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Abstract 
We test the hypothesis that models should be coupled to accurately project the impacts of climate 

change on the agro-economic and agro-environmental system. We couple the LPJ-C global 

dynamic vegetation model for crops to the global agricultural land-use model KLUM. Potential 

crop yields, from LPJ-C, and crop prices drive the land-use decisions; cropland allocation from 

KLUM scale the carbon entering the soil litter pool in LPJ-C. Through the crop prices, economic 
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effects are projected directly on the carbon cycle. Global change impacts are projected on the 

agricultural sector and can be economically assessed.  

The coupled model performs reasonably well for the observed climate and prices for 6 crops in 

Europe on a 0.5x0.5 longitude-latitude grid.  

We estimate the impact of climate change on agriculture in Europe for A1 and B2 scenarios of 

the IPCC. The coupled model reproduces the essential processes and interactions of the modeled 

system. Simulations with the uncoupled models are used to estimate the accuracy added by the 

model coupling. Sign and size of the biases from ignoring the feedbacks are substantial for some 

parameters, and particularly their spatial pattern, while for other parameters (e.g., the European 

total of soil organic carbon) biases are negligible. The answer to the question “Should models be 

coupled?” is “It depends on what you’re interested in”. 
1 Introduction 
Agricultural land use strongly influences carbon, nutrient and water fluxes between soil and 

atmosphere. It shapes the natural environment and provides the basis for the nutrition of human 

society. Changes in agricultural land use are one of the essential links at the interface between 

biosphere and anthroposphere. Crop patterns are determined by both the biophysical and the 

agroeconomic conditions. To understand the combined effect of these factors on land-use 

decisions, an integrated modeling framework is required to represent essential biophysical and 

economic processes and the feedbacks between the two systems. This is true in principle. In this 

paper, we present such a model – and use it to estimate the biases that would occur using 

uncoupled models. We thus test the hypothesis that models should be coupled – in practice. 

Current approaches to simulate large scale land-use changes tend to over-emphasize either the 

geographic or the economic aspect, neglecting their interactions. Geographic models are 

commonly based on detailed biophysical characteristics of land. They focus on the dynamics of 

spatial patterns of land-use types by analyzing land suitability and spatial interaction. Projections 

of human actions are based on observed behavior rather than on underlying economic 

motivations. This limits their capability to represent the impact of market interactions, such as 

competition among land intensive sectors. In economic models, land is usually implemented as 

an input in the production of land-intensive commodities and the focus is more on market 

impacts than on its allocation. The limitation of these models mainly manifests itself in the 

representation of land, which is treated as homogeneous and space-less, ignoring biophysical 

characteristics and spatial interactions. A number of integrated approaches try to overcome these 
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weaknesses by combining economic rationale and biophysical assessment in an integrated 

framework (Heistermann et al., 2006). In the ACCELERATES project, for example, the farming 

model SFARMOD is coupled to the crop model ROIMPEL (Rounsevell et al., 2003; 

ACCELERATES, 2004). SFARMOD determines the most profitable combination of crops based 

on yields, given management options and crop prices, while ROIMPEL provides the respective 

crop yields and management parameters. ROIMPEL is a process-based model, using climate data 

from GCMs and GIS-based soil data. The main disadvantage of this framework is the large 

amount of input data. Furthermore the impacts of crop growth and land use decisions on the 

carbon balance are not considered, limiting its suitability for studies concerned with the carbon 

cycle. 

In this work, we include the global agricultural land-use model KLUM (Kleines Land Use 

Model) (Ronneberger et al., 2005) in the dynamic global vegetation model (DGVM) LPJ-C 

(Lund-Potsdam-Jena model for crops) (Criscuolo et al., 2005), so as to simulate impacts of 

climate change. LPJ-C is the standard LPJ model (Sitch et al., 2003) with an added crop growth 

compartment. The model provides an integrated representation of both natural vegetation and 

crops, taking into account carbon and water cycles within a single grid-based modeling 

framework. So far, the model has been applied only with a fixed crop mask. By including 

KLUM, we enable a dynamic representation of the changing crop patterns according to the 

simulated yields (and crop prices). KLUM is a coupling tool for global economic and vegetation 

models. It reflects the essential biophysical and economic aspects of large-scale agricultural land-

use changes by determining the most profitable crop allocation, based on crop prices and yields. 

Similar to the SFARMOD-ROIMPEL approach, this framework provides a link between 

dynamically modeled yield projections and economic motivated agricultural land-use decisions. 

However, our system requires less detailed input data facilitating large-scale applications and 

long-term predictions. Furthermore, the dynamic representation of the terrestrial carbon and 

water balance in LPJ-C enables an integrated assessment of the carbon cycle. KLUM provides an 

interface to dynamically couple the framework to a global trade model, in order to further 

enhance the integration of economics (Ronneberger et al., 2006). 

We use the coupled system to study the impact of two representative climate change scenarios on 

economic production, crop distribution and soil carbon accumulation for the EU25 countries. The 

European continent faced important changes in agricultural production and land use over the last 

50 years. The fast increase of productivity and the changing market led to a contraction of 
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cultivated areas (Rabbinge & van Diepen, 2000; Rounsevell et al., 2003). Still, food supply 

currently exceeds demand (Ewert et al., 2005). A further decline of the current agricultural areas 

can be expected (Rounsevell et al., 2005). Croplands make up nearly half of the terrestrial land 

surface of Europe.  

The climatic conditions of Europe have changed during the last one hundred years. The average 

annual mean surface temperature has increased by 0.8°C over the last century (Beniston & Tol, 

1998); precipitation has increased in the Northern parts of Europe, and decreased in the Southern 

parts (Hurrell & van Loon, 1997). According to the Intergovernmental Panel of Climate Change 

(IPCC), the increasing concentration of greenhouse gases will reinforce this trend during the 

current century (McCarthy et al., 2001). Current predictions show an average temperature 

increase of 4-6°C within the next 100 years (IPCC, 2001), and a reduction in precipitation by up 

to 20% in the Mediterranean areas (Ragab & Prudhomme, 2002; Chartzoulakis & Psarras, 2005). 

All this makes Europe a suitable region for a feasibility study with the coupled model.  

We use observations of current crop patterns to evaluate the performance of the coupled model. 

Climate change scenarios are used to demonstrate the integrity and capability of the coupled 

system to provide plausible projections of future pathways. For the moment, we exclude hard-to-

predict drivers such as management, but also the development of total available cropland, with 

the intention to focus on the coupling effects. Crop production is simulated under ideal conditions 

of potential production, assuming perfect irrigation and crop management. Natural vegetation is 

excluded. 

Besides the base case simulations with the coupled model, we run the same simulations with the 

uncoupled models. We use the results to estimate the sign and size of the biases that come from 

ignoring the feedbacks between the ecological and human systems. Alternatively, we estimate the 

accuracy added by the model coupling. We find that the coupled model behaves substantially 

differently for some parameters than do the uncoupled models, while for other parameters 

differences are negligible. That is, the answer to the question “Should models be coupled?” is “It 

depends on what you’re interested in”. 

In the following section, we outline the characteristics of the two models and describe the 

coupling procedure. Section 3 introduces the experimental design. Section 4 presents a 

comparison of model results and observations. In Section 5 we present and discuss the results of 

future and reference simulations. Section 6 summarizes and concludes. 
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2 Modelling Framework 
The KLUM@LPJ framework runs on a 0.5 × 0.5 longitude-latitude grid, with a time-step size 

ranging from one day to one year, depending on the process. The framework is designed for 

global coverage and a possible time horizon of several centuries. In this study, however, we 

restrict our analysis to the European Union. The two original models are dynamically coupled, 

exchanging data on a yearly basis. 

 

2.1 The LPJ-C model 

The LPJ-DGVM is a representation of the terrestrial ecosystem with large-scale and process-

based dynamics. The modeled dynamics take account of the carbon and water cycling in the 

vegetation and the soil, of vegetation structure and composition, and of fire disturbance. The LPJ-

C model incorporates crops and natural vegetation within a single framework, in which the two 

vegetation types use a common photosynthesis-assimilation scheme, while carbon dynamics and 

development are differently described. A comprehensive description of the general model is 

given by Sitch et al. (2003), and for the crop growth compartment by Criscuolo et al. (2005). The 

natural vegetation in each grid cell is represented by a combination of plant functional types. 

Crops are represented as crop functional types (CFTs) with specific carbon dynamics and canopy 

attributes. CFTs are modeled as annual plants with no competition for resources. Crop growth 

can be simulated under potential and water-limited conditions. No stress affects the plant in the 

first case, so that the growth is driven only by temperature and light; in water-limited simulations, 

water availability limits the productivity.  

In this work, six CFTs (rice, wheat, maize, barley, potato, sugar beet) are simulated in potential 

production conditions. The crop parameterization sets are derived from Boons-Prins et al. (1993) 

and adapted for the modeling requirements of LPJ. No specific calibration was performed on the 

crop parameters. 

The soil is divided into two layers and contains three soil organic carbon (SOC) pools with 

different decomposition rates: a slow (0.001yr−1 at 10_C) a medium (0.03yr−1 at 10_C) and a 

fast one (0.35yr−1 at 10_C). Decomposition depends explicitly on temperature (adopted from 

Lloyd and Taylor, 1994) and soil moisture (adopted from Foley, 1995). For details of SOC 

equations see Sitch et al. (2003). Generally, a warm environment allows a larger flux of CO2 to 

the atmosphere, leaving less SOC in the soil. Crop residues first enter the fast pool; part of the 
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carbon is directly released to the atmosphere, while the rest of SOC and the remaining litter are 

left in the soil. 

 

2.2 The KLUM model 

The global agricultural land-use model KLUM is designed to link economy and vegetation by 

reproducing the key dynamics of global crop allocation (see Ronneberger et al. (2005) for a 

detailed description of model development and evaluation). For this, the maximization of 

achievable profit under risk aversion is assumed to be the driving motivation underlying the 

simulated land-use decisions. In each spatial unit, the expected profit per hectare, corrected for 

risk, is calculated and maximized to determine the allocation of different crops on a given amount 

of land (see the Appendix for mathematical formulation). In this, decreasing returns to scale is 

assumed; that is, marginal costs rise with increasing production.  

Profitability of a crop is determined by its price and yield, which are the driving input parameters 

to the model. Furthermore, a cost parameter per crop and a risk aversion factor for each spatial 

unit are calibrated to observations. Risk is quantified by the variance of achievable profit, 

calculated for the preceding five years. 

For the current study, we recalibrate the original KLUM version to match the resolution of LPJ-

C: the allocation of six crops (rice, wheat, maize/corn, barley, potato and sugar beet) is simulated 

with a resolution of 0.5°×0.5° for the area of the EU25 countries. For the calibration procedure, 

we use data of the years 1991-2001 on yields and planted area on NUTS2 level1 of the 

EUROSTAT database Eurostat New Cronos (2005), and country level data on prices of 

FAOSTAT (2005). We adjust prices for inflation and convert them to 1995 US$ by means of 

data of the Word Bank (2003). Prices are averaged to 5-year means and aggregated to three 

multi-national-regions (Western Europe, Eastern Europe and Former Soviet Union) as described 

in Ronneberger et al. (2005), matching the typical resolution of a global trade model (to enable 

later coupling). We assign each grid cell of the 0.5° × 0.5° grid to a NUTS2 region according to 
                                                 
1 The Nomenclature of Territorial Units for Statistics (NUTS) is a geocode standard for referencing 

the administrative division of countries for statistical purposes, developed by the European Union. 

NUTS1 depicts the coarsest resolution, NUTS2 and NUTS3 are respectively finer resolved (see also 

http://europa.eu.int/comm/eurostat/ramon/nuts). 
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the minimal distance of centers. The agricultural area is supposed to be equally distributed over 

all grid cells. Cost parameters are adjusted accordingly as described in the appendix. To represent 

crops with insufficient data or absent crops (e.g. maize or rice in Northern Europe), we adopt the 

cost parameters (again adjusted) and initial profit variability of close by units in the same world 

region2 with similar biophysical characteristics as indicated by the yield structure of the 

remaining crops. For NUTS2 regions without data, we either use data on NUTS1 or even 

country-level for the calibration (for large parts of Germany, the UK, Portugal and Finland) or 

adopt the complete calibration of adjacent, biophysically similar regions (e.g. for Smaaland and 

Västsverige, the calibration of Östra Mellansverige is adopted). For most of Finland, yield data is 

only available on country level, whereas the planted area could be taken on NUTS2 level. Some 

crop prices for the region of the Former Soviet Union are missing, so we adopt slightly adjusted 

prices from Eastern Europe. We omit urban areas such as London, Hamburg or Stockholm. 

 

2.3 KLUM@LPJ 

The two models are coupled via an exchange of potential yields and the crop allocation pattern. 

KLUM calculates the share of the agricultural area to be allocated to each crop according to 

given crop prices and the potential yields, determined by LPJ-C. In order to provide KLUM with 

a choice, LPJ-C initially simulates each crop, as if it would occupy the entire grid cell. 

Since in LPJ-C, crops are not assumed to compete for resources, the crop allocation pattern only 

affects the accumulation of the crop waste that is transferred to the soil litter pool. We assume 

that only the storage organs (grains for cereals, roots for tuber crops) are taken away from the 

field for harvest. The harvested share of the crop’s total biomass is determined by the 

dynamically modeled carbon distribution among the plant’s structural components. The rest of 

the plant goes into the soil litter and follows the decomposition process. Thus, the area shares, as 

calculated by KLUM, are used in LPJ-C to determine the contribution of the different crops to the 

total soil litter; that is, the crop waste is scaled by the land allocation coefficients before it is 

transferred to the soil litter (Figure 1). 

                                                 
2 For the Former Soviet Union we adopt some prices and the complete calibration for rice from countries 

of Eastern Europe. For Finland we adopted the calibration for maize and rice from Latvia and Eszak-Alfold 

(Hungary) as they give a better fit than all western European regions.  
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We technically realize the coupled system of LPJ-C and KLUM by directly implementing a C++ 

version of KLUM into the C++ LPJ-C framework. In each yearly time step, the potential 

production and the allocation shares are exchanged between KLUM and LPJ-C, according to the 

scheme above. 

3 Experimental Design 
Our simulations cover the period 1991-2100 and the area of the EU25. To reach equilibrium in 

the SOC for the initial year, we spin up the model for 100 years. Grid cells where no crop reaches 

maturity during the spin-up period are excluded from our simulations, as the initial level of soil 

organic carbon cannot be determined. This mainly concerns the area at the Norwegian border of 

Sweden. The scenario setup and assumptions are described in more detail in Appendix B. 

The study is divided into three different steps. In the first step, the capability of the coupled 

system to reproduce current crop patterns is evaluated by comparing model results to 

observations. We have to accept a certain error in our coupling by using the potential instead of 

actual yields to determine the crop pattern in  KLUM. We do this as management is currently not 

represented in the system and the only alternative would be the inclusion of an estimated 

correction factor. We prefer to accept the known error with known source instead of including an 

estimation with unknown uncertainty, especially when transferred over time. Additionally, the 

allocation decisions in KLUM mainly depend on relative yields, determining the competition 

among different crops. Thus, the deviations of potential and actual yields may turn out to be 

neglible for the simulation results. The evaluation helps to asses the accepted error. 

In the second step, we use the coupled system to investigate the impact of climate change on 

biomass as well as economic production, on changes in crop allocation, and on soil carbon 

accumulation for Europe. We choose the two extreme IPCC scenarios A1 and B2 to highlight the 

different potential effects of temperature and atmospheric CO2 on crop growth and allocation 

dynamics. The LPJ-C model so far has been used only with a fixed crop map (Criscuolo et 

al.,2005; Criscuolo & Knorr, 2005). The KLUM model has been applied as a stand-alone-model 

(Ronneberger et al., 2005) and coupled to an economy model (Ronneberger et al., 2006). The 

climate change simulations are important to assess the integrity of the coupled system. Plausible 

results signify that the coupling does not distort the process representations in the original 

models. 

In the last step we assess the impact of the coupling on the climate change analysis. In order to 

isolate the effects of the coupling on the resulting estimates, we repeat the future simulations with 
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the uncoupled models. For this purpose we apply the climate forcing on LPJ-C, but keep the crop 

allocation in the initially observed state of 1991 (see section 2.2). In KLUM, only the prices 

change according to the applied scenario; yields are assumed to stay as in 1990 (as determined by 

the uncoupled LPJ-C after the spin-up). 

4 Evaluation of the coupled framework 
The period 1991-2000 is used to evaluate the capability of the coupled system to reproduce 

observed crop patterns. We compare the simulated area shares to observed data for the year 2000. 

We use the first years as a spin-up period for KLUM, which is needed because of the effect on 

the risk perception of initial differences in observed and simulated yields. 

The simulated area shares are aggregated to the NUTS2 regional level in order to compare them 

to the observed values. The ratio of simulated to observed values is shown in Figure 2. The 

shares of sugar, maize and rice are largely underestimated, in favor of wheat and barley, which 

are mainly overestimated; only in the very South and North, we find some underestimation of the 

allocation share for wheat. For potatoes, the area shares are overestimated in the South- Eastern 

part of Europe and underestimated in the North-West. Generally, the ratio of simulated to 

observed values is in the range of 0.5-1.5 for the three major crops wheat, barley and potatoes. 

Only in Sweden, we observe a large underestimation for potatoes and wheat. According to the 

simulations, these crops do not reach maturity far up in the North. The ratio of simulated to 

observed area shares for maize, sugar and rice are lower than 0.5 for most regions. The 

underestimation of these three crops can partly be explained by the shifted yield structure in the 

coupled system, due to potential instead of actual yields. But KLUM also has difficulties with 

minor crops (Ronneberger et al., 2005). All in all, the usage of potential instead of actual yields 

seems to shift the crop pattern for the benefit of the major crops. The general pattern, however, is 

not dramatically distorted. 

5 Simulation results 
We use the coupled system to assess the impact of a changing climate for the period 2001-2100 

in Europe. The two extreme IPCC scenarios A1 and B2 are used to isolate the effects of 

temperature, CO2 concentration and economic development. We first outline the results obtained 

with the coupled system; the emphasis is placed on their plausibility according to the represented 

processes. We then present the differences of these results to those obtained with the uncoupled 

models. The impact and relevance of the coupling is the focus of that section. 
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5.1 Climate change analysis with the coupled system 

The results of the climate change simulations with the coupled system can be divided into results 

describing the natural system (retrieved mainly from LPJ) and those describing the agroeconomic 

system (mainly produced by KLUM).  

 

Climate change and the natural system 

In order to sketch the impact of climate change on crop growth and carbon storage, we show in 

Figure 3-A the temporal development of mean carbon biomass per cropland area at harvest time. 

Figure 3-B shows the mean ratio of storage organs over total biomass weighted by area share, 

reflecting the changes in carbon allocation within the plant3. The ratio of grid cells where 

maturity is reached to total grid cells (Figure 3-C) describes the spread of the potential growing 

area. The mean soil organic carbon (SOC) per area of cropland is shown in Figure 3-D. The 

spatial pattern of the soil organic carbon changes is depicted in Figure 4. 

The results reflect the typical effect of the increase in temperature and CO2 concentration on crop 

growth: CO2 fertilization increases biomass production, while a higher surface temperature can 

lead to a decrease in biomass production due to a shortened growing season (Criscuolo et al., 

2005). For the cold C3 cereals wheat and barley, this leads to a decrease of total biomass after 

around 2040 for the warmer scenario (Figure 3-A). For the colder scenario B2, the factors cancel 

each other, leading to an almost constant mean total biomass. In both scenarios, however, the 

relative carbon allocation to the storage organs for wheat and barley increases (Figure 3-B), 

indicating that for this part of the plant CO2 fertilization prevails (compare Criscuolo et al., 

2005). In contrast, for the warm C3 cereal rice, the negative temperature effect on total biomass is 

less pronounced, but the relative carbon allocation to the grains is decreasing. For maize, the 

mean total biomass as well as the relative carbon allocation to the grains is decreasing in both 

scenarios. As a C4 plant, CO2 fertilization is not simulated for maize by LPJ-C. Potatoes show a 

clear increase in total biomass production as well as in the share allocated to the storage organs. 

For potatoes we see no differences between the two scenarios. 

The changes in potential growing area clearly follow the temperature signal (Figure 3-C). For all 

crops that do not already cover the entire grid we see strong increases in growing area, more 

pronounced in the warmer scenario A1. 
                                                 
3 Note that this also defines the harvest index in our study 
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The development of soil organic carbon mirrors the trend of the summed biomass production of 

all crops, slightly modified by the temperature effect on respiration (Lloyd & Taylor, 1994). We 

see a slight increase until around 2040; after that, SOC is decreasing in both scenarios, more 

pronounced in the warmer scenario A1. The spatial distribution of soil carbon changes (Figure 4) 

reveals that the decreasing trend in scenario B2 is the result of a decrease in the East that 

dominates the increase in the South-West of Europe. For scenario A1, the decrease is more 

uniformly distributed over the entire grid, but also distinct in the Eastern Baltic countries. 

 

 

Climate change and the agroeconomic system 

Changes in the agroeconomic system are characterized by changes in crop patterns (indicating the 

impact on the natural system) and changes in crop production and revenue (describing economic 

impacts). We illustrate changes in the crop pattern at the European level by the development of 

the area share for a certain crop (Figure 5-A) and by the spread of a crop over the grid, quantified 

by the share of all grid cells used for cultivation of this crop (Figure 5-C). 

The spatial pattern of allocation changes are depicted in Figure 6 for wheat and in Figure 7 for 

maize. To quantify the effects on the European crop sector, the development of crop production 

and the corresponding revenue are presented in Figure 5-B and Figure 5-C, respectively. 

We reveal a general increase of the allocation share for maize and potatoes and a decrease for 

barley and wheat (Figure 5-A). For wheat, barley and potatoes, this mainly reflects the trends we 

observed in biomass production; for maize, this is a consequence of the increasing spread over 

the grid (Figure 5-C) and consequently more pronounced in the warmer scenario A1. Also for 

rice, we see a large increase in the share of cultivated grid cells from less than 20% to 60% in 

scenario A1 and 30% in scenario B2. Yet, little land is allocated to rice, so this increase hardly 

shows up in the area shares. The development of cultivated to total gridcells follows the trend of 

gridcells where maturtiy is reached to total gridcells (compare Figure 3-C). Still, only potatoes 

and rice are also cultivated in all the gridcells where they reach maturity. For the remaining 

crops, cultivation is not profitable everywhere. 

Again in total crop production, we see a decrease for wheat and barley and an increase for 

potatoes. Maize production, however, is largely unaffected; the increase in area share is 

outbalanced by the decrease in yield (compare Figure 3-A and Figure 3-B). For all crops, 

production is larger in the colder scenario B2, clearly indicating a loss of production for large 
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temperature increases. This is even more pronounced in the development of revenue. Until 2100, 

the summed revenue of all crops triples in scenario B2 but drops to one fourth in scenario A1. 

This clearly reflects the imposed price changes. 

The spatial pattern of changes in wheat allocation (Figure 6) reveals that the decrease in the total 

area share of wheat (Figure 5-A) masks an increase in the very South and North which are 

compensated by decreases in Central Europe. This pattern is less obvious in the colder scenario 

B2, where losses and gains are more distributed over the entire grid. An extension of wheat 

production to the North can be revealed in both scenarios. For maize, we mainly see an opposite 

pattern (Figure 7): the area share is increasing in Central Europe, but decreasing in the South. 

This indicates that wheat production is replaced by maize production in Central Europe, whereas 

wheat production dominates over maize in the South. For Northern Europe and the British Isles, 

we reveal an extension of the cultivation area of maize. All these trends are more pronounced in 

the warmer scenario A1. 

 

5.2 Impact and relevance of the coupling 

The impact of the coupling can be evaluated by comparing the results of the uncoupled models to 

those of the coupled system. The differences are a consequence of neglected feedbacks in the 

uncoupled models. 

 

LPJ-C standalone 

In LPJ-C, the coupling impacts the accumulation of soil organic carbon. Figure 8 depicts the 

changes in soil organic carbon according to the uncoupled LPJ-C model for the two climate 

scenarios. The crop pattern is kept at the observed level of 1991 in these simulations. Excluding 

crop allocation generally leads to a much more uniform pattern of changes of generally lower 

extent. For instance, the decreases of soil carbon we observe in the coupled simulation for 

scenario B2 in Eastern Europe are absent in the results of the uncoupled run. Obviously they are 

the result of crop pattern changes. The strong increase of potato cultivation in Eastern Europe 

(results not shown here) might be the cause; potatoes allocate only 20% of their total biomass to 

waste (compare Figure 3-B). Also for scenario A1, the observed decreases over the entire grid 

are largely absent or underestimated in the uncoupled simulation with LPJ-C. A changing crop 

pattern obviously lowers the carbon stored in the soil. 
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KLUM standalone 

In the uncoupled simulations with KLUM, the potential growing area as well as the crop yields 

are kept constant on the level of LPJ-C 1990. Figure 9-A shows the differences of the area shares 

of uncoupled to coupled simulation for all crops; Figure 9-B depicts the effect of the coupling on 

economic revenue. The differences of area share and revenue are in the order of ±30%. Only the 

deviations for rice are in the order of 200% in the beginning of the simulation; they are scaled in 

both plots by a factor 10 to fit in. In both scenarios, the area shares of wheat and potatoes are 

generally overestimated in KLUM standalone, while maize is clearly underestimated. Rice, 

barley and sugar beet show a changing behavior over time for scenario A1: in the beginning of 

the simulation, rice is largely overestimated in the uncoupled run, while barley and sugar beets 

are underestimated. Towards the end of the simulation, the area shares of these crops of coupled 

and uncoupled runs converge. For scenario B2, this trend is only observable for rice. 

We generally see larger differences for the colder scenario B2, but of the same sign. The higher 

price changes in this scenario amplify the differences of standalone KLUM and the coupled 

simulation. The differences in revenue of KLUM standalone to KLUM@LPJ largely mirror the 

differences in area shares, but are generally less pronounced; prices dominate the development of 

revenue. The uncoupled simulation slightly overestimates total revenue for both scenarios. The 

bias is much smaller (in the order of 10%) than for the crop-specific revenues as positives and 

negatives cancel. 

In order to study the coupling effect on the spatial pattern of the changes, the allocation changes 

of wheat and maize of the uncoupled simulation are visualized in Figure 10 and Figure 11, 

respectively. For both crops in scenario A1, the extent rather than the general pattern of changes 

differ from the coupled simulation (compare Figure 6 and Figure 7). For wheat, KLUM 

standalone generally underestimates the extent of changes in scenario A1, without affecting the 

sign. For maize, the largest differences are due to the underestimation of the growing area in 

KLUM standalone. For scenario B2, also the pattern of changes is affected by the coupling. For 

wheat the widespread decreases of area share we observe in the coupled simulation are absent in 

the uncoupled simulation. Only in Eastern Europe, we reveal a clear decrease. For maize, hardly 

any of the increases in area share projected by KLUM@LPJ are anticipated by KLUM 

standalone. To a large extent, this is again caused by underestimations of growing area. 
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6 Discussion and conclusions 
This study presents the coupling of the agricultural land use model KLUM to the dynamic 

vegetation model with crops LPJ-C in order to consistently asses the implications of a changing 

climate for carbon cycle and farm revenue. The linking is realized by exchanging the crop 

specific potential yields, as determined by LPJ-C, with the crop allocation shares, determined by 

KLUM. The potential yields are used to drive the land-use decisions together with exogenous 

crop prices; the allocation coefficients for the different crops are used in LPJ-C to scale the 

carbon entering the soil litter pool. The effects of a changing economy are projected via land-use 

decisions on the carbon cycle, while the environmental changes are projected back on the 

agricultural sector and expressed in economic measures. The dynamic linkage is a first step 

towards an integrated assessment of the consequences of environmental and economic changes 

and their mutual interaction on crop growth and agricultural land use. In a companion paper, we 

couple KLUM to a trade model (Ronneberger et.al., 2006). 

Since in the current system, management and irrigation are not represented, a certain 

inconsistency of observed (actual) and simulated (potential) yields has to be accepted. The 

evaluation of the coupled system shows that this mainly results in a shift of the crop pattern for 

the benefit of the major crops (wheat, barley, potatoes). The general pattern, however, is not 

dramatically distorted. 

We use the model to assess the impact of climate change for the period 2001-2100 for the 

European Union on crop growth, carbon storage and agricultural land use for the two IPCC 

scenarios A1 and B2. The results demonstrate that the coupled system is stable and reproduces 

the known behavior of the simulated processes.  

For all crops, we observe an extension of potential growing area to the North, more pronounced 

in the warmer scenario. The effect of CO2 fertilization and temperature increase on plant biomass 

production and carbon allocation within the plant can clearly be seen in the results. The changes 

in soil organic carbon largely follows these trends, modified by the temperature signal: decreases 

are wide-spread over the grid for the warmer scenario, and concentrated in Eastern Europe in the 

colder scenario. 

The changes in crop pattern and crop production clearly reflect the changes in yields, potential 

growing areas, and the imposed price scenarios. Potatoes, rice and maize increase their allocation 

shares at the cost of wheat and barley. Underestimation of the area shares of maize and rice 

allocation and overestimation of barley and wheat allocation in the initial evaluation of the 
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coupled model suggests that these trends might even be underestimated in our simulations. A 

spatially explicit analysis of changes in wheat and maize allocation indicate that maize replaces 

wheat in Central Europe, while it is replaced itself by wheat in the South. The initial evaluation 

also found for wheat area allocation an underestimation in the South and an overestimation in 

Central Europe. This underpins the suggestion that the observed trends might be underestimated 

in our simulations. The spread of the crops over the grid mainly follows the extension of potential 

growing area. However, most crops are not generally cultivated once they reach maturity. This 

reflects the relevance of profitability for land-use decisions. 

Total crop production and revenue follow the trends of yields, growing area and prices. On 

European level, wheat and barley production falls, while potato production increases. For maize 

the increases in area share are outbalanced by decreasing yields. Again this result might be 

affected by the initial underestimation of maize allocation. For all crops total production is 

generally higher in the colder scenario. Crop price increments in the colder scenario and 

decrements in the warmer scenario strongly amplify these trends for economic revenues. Until 

2100, the summed revenue of all crops triples in the colder scenario and drops to one fourth in 

the warmer scenario. 

We demonstrate the impact and relevance of the coupling for the results by means of reference 

simulations with the uncoupled models. For LPJ-C, the initially observed crop pattern is assumed 

to remain constant. KLUM is only driven by the price scenarios while yields are set constant to 

the potential yields of LPJ-C in 1990. For both models, the spatial pattern as well as the extent of 

projected changes are affected by the coupling. Spatial variations of SOC are strongly determined 

by the assumed crop pattern and are thus largely underestimated by the uncoupled simulation. 

The extent of soil carbon changes is generally lower in LPJ-C standalone; decreases observed in 

the coupled simulation are absent in the uncoupled, indicating that a changing crop pattern 

reduces the carbon stored in the soil. Aggregated to the European level, however, the effect is 

negligible. 

The results of KLUM standalone simulations suffer from an underestimated growing area and the 

absence of yield changes. The underestimation of the potential growing area of a crop leads to an 

underestimation of area share and revenue. The temporal development of the yield has an 

ambiguous effect: an increase in potential production results naturally in an increase of area share 

and revenue; this also implies an increase in riskiness and thus leads to a decrease in area share 

and revenue. The competition between crops determines which factor is stronger. For rice, this 
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leads to a large overestimation of revenue and area share especially in the beginning of the 

simulation. A general underestimation of area share is revealed for maize while wheat and 

potatoes are overestimated; this reflects the underestimated potential growing area of maize. The 

differences in revenue are less pronounced due to the dominance of the price signal. 

For all crops larger differences between KLUM standalone and KLUM@LPJ simulations are 

evident for the scenario with higher price changes. This is also reflected in the spatial analysis of 

differences between coupled and uncoupled runs for wheat and maize allocation: the pattern as 

well as the extent of the projected changes are affected in scenario B2 with large price changes 

while only the extent of the allocation changes differs in scenario A1. This indicates that the 

importance of dynamic feedbacks is stronger for more extreme scenarios. These results 

demonstrate clearly the importance of a dynamic representation of feedbacks between carbon 

cycle, crop growth and land-use decisions on the one hand; on the other hand it emphasizes the 

relevance of spatial analysis of the results. 

Concluding, the established framework carries the potential to simulate the dynamics of carbon 

and water cycle and crop growth as well as economically motivated land-use decisions within 

one consistent framework on a global level. This is to our knowledge the first time this has been 

shown.  

In this study, we applied the model only on a European level and only for cropland in order to 

assess the specific performance of the coupling. However, the feasibility of a simultaneous 

simulation of natural vegetation and crops within LPJ-C has been shown by Criscuolo et.al. 

(2005) and Criscuolo & Knorr (2005); the coupling of KLUM to a global economic trade model 

has been demonstrated in Ronneberger et.al. (2006); the application on the global level is mainly 

a problem of adequate calibration data. Thus, the framework is extendable to also include the 

complete dynamics of natural vegetation and a dynamic feedback loop with the economy, 

providing a tool to consistently asses the reactions and feedbacks of natural and economic 

environment on future changes. 

However, to eventually establish a satisfactory modeling framework that allows reliable 

projections of the integrated changes of the natural and economic system the current system 

needs further improvements. As a first step the coupled system needs to be re-calibrated and spun 

up as one single model. Additionally, a proper ”translation” of potential into actual yields should 

be found in order to make the output of LPJ-C more comparable to the observed yields. This 

would also dissolve the distortions in the model results of KLUM in the first years after spin up. 
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Also the crop harvesting of the current framework should be revised to include specific 

harvesting and agronomic techniques that can be relevant for the soil carbon balance.  

Apart, the economic results strongly depend on the chosen price scenarios, which are static and 

depend on speculative assumptions. The dynamic reactions of prices to natural and economic 

changes need to be included: the coupling of KLUM and an economic trade model (Ronneberger 

et.al. 2006) has to be combined with KLUM@LPJ to represent more comprehensively the 

dynamic system of economy and vegetation. For realistic estimations of future agricultural land-

use changes and their implications for the natural environment, the framework needs to consider 

management, particularly irrigation practices, and technological change, including new cultivars. 

These factors are difficult to project but will play a major role for future agricultural land use. 

The simulation of water-limited yields with LPJ-C (Criscuolo & Knorr, 2005) can provide a basis 

for such an extension. On the long run, LPJ-C  needs to include an implementation of nutrient 

cycling in order to properly asses the impacts of fertilizing and to close the feedback loop of crop 

growth and land-use decisions. Apart from that, to represent the variability of total cropland and 

the respective share of natural vegetation, the allocation algorithm of KLUM needs to be 

extended to include other agricultural sectors such as animal production and biofuels and finally 

also forestry, industrial and recreational land. 

Nonetheless, all in all this work is a first step in the right direction. The results show the 

feasibility of the chosen approach and clearly motivate a continuation of the present work. 
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APPENDIX 
 

A KLUM’s interior 
The allocation algorithm of KLUM is based on the assumption that the most profitable allocation 

is chosen. Total achievable profit per hectare π of one spatial unit is assumed to be: 

The first part of the equation describes the expected profit, where  is the price per product 

unit, 

kp

kα  is the productivity per area and denotes the share of total land kl L allocated to crop 

 of n crops. }1{ nk K∈ kc~  is the cost parameter for crop k. Total costs are assumed to increase in 

land according to 
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where LlL kk =  denotes the total area allocated to crop k.  

  

The second term of the equation represents the risk aversion of the representative landowner. 

Risk perception is quantified by the variance of the expected profit, weighted by a risk aversion 

factor 10 << γ . 

Maximizing π under the constraint that all land shares need to add up to a total not greater than 

one: , an explicit expression for each land-share allocated to crop  can be 

derived: 
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where for simplicity  kkk p αβ =  displaces the profitability of crop k, displaces the 

respective variance and 

][2
kβσ Var=

Lcc kk
~= . The temporal variability of total costs is assumed to be 

negligible compared to the variability of prices and productivities (see Ronneberger et al. (2005) 

for a detailed description of model development and evaluation). 

 

Adjustment of the cost parameters in KLUM 

The assumption of decreasing returns to scale (Equation A2) that underlies the cost structure of 

KLUM has consequences for the interpretation and transferability of the calibrated cost 

parameters. We interpret the increasing cost with increasing area share such that the most suitable 

land is used first; with further use more and more unsuitable land is applied. This implies that the 

calibrated cost parameters depend on the total amount of agricultural area assumed in the 

calibration and on its relative distribution of quality concerning crop productivity. Thus, the cost 

parameters calibrated for one spatial unit cannot simply be adopted in other units. Instead these 

values need to be adjusted to account for the different amount of agricultural area. 

Assuming that the relative quality distribution does not change, a doubling of the total area would 

imply a bisection of the cost, since twice the amount of suitable area would be available. So, the 

cost parameter of unit a is adjusted for unit b by scaling it according to: ac

b

a
ab L

L
cc =  

where  and  represent the total agricultural area of unit a and of unit b, respectively. This 

procedure assures that under identical conditions, the spatial resolution does not impact the result. 

For the downscaling of the calibrated cost parameters from NUTS2-regional to grid-cell level, the 

fraction of  and  equals the total number of grid cells in this region. 

aL bL

aL bL

 

B Scenarios 
The simulation covers the period 1991-2100. To reach equilibrium in the SOC for the initial year, 

we spin up the model for 100 years using the 1961-1990 climatology provided in TYN 2.0 

(Mitchel et al., 2004) and observed CO2 concentrations. Grid cells where no crop reaches 

maturity during the spin up period are excluded from our simulations, as the initial situation of 
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soil organic carbon cannot be determined. This concerns 168 of the 1,986 grid cells, mainly 

situated at the Norwegian border of Sweden. 

We use observed data for climate (precipitation, temperature and radiation), CO2 concentration 

and crop prices for the period of 1991-2001. We take mean global CO2 concentrations from 

McGuire et al. (2001), to cover the period 1991-1992, while data from the integrated assessment 

of Schlesinger & Malyshev (2001) covers the remaining period after 1992. Soil texture data is 

based on the FAO soil data set on a global 0.5° × 0.5° grid, as described by Sitch et al. (2003). 

Observed climate data for 1991-2000 is derived from the CRU TS 2.0 global climate dataset 

(Mitchel et al., 2004). This dataset provides monthly fields of observed mean temperature, 

precipitation and cloud cover on a 0.5°× 0.5° global grid over land. Crop prices for this period are 

based on data of FAOSTAT (2005) and of the World Bank (2003) and given on world regional 

level in 5-year means. 

From 2001 to 2100 we use climate and atmospheric CO2 scenarios. We use the TYN SC 2.0 data 

set (Mitchel et al., 2004), which consists of monthly values for the period 2001-2100 on the same 

0.5° × 0.5° grid as CRU TS 2.0. This set includes 16 scenarios of projected future climate, 

representing all combinations of four SRES emissions scenarios and four GCMs. We select the 

SRES-B2 and SRES-A1 scenarios from HadCM3 (see Figure B 1). A1 and B2 are the extremes 

of the SRES group and give two very different CO2 concentration paths for the 2001-2100 period 

(IPCC, 2000). HadCM3’s behavior over Europe is typical for a range of GCMs  (IPCC, 2001). 

Crop prices for 2000 to 2100 are adopted from ACCELERATES (2004), who developed different 

scenarios based on literature and expert judgment to describe the socio-economic changes driving 

land-use decisions in Europe according to the four different IPPC scenarios A1F1, A2, B1 and 

B2. With those, they provide estimates of percentage changes for the prices of cereals, maize, 

sugar beet and roots & tubers for the year 2020, 2050 and 2080 for the two regions EU15 and 

Central & Eastern Europe. We apply their scenarios A1FI and B2 to our crop price of 2000. 

Changes for cereals are imposed on rice, wheat and barley, and changes for roots & tubers on 

potatoes. The estimated changes for EU15 are assigned to our world region Western Europe and 

the changes in Central & Eastern Europe to the two remaining world regions. One important 

assumption is that prices in EU15 and Central & Eastern Europe will converge over time due to 

the process of accession of the eastern countries to the European Union (EU25). Full convergence 

to identical prices is assumed to be reached in 2080. We extended this assumption to the Former 

Soