1.

If a coalition gets smaller, and its remaining members prefer the final coalition compare to the initial
one, we say that an internal indirect domination is possible.

Definition 2.7 a1 is externally indirectly dominated by am, or a1 ¿ am, if there exists a1, a2, a3, ..., am

and C1, C2, C3, ..., Cm−1 where C1 ⊂ C2 ⊂ C3, ..., Cm−2 ⊂ Cm−1 and ai →Ci ai+1, and aj ≺Cj am where
i, j = 1, 2, 3, ..., m− 1.

If a coalition gets bigger, and its remaining members prefer the final coalition compare to the initial one,
we say that an external indirect domination is possible.

Definition 2.8 a1 is a sub-coalition indirectly dominated by am, or a1 ¿ am, if there exists a1, a2, a3, ..., am

and C1, C2, C3, ..., Cm−1 where Ck∩Cl 6= ∅ where k, l = 1, 2, 3, ..., m−1 and ai →Ci ai+1, and aj ≺Cj am

where i, j = 1, 2, 3, ..., m− 1.

The indirect sub-coalition domination occurs when a number of old coalition members leave and a number
of new members join the initial coalition. The new coalition may be larger or smaller than the original
one. However, if a part of old coalition members (a sub-coalition), and the new coalition members form a
coalition, and prefer it compared to the initial coalition, we say that a sub-coalition indirect inducement
is possible.

Definition 2.9 If a coalitions structure a1 is not external ∨ internal ∨ sub-coalition indirectly
dominated then coalition a1 is respectively external ∨ internal ∨ sub-coalition farsightedly stable.
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Definition 2.10 If a coalitions structure a1 is not external ∧ internal ∧ sub-coalition indirectly
dominated then coalition structure a1 is farsightedly stable.

If we can transform the preference relations to pay off comparison then it can be easily checked by a
combinatorial algorithm if a coalition is internally, externally or sub-coalitional indirectly dominated. In
order to check to be able to compare the payoff of coalition members we need to introduce the definition
of partition function. Let recall that N = {1, ..., n} is the set of players, and nonempty subsets of N are
called coalitions. A partition (or coalition structure) a is a set of disjoint coalitions, a = {P1, P2, ..., Pk},
so that their union is N; the set of all partitions is P, and the set of partitions of a coalition C of N (it
means of all partitions where coalition C is part of them) is P(C).

Definition 2.11 The partition function is a mapping V (C,P) : (C,P) 7→ < where C ∈ P, that assigns
a value to each coalition in every partition.

Definition 2.12 The per-member partition function is a mapping v(i)i∈C(C,P) : (C,P) 7→ < where
C ∈ P, that assigns a payoff value v(i)i∈C(C,P) to every member of each coalition in every partition.

The per-member partition function v(i)i∈C(C,P) gives a payoff value v(i)i∈C(C,P) (for now and on, I
will write simply v(i)i∈C) to every coalition member). This helps us to transform the preference relation
to a comparison of coalition member payoffs.

Definition 2.13 A coalition C prefers coalition structure aj in comparison to am (or aj ≺C am) if and
only if:

• v(i)aj

i∈C > v(i)am

i∈C

• where v(i)aj

i∈C , v(i)am

i∈C are the per-member partition functions of a member i of coalition C with
coalition structure aj and am respectively.

By comparing the payoff’s of coalition members between different coalition structures, it can be easily
checked by a combinatorial algorithm if a coalition is internally, externally or sub-coalitional indirectly
dominated.

3 Computational aspects of finding single farsighted stable coali-
tion

In this section, we clarify the proceeding of computing single farsighted stable coalition.
Let firstly, define the full-noncooperative behavior, which is necessary to define the profitable coalition,
which are crucial for calculation of farsighted stable coalitions.

Definition 3.1 The situation in which each country maximizes its own profit, and the maximum coali-
tion size is unity is referred to as the full-noncooperative structure (or aFNS).

It is a standard Nash equilibrium. A coalition that performs better than the the full-noncooperative
structure is a profitable coalition. Only profitable coalitions are tested, which is sufficient to find all
single farsightedly stable coalitions (see Observation 3.2). The definition of a profitable coalition is
introduced below:

Definition 3.2 A coalition C in coalition structure ac is profitable (or individual rational) if and only
if it satisfies the following condition:

• v(i)ac

i∈C > v(i)aF NS

i∈C

• v(i)ac

i∈C , v(i)aF NS

i∈C are per-member partition functions of a player i of coalition C with coalition
structure ac and aFNS respectively.

Considering only profitable coalitions also reduces the computational effort required to find farsight-
edly stable coalitions. Profitability condition requests more than superadditive property, which requires
that two different coalitions should generate more profits (or welfare) by joining forces as by remaining
separate; see definition 4.1.

Observation 3.1 If there are no profitable coalitions than the only farsighted stable coalitions are the
coalitions with unity size that are formed in the full-noncooperative structure.
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Proof: As it is simple, we omit it.

The observation makes clear that there is a close connection between profitability condition and far-
sighted stability. As at the moment the only single coalitions are tested, in stead of talking on coalition
structure, we talk only on coalitions. Finding profitable farsighted stable coalitions is computational
challenging, but a straightforward job. One find all profitable coalitions, and begin to test one by
one if they are externally, internally or sub-coalitional indirectly dominated from other coalitions. The
profitable coalitions, which are not indirectly dominated, are farsightedly stable. But can we find the
non-profitable farsightedly stable coalitions, if there is any? It is crucial to note that, in real world prob-
lems with asymmetric countries, one expects to have far more non-profitable coalitions than profitable
ones. It implies that the question has a an important computational aspect.
In order to answer those questions, we need first to define the positive, negative and neutral spillover
property.

Definition 3.3 If a game for any two coalitions C1 ⊂ N and C2 ⊂ N such that C1 6= C2 satisfy:

• ∀ k /∈ C1 ∪ C2 v(k)C1∪C2 > v(k)C1 ∧ v(k)C1∪C2 > v(k)C2 , we say the game exhibits positive
spillover property

• ∀ k /∈ C1 ∪ C2 v(k)C1∪C2 < v(k)C1 ∧ v(k)C1∪C2 < v(k)C2 , we say the game exhibits negative
spillover property

• ∀ k /∈ C1 ∪ C2 v(k)C1∪C2 = v(k)C1 ∧ v(k)C1∪C2 = v(k)C2 , we say the game exhibits neutral
spillover property

Clearly if positive spillover property is not satisfied, then it does not mean the negative spillover property
is satisfied. Usually one can assume that some player satisfy the positive spillover property, some others
the negative or neutral spillover property.
It is reasonable to take as starting point, for testing coalitions if they are farsightedly stable, the full-
noncooperative structure.
Our combinatorial proceeding realizes that all possible coalitions, which can our initial coalition (let say
Cl) dominate, are considered. Clearly all possible coalitions, which can dominate our coalition Cl can
be divided in three categories (C1, C2, C3):

• C1 ⊂ Cl which are checked when internal indirect domination is examined

• C2 ⊃ Cl which are tested when external indirect domination is investigated

• C3 ∩ Cl 6= ∅ which are inspected when sub-coalition indirect domination is considered

As a consequence, we know if there exists a coalition which dominates our coalition Cn.
The algorithms of Table (1) and Table (2) in Appendix 6 fully describe the procedure of finding far-
sightedly stable coalitions. As this is a huge combinatorial effort, we often modify the algorithms in
order to decrease our computational cost. In order to have an idea how much computational efforts are
necessary to find farsightedly stable coalition structures with two coalitions. Let test coalition structure
b1 = (C1, l1) which have one coalitions C1 with i1, and l1 single players. We have all together m players,
where m = i1 + l1. For checking the coalition C1 if it is internally, externally and subcoalition stable,
one needs to check as many coalitions as equation (3) is showing. If we take:

Intern1 = (C2
i1 + .. + Ci1

i1
)︸ ︷︷ ︸

internal stability

= 2i1 − i1 − 1 Extern1 = (C1
l1 + .. + Cl1

l1
)︸ ︷︷ ︸

external stability

= 2l1 (1)

Subcoal1 =
∑

t=1:(i1−1)

Ct
i1(C

1
m−t + .. + Cm−t

m−t )

︸ ︷︷ ︸
subcoalition stability

(2)

Intern1 + Extern1 + Subcoal1 = 2i1 − i1 − 1 + 2l1 +
∑

t=1:(i1−1)

Ct
i12

m−t (3)

Now we are able to state a very useful observation which makes sure that we are able to find all far-
sightedly stable coalitions (profitable or non-profitable) even we use as a starting point only profitable
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coalitions. This is a specially important to computational point of view, as in games with asymmetric
players, there are far more non-profitable coalitions than profitable ones.

Observation 3.2 If a non-profitable coalition Cn is farsighted stable if:

1. the positive spillover or neutral spillover property is not satisfied

2. ∃ C1 ⊂ Cm, and C1 is profitable; ∃ C2 | C2 ∩Cm 6= ∅ where C2 is profitable, and C2 is directly or
indirectly dominated from Cm, and Cm is not directly or indirectly dominated from any coalition..

Proof, First Statement :

First direction:
If a non-profitable coalition Cm is farsightedly stable then, the positive and neutral spillover property is
not satisfied.
Suppose that, there is a non-profitable farsightedly stable coalition Cn, and positive spillover property
is satisfied. As Cn is not-profitable then:

∃ aplayer l ∈ Cn|v(k)Cn < v(k)aF NS (4)

Suppose that the player l leaves the coalition Cn and becomes a single player, then as the positive
spillover property is satisfied we have:

v(k)Cn > v(k)aF NS (5)

The equation 5 is contradicting the equation 4, which proves (by contradiction) that if we have a far-
sightedly stable non-profitable coalition, then the positive spillover property is not satisfied.
Proof, Second direction: The prove for the second direction (and neutral spillover property) is similar
with the above one, so we omit it.

Proof, Second Statement :

First direction: If a non-profitable coalition Cm is farsightedly stable then, there is a profitable sub-
coalition C1 ⊂ Cm. Besides there is C2 such as C2 ∩ C 6= ∅, C2 is directly or indirectly dominated from
Cm, and moreover Cm is not directly or indirectly dominated from any coalition.
Part 1, First direction :
Suppose that every sub-coalition of any non-profitable farsightedly stable (FS) coalition Cm has a coun-
try that receives a lower payoff than in the full-noncooperative behavior, then the coalition Cm is not
FS. The coalition is not FS because it is possible to build an effective relation to dissolve the coalition:

Cm → Cm−1, ... , C1 → aFNS as ∀ Cl 1 ≤ l ≤ m ∃ a country i ∈ Cl where v(i)Cl > v(i)aF NS (6)

The dissolving process is simple. Every country with lower profit than in the full-noncooperative struc-
ture leaves the coalition. As every sub-coalition has one such country, the coalition is not FS. As a
consequence coalition C1 must have a profitable sub-coalition in order to have a chance of being FS,
which completes the first part of the proof.
Part 1, Second Direction: The proof of second direction is similar to the first direction, so we omit it.

The Proof, Part 2: Let suppose that we have the chain of effective relations, where Cm is a non-profitable
farsightedly stable coalition:

aFNS → C1, ... , Cm−1 → Cm (7)

As we will only focus on ”effective relation” that leads to indirect domination, so a non-profitable
coalition does not indirectly dominate the full non-cooperative structure. It implies that in the chain on
the effective relation (7) ∃ Ci which is profitable i ∈ N, 1 ≤ i ≤ m.

Corollary 3.1 If the positive or neutral spillover property is satisfied for all players then all farsighted
stable coalitions are profitable.

Proof: This is a corollary of Observation 3.2.
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3.1 Dynamic Farsighted Coalition Structure Set

In the spirit of Chwe (1994), we characterize the set of all farsightedly stable coalitions Coalfs as Dynamic
Farsighted Coalition Structure Set (DFCS).

Definition 3.4 A set S is the Dynamic Farsighted Coalition Structure Set (DFCS) if and only if:

• if a coalition structure a ∈ S then a is farsightedly stable

• ∀ coalition structure b /∈ S ∃ a coalition structure c ∈ S | b¿ c

The definition firstly, indicates that any coalition structure a that belongs to DFCS is farsightedly stable.
Secondly, if a coalition structure b does not belong to DFCS is not farsightedly stable. Furthermore,
there exits another coalition structure c ∈ DLCS, which dominates b indirectly.

4 Multiple farsighted stable coalitions

When multiple coalitions are formed one has to consider two different kind of interaction between coali-
tion and single players, and one can again talk for indirect internal, external and subcoalition domination.
The second one is when coalition exchange players between each-other, which can possibly lead to an-
other coalition structure that can dominate the initial one. During the inspection of player exchange
among coalitions we keep the number of single players, and number of coalitions fixed.
If there exists farsightedly coalition structures a2 = (C

′
1, C

′
2...C

′
t , l1), which dominate the initial coalition

structure a1 = (C1, C2...Ct, l1) where Ci∩C
′
i 6= ∅, algorithms presented in Table 3 is able to finds it (and

then coalition structure a2 has to be tested, if there is another coalition structure a3, which dominates
it). If there is no coalition structure which dominates our initial coalition structure a1 = (C1, C2...Ct, l1),
algorithm will give the answer that our initial coalition structure a1 can not be dominated, and conse-
quently is farsightedly stable.
The algorithm is computationally very expensive, and we do not advice using it for any arbitrary coali-
tion structures. But similar to Zermelo (1913)’s model for solving chess, we like to stress that checking
for arbitrary farsighted stable coalition structure is computationally very expensive but finite.
In order to have an idea how much computational effort are necessary to find farsightedly stable coalition
structures with three coalitions. Let test coalition structure b3 = (C1, C2, C3, l1). We have three coali-
tions C1,C2 and C3 with respectfully i1,i2 and i3 members, and l1 single players. We have all together
m players, where m = i1 + i2 + i3 + l1, and n = i1 + i2 + i3 are all members of coalitions; let have also
n1 = i1 + l1, n2 = i2 + l1 and n2 = i2 + l1. For checking three coalitions if they are internally, externally
and subcoalition checks one needs to check (without allowing exchange of members between coalition
structures) as many coalitions as equation (11) is showing.
For checking a coalition for internal stability, one has to check all sub-coalitions of a coalition with two
members or more, which are given by the expression 2i2 +2i3 for three coalitions together. But excluding
single member coalitions and the coalition itself which are equal to i1 + i2 + i3 + 3 = n + 3 for three
coalitions together.

Intern3 = (C2
i1−1 + .. + Ci1−1

i1
) + (C2

i2 + .. + Ci2−1
i2

) + (C2
i3 + .. + Ci3−1

i3
)︸ ︷︷ ︸

internal stability C1, C2 and C3

= 2i1 + 2i2 + 2i3 − n− 3 (8)

For checking a coalition for external stability, one has to add to the coalition all coalitions which are
formed by single players (we have l1 single players), which is given by the expression Extern2 for three
coalitions together.

Extern3 = 3(C1
l1 + .. + Cl1

l1
)︸ ︷︷ ︸

external stability C1, C2 and C3

= 3(2l1) (9)

For checking a coalition for sub-coalition stability, one has to check all proper sub-coalitions of our
coalitions (which are equal to

∑
t=1:(i1−1) Ct

i1
for first coalition only) for being external farsighted stable

(which is equal to C1
n1−t + .. + Cn1−t

n1−t for a sub-coalition with t members) Subcoal3.

Subcoal3 =
∑

t=1:(i1−1)

Ct
i1(C

1
n1−t + .. + Cn1−t

n1−t ) +
∑

t=1:(i2−1)

Ct
i2(C

1
n2−t + .. + Cn2−t

n2−t )+

+
∑

t=1:(i3−1)

Ct
i1(C

1
n3−t + .. + Cn3−t

n3−t ) =
∑

t=1:(i1−1)

Ct
i12

n1−t +
∑

t=1:(i2−1)

Ct
i22

n2−t +
∑

t=1:(i3−1)

Ct
i32

n3−t (10)

7



Intern3 + Extern3 + Subcoal3 =

= 2i1 + 2i2 + 2i3 − n− 3 + 3(2l1) +
∑

t=1:(i1−1)

Ct
i12

n1−t +
∑

t=1:(i2−1)

Ct
i22

n2−t +
∑

t=1:(i3−1)

Ct
i32

n3−t (11)

If we take account the exchange of members among three coalitions (let have i12 = i1 + i2, i13 = i1 + i3
and i23 = i2 + i3) there are necessary to check as many as (12) is showing. Let explain the structure of
the equation (12):

• in order to compute all triples sub-coalitions that can result from exchange members among coali-
tions C1, C2 and C3, we compute first all single coalitions (which have t members, where t = 2,
3, 4 ... (n - 4)) that can be formed by i1 + i2 + i3 = n members of all three coalitions, which
is equal to

∑
t=2:(n−4) Ct

n−4; the single coalitions can have at most (n− 4) members, so there are
always left at least 4 members to form two coalitions with at least two members, and we have a
triple of coalitions

• there are still to compute every couple of coalitions that can be formed by (n − t) remaining
members, which is equal to

∑
t=2:(n−4)(C

2
n−t + ... + Cn−t

n−t ).

Exchange3 =
∑

t=2:(n−4)

Ct
n−4(C

2
n−t + ... + Cn−t

n−t ) (12)

The total number of check we need to perform is equal to sum of equations 11 and 12; the number is
increasing exponentially with respect to the number in coalitions, and single players. This means that it
is computationally very expensive to check if a coalition structure is farsightedly stable. By another side,
it will also not make sense to inspect them. The last point I have to mention is that the characteristics of
the concrete problem may help you so much (like focal point suggested by Thomas Schelling (Schelling,
1960)), that you will be able to find the farsighted coalition structure with a modest computational effort.
This proceeding is generalized for finding farsighted stable coalition structures with t coalitions and lp
single players, in the Appendix 6

Example

The example is taken from (Osmani and Tol, 2009), where in climate game we use the farsighted stability
concept and calculate all farsighted stable coalitions. We use the per member partition function (or simple
profit function) of player i (or country i) is taken Climate Framework for Uncertainty, Negotiation and
Distribution (FUND) model developed by Richard Tol (Tol, 1999a,b, 2001, 2002):

πi = Bi − Ci = βi

n∑

j

RjEj − αiR
2
i Yi (13)

The benefit function Bi is approximated as:

Bi = βi

n∑

j

RjEj (14)

β the marginal damage costs of carbon dioxide emissions and E unabated emissions. Table (9) gives the
parameters of Equations (13), (14) and (15) as estimated by FUND.
Specifically, the abatement cost function Ci is represented as:

Ci = αiR
2
i Yi (15)

where C denotes abatement cost, R relative emission reduction, Y gross domestic product, indexes i
denotes regions and α is the cost parameter.
The second derivative of d2πi/dR2

i = −2αi < 0 as αi > 0. It follows that the profit function of every
country i is strictly concave, and as a consequence has a unique maximum. Hence, the non-cooperative
optimal emission reduction is found from first order optimal condition:

dπi/dRi = βiEi − 2αiRiYi = 0 ⇒ Ri = βiEi/(2αiYi) (16)
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If a region i is in a coalition with a region j, the optimal emission reduction is given by:

dπi+j/dRi = 0 ⇒ Ei(βi + βj)− 2αiRiYi = 0 ⇒ Ri = (βi + βj)Ei/(2αiYi) (17)

Thus, the price for entering a coalition is higher emission abatement at home. The return is that the
coalition partners also raise their abatement efforts.
Note that our welfare functions are orthogonal. This indicates that the emissions change of a country
do not affect the marginal benefits of other countries (that is the independence assumption). In our
game, countries outside the coalition benefit from the reduction in emissions achieved by the cooperating
countries, but they cannot affect the benefits derived by the members of the coalition.
The game satisfies the superadditivity property:

Definition 4.1 A game is superadditive if for any two coalitions, C1 ⊂ N16 and C2 ⊂ N16 :
υ(C1 ∪ C2) > υ(C1) + υ(C2) C1 ∩ C2 = ∅.
The superadditivity property means that if C1 and C2 are disjoint coalitions (here C1 and C2 can be single
players too). Clearly, they should accomplish at least as much by joining forces as by remaining separate
(where N16 is the set of sixteen players). However, the game very frequently (but not always) exhibits
positive spillovers. The positive spillover property is usually satisfied except for some coalitions that
contain as members Japan & South Korea or Australia & New Zealand, which have negative marginal
benefits (negative β’s) from pollution abatement.

Computational results

Finding all profitable coalitions needs a simple algorithm, although the computational effort is consid-
erable. One finds all coalitions and checks if all their members have higher profit in comparison to the
atom structure. The numerical results yield fifteen profitable two-member coalitions. As there are many
profitable coalitions, we have numbered them: for instance 2 − 13, 2 means that coalition has 2 coun-
tries, and 13 means that it is the 13-th in the list of two-member profitable coalitions. The profitable
two-member coalitions are:

(2− 1) (USA, CHI) (2− 2) (USA, NAF )
(2− 3) (USA, SSA) (2− 4) (CAN, SAS)
(2− 5) (ANZ,EEU) (2− 6) (ANZ,CAM)
(2− 7) (ANZ,SAS) (2− 8) (ANZ,SIS)
(2− 9) (EEU,CAM) (2− 10) (EEU,SIS)
(2− 11) (FSU,LAM) (2− 12) (CAM,SIS)
(2− 13) (CHI, NAF ) (2− 14) (CHI, SSA)
(2− 15) (NAF, SSA)

The profitable three-member coalitions are introduced below (the superscript ”fs” denotes farsightedly
stable):

(3− 1) (USA, LAM,CHI) (3− 2) (USA, SEA, CHI)
(3− 3) (USA, CHI, NAF )fs (3− 4) (USA,CHI, SSA)fs

(3− 5) (USA, NAF, SSA) (3− 6) (CAN, EEU, SAS)fs

(3− 7) (CAN,FSU,LAM)fs (3− 8) (CAN,CAM, SAS)fs

(3− 9) (CAN,CAM, SIS) (3− 10) (CAN, SAS, SIS)fs

(3− 11) (JPK,NAF, SSA) (3− 12) (EEU,CAM, SAS)fs

(3− 13) (EEU,CAM,SIS) (3− 14) (EEU,SAS, SIS)fs

(3− 15) (CAM,SAS, SIS)fs (3− 16) (CHI, NAF, SSA)fs

The profitable four-member coalitions are:

(4− 1) (USA, LAM,SEA, CHI) (4− 2) (USA, LAM, SEA, SSA)
(4− 3) (USA, LAM,CHI, NAF )fs (4− 4) (USA, LAM,CHI, SSA)fs

(4− 5) (USA, SEA, CHI, NAF )fs (4− 6) (USA, SEA, CHI, SSA)fs
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(4− 7) (USA, CHI, NAF, SSA)fs (4− 8) (CAN, EEU,CAM, SAS)fs

(4− 9) (CAN,EEU,CAM, SIS) (4− 10) (CAN, EEU, SAS, SIS)fs

(4− 11) (CAN,CAM, SAS, SIS)fs (4− 12) (EEU,CAM, SAS, SIS)fs

(4− 13) (LAM, SEA, CHI, NAF ) (4− 14) (LAM, SEA, CHI, SSA)
(4− 15) (SEA, CHI, NAF, SSA)fs

The profitable five-member coalitions are presented below:

(5− 1) (USA, LAM, SEA, CHI, NAF )fs (5− 2) (USA,LAM,SEA,CHI, SSA)fs

(5− 3) (USA, LAM, SEA, NAF, SSA)fs (5− 4) (USA, LAM, CHI, NAF, SSA)fs

(5− 5) (USA, SEA, CHI, NAF, SSA)fs (5− 6) (CAN, JPK, LAM,SAS, SSA)
(5− 7) (CAN,EEU,CAM, SAS, SIS)fs (5− 8) (LAM, SEA, CHI, NAF, SSA)fs

There is only one 1 six-member and only one 1 seven-member profitable coalition:

(6− 1) (USA, LAM, SEA, CHI, NAF, SSA)fs

(7− 1) (CAN, JPK, EEU,CAM, LAM, NAF, SIS)

The computation is extended to the multiple farsightedly stable coalitions by considering coalitions
(6− 1) and (5− 7) simultaneously.

(6− 1)fs (USA,LAM,SEA,CHI,NAF, SSA),
(5− 7)fs (CAN, EEU,CAM, SAS, SIS)

Note that the costs of emission reduction of a region are independent of the abatement of other
regions and the benefits are linear. As a consequence in case of multiple coalitions the changes in the
pay-off of each region is independent of the behavior of other regions provided that the two coalitions
do not exchange members. It follows that our coalitions are farsightedly stable if there is no direct
or indirect domination, which results in switching members between two coalitions. This has been
numerically verified. Thus we conclude that our coalitions are farsightedly stable. Therefore, we have
two farsightedly stable coalitions that coexist, which are (5 − 7) (CAN,EEU,CAM, SAS, SIS), and
(6− 1) (USA, LAM,SEA,CHI, NAF, SSA).

5 Conclusions

Farsighted stability is investigated while attention is payed on the computational framework of finding
farsightedly stable coalition structures. We investigate what coalition structures are stable, which implies
that they cannot be replaced by any coalition of rational, farsighted and selfish countries. The selfishness
of players shapes the aspects of non-cooperative approach. The idea of farsightedness means that one
should check for multi-step stability by comparing the profits of a coalition member after a series of
deviations has come to an end. The deviation is possible only if players display cooperate attitude (by
forming a coalition) to each-other in order to increase their welfare.
Different from Chwe (1994), who firstly introduce the coalitional farsighted stability and presented a
powerful theorem which proves the existence of it, we are more interested in applying aspects of farsighted
stability in real world problems like climate change games, etc. where many asymmetric players interact.
As there are a lot of asymmetric players, there are far more non-profitable coalitions compared to
profitable (or individual rational) coalitions. It indicates that non-profitable farsighted stable coalitions
are harder to compute.
We show the direct relation of farsighted stability to profitability condition and supperadditivity property.
We point out that there is a connection between positive spillover property and profitable farsighted
stable coalitions. We prove also one that it is feasible to find all non-profitable farsighted stable coalitions
starting from profitable coalitions. Algorithms are developed, which can find all farsighted stable coalition
structures. The cost of computation is high. It implies that it is more advisable to find a part of farsighted
stable coalition structures but not all of them. Other conceptual tools like focal points of Schelling (1960)
can be much more helpful than direct computational strategy.
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6 Appendix

6.1 Simple algorithms for finding single farsightedly-stable coalitions

Here the algorithms for finding farsightedly stable coalitions are presented. The first algorithm is de-
scribed in Table (1). It tests a coalition for external farsighted stability (EFS, see definition (2.9)).
Suppose we would like to check coalition Cn ≡ (1, 2 ... n) for EFS.

Table 1: Algorithm for finding externally farsightedly stable (EFS) coalitions in coalitions structures
when one coalitions is formed

Suppose that we have a coalition structure with one coalition Cn ≡ (1, 2 ... n), with all together m players, where m ≥ n.
Calculate π1(1)..π1(n)..π1(m), the per-member partition function of this coalition structure.
for i=(n+1) to m
(the loop does not contain countries 1,2 ... and n)
Find all coalitions with i-elements (n + 1) ≥ i ≤ m where n elements are always Cn ≡ (1, 2 ... n).
take a coalition with i countries
Calculate π2(1)..π2(n)..π2(m), the profit of this coalition structure.
if [π2(1) > π1(1) ∧ π2(2) > π1(2) ∧ ... ∧ π2(i) > π1(i)] (main condition)
the coalition Cn ≡ (1, 2 ... n) is not externally farsightedly stable (EFS).
endif
end
If the main condition is never satisfied for i=(n+1) to m, then
the coalition Cn ≡ (1, 2 ... n) is externally farsightedly stable.

If the algorithm of Table (1) finds a i member-coalition Ci for which the main condition [π2(1) >
π1(1) ∧ π2(2) > π1(2) ∧ ... ∧ π2(i− 1) > π1(i− 1) ∧ π2(i) > π1(i)] holds, then our initial coalition Cn is
not externally farsightedly stable. But if the main condition is never satisfied (for i=(n+1) to m), then
we say that no external inducement is possible. If no external inducement is possible, then the coalition
(Cn in our case) is externally farsightedly stable (EFS).
The algorithm for internal farsightedly stability will be presented below. Suppose again, that we have
a coalition with n countries Cn ≡ (1, 2 ... n). We need to find every sub-coalition (of 2 countries, 3
countries ... and (n-1) countries). We name by π

′
(1)...π

′
(m) the profits when the sub-coalitions are

formed, and π(1)...π(i1)...π(i5)...π(16) the profits when only the n member coalition Cn is formed. Then
if the condition below is satisfied (for any sub-coalition of Cn with i members where i=2 to (n-1)):
[π
′
(1) > π(1) ∧ π

′
(2) > π(2) ∧ π

′
(i − 1) > π(i − 1) ∧ π

′
(i) > π(i)], we say that an internal inducement

is possible. If an internal inducement is possible than the coalition is not internally farsightedly stable
(IFS, see definition (2.9)). All steps in this algorithm are presented in Table (2).

Testing sub-coalition stability of coalition C is similar to testing every sub-coalition of coalition C for
external farsighted stability.

6.2 Numerical results for three-member coalitions

In this subsection, we present a small part of the numerical computations which test and find the three-
member coalitions that are not farsightedly stable. Firstly, we note that all profitable coalitions are
internally farsightedly stable (including the three-member coalitions). Three-member coalitions which
are not externally farsightedly stable are presented in Tables 4, 5 and 6. The first column of Table
4 presents the members of five-member final coalitions. The three countries of the coalition that are
inspected are labeled in bold letters, while the members who join the initial coalition are in normal
typeface. The second column of Table 4, Pr3, displays the profits (in billions of dollars) of the final
coalition members when only the three-member coalition exists, while the third column Pr5 shows
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Table 2: Algorithm for finding internally farsightedly stable (EFS) coalitions in coalitions structures
when one coalitions is formed

Suppose that we have a coalition structure with one coalition Cn ≡ (1, 2 ... n), with all together m players, where m ≥ n.
Calculate π(1)..π(i1)..π(i5)..π(n) the per-member partition function of this coalition structure.
for i=2 to (n-1) (find all sub-coalition with i elements from coalition Cn ≡ (1, 2 ... n))
Take a sub-coalition with i elements.

Calculate π
′
(1)..π

′
(i1)..π

′
(i5)..π

′
(n) of this coalition structure.

if [π
′
(1) > π(1) ∧ π

′
(2) > π(2) ∧ π

′
(i− 1) > π(i− 1) ∧ π

′
(i) > π(i)] (main condition)

the coalition Cn ≡ (1, 2 ... n) is not an internally farsightedly stable coalition
endif
end
If the main condition is never satisfied for i=2 to (n-1), then
the coalition Cn ≡ (1, 2 ... n) is internally farsightedly stable.

the profits of final coalition members when only the five-member coalition exists. The profits of each
country are higher when the five-member coalition is formed (Pr5) in comparison to the profits when
the three-member coalition is formed (Pr3). As a result, the three member coalition (USA,LAM,CHI)
is not externally farsightedly stable. Columns four, five and six of Table 4 are similar to columns one,
two and three,and Tables 5 and 6 are similar to Table 4. Tables 7 and 8 introduce the three-member
coalitions which are not sub-coalition farsightedly stable. In the first column, the country members who
change their position (join or leave the initial coalition) are placed. The three countries of a primary
coalition which is inspected are labeled in bold letters, while the three members of the final coalition are
marked with an asterisk in the top-right. It is clear that countries in bold letters and have an asterisk
in top-right are simultaneously members of a primary and of the final coalition. The second column
of Table 4, Pr3old presents the profits of final coalition members when only the primary three-member
coalition is formed, while the third column of Table 4, Pr3new introduces the profits when the final
three-member coalition is built. The profits of members of final three-member coalition (with an asterisk
in the top-right) are greater when the final three-member coalition is formed Pr3new compared to the
primary three-member coalition Pr3old. It follows that the three member coalition (JPK,NAF,SSA) is
not sub-coalition farsightedly stable. Finally, Table 8 is similar to Table 7.

6.3 Finding multiple farsightedly stable coalition structure

If there exists farsightedly coalition structures a2 = (C
′
1, C

′
2...C

′
t , l1) (with t coalitions, and l1 single

players), which dominate the initial coalition structure a1 = (C1, C2...Ct, l1) where Ci ∩ C
′
i 6= ∅, the

algorithm presented in Table 3 can find it (and then coalition structure a2 has to be tested, if there is
another coalition structure a3, which dominates it). If there is no coalition structure, which dominates our
initial coalition structure a1 = (C1, C2...Ct, l1), algorithm will give the answer that our initial coalition
structure a1 cannot be dominated, and consequently, is farsightedly stable.
It is crucial to mention that the algorithm is computationally very expensive, and we do not advise using
it for any arbitrary coalition structures. However, similar to Zermelo (1913)’s model for solving chess,
we like to stress that checking for arbitrary farsighted stable coalition structure is computationally very
expensive but finite.
Let generalize our proceeding for a coalition structure bp = (C1, C2...Cp, lp). We have p coalitions
C1, C2..Cp with respectfully i1, i2...ip members, and lp number of single players. We have all together m
players, where m = i1 + i2 + ...ip + lp; let have also n1 = i1 + lp, n2 = i2 + l1...np = ip + lp. For checking p
coalitions if they are internally, externally and subcoalition checks one needs to check (without allowing
exchange of members among coalitions) as many coalitions as equation (21) is showing. If we take:

Internp = (C2
i1 + ... + Ci1−1

i1
) + (C2

i2 + ... + Ci2−1
i2

) + .... + (C2
ip

+ ... + C
ip−1
ip

)
︸ ︷︷ ︸

internal stability C1, C2 ... Cp

= 2i1 +2i2 + ...+2ip−n−p (18)
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Externp = p(C1
lp + ... + C

lp
lp

)
︸ ︷︷ ︸

external stability C1, C2 ... Cp

= p(2lp) (19)

Subcoalp =
∑

t=1:(i1−1)

Ct
i1(C

1
n1−t + ... + Cn1−t

n1−t ) + ... +
∑

t=1:(ip−1)

Ct
i1(C

1
np−t + ... + C

np−t
np−t ) =

∑

t=1:(i1−1)

Ct
i12

n1−t+

+ ......
∑

t=1:(ip−1)

Ct
ip

2np−t (20)

Internp + Externp + Subcoalp =

= 2i1 + ... + 2ip − n− p + p(2l1) +
∑

t=1:(i1−1)

Ct
i12

n1−t + ... +
∑

t=1:(ip−1)

Ct
ip

2np−t (21)

Let take into account the exchange of members between p coalitions. During the inspection of player
exchange among coalitions we keep the number of single players, and number of coalitions fixed. Then
for checking if all p coalitions are farsightedly stable, there are necessary to check as many as coalitions
as equation (22) shows.

Exchangep =
( ∑

t=2:(n−2(p−1))

Ct
n−2(p−1)

)
......

( ∑

t=2:(n−6)

Ct
n−6

)( ∑

t=2:(n−4)

Ct
n−4

)

︸ ︷︷ ︸
all together (p−2) sums

(
C2

n−t + ... + Cn−t
n−t

)
(22)

13



Table 3: Algorithm for finding farsightedly stable (EFS) coalition structures when t coalitions are formed,
and l1 players are single.

Take the coalition structure a1 = (C1, C2...Ct, l1) where l1

is the number of single players, Ci i ∈ {1, 2, ...t} are coalitions, and m is the total number of the players.
Calculate π(1)..π(5)..π(m) the profits of this coalition structure.
First inspection: for i=1:t
Inspect if coalition Ci is internally, externally or subcoalition stable, or find the coalition Cl1 (where Cl1 ∩ Ci 6= ∅).
Note at the moment exchange member among coalitions is not allowed.
endif
end
Second inspection:
Inspect if the exchange of members among C1, Ct finds that the initial coalition structure a1 = (C1, C2...Ct, l1)
is indirectly dominated by the coalition structure a2 = (C

′
1, C

′
2...C

′
t , l1)

which has to be inspected by first and second inspection (and can possibly be farsightedly stable).
If by first and second inspection we are not able to find a coalition structure which indirectly or directly dominates
the coalition structure ar (which is actually being tested), and so the coalition structure, ar is farsightedly stable
program END
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Table 4: Three member coalitions which are not externally farsightedly stable.

Coalition Pr3 Pr5 Coalition Pr3 Pr5

USA 0.5336 0.5336 USA 0.5765 0.6916
LAM 0.0614 0.0614 SEA 0.177 0.2057
CHI 0.7613 0.7613 CHI 0.8048 0.817
NAF 0.322 0.322 NAF 0.3533 0.3976
SSA 0.3573 0.3573 SSA 0.3921 0.4173

Table 5: Three member coalitions which are not externally farsightedly stable.

Coalition Pr3 Pr5 Coalition Pr3 Pr5

USA 0.457 0.6916 CAN 0.0198 0.0204
SEA 0.177 0.2057 EEU 0.0216 0.0217
CHI 0.7766 0.817 CAM 0.0142 0.0144
NAF 0.2203 0.3976 SAS 0.075 0.0753
SSA 0.2398 0.4173 SIS 0.0118 0.012
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Table 6: Three member coalition which is not externally farsightedly stable.

Coalition Pr3 Pr5

CAN 0.0199 0.0204
EEU 0.0216 0.0217
CAM 0.0142 0.0144
SAS 0.0751 0.0753
SIS 0.0118 0.012

Table 7: Three member coalition which is not sub-coalition farsightedly stable.

Coalition Pr3old Pr3new

USA∗ 0.4476 0.457
JPK -0.3032 -0.3467
NAF∗ 0.2057 0.2203
SSA∗ 0.2285 0.2398

Table 8: Three member coalition which is not sub-coalition farsightedly stable.

Coalition Pr3old Pr3new

USA∗ 0.4824 0.5336
CAN 0.0205 0.0311
FSU 0.241 0.3945
LAM∗ 0.0599 0.0614
CHI∗ 0.7149 0.7613
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Table 9: Our data from the year 2005, where α is the abatement cost parameter (unitless), β the marginal
damage costs of carbon dioxide emissions (in dollars per tonne of carbon) E the carbon dioxide emissions
(in billion metric tonnes of carbon) and Y gross domestic product, in billions US dollars. Source: FUND

.

α β E Y

USA 0.01515466 2.19648488 1.647 10399
CAN 0.01516751 0.09315600 0.124 807
WEU 0.01568000 3.15719404 0.762 12575
JPK 0.01562780 -1.42089104 0.525 8528
ANZ 0.01510650 -0.05143806 0.079 446
EEU 0.01465218 0.10131831 0.177 407
FSU 0.01381774 1.27242378 0.811 629
MDE 0.01434659 0.04737632 0.424 614
CAM 0.01486421 0.06652486 0.115 388
LAM 0.01513700 0.26839935 0.223 1351
SAS 0.01436564 0.35566631 0.559 831
SEA 0.01484894 0.73159104 0.334 1094
CHI 0.01444354 4.35686225 1.431 2376
NAF 0.01459959 0.96627119 0.101 213
SSA 0.01459184 1.07375825 0.145 302
SIS 0.01434621 0.05549814 0.038 55
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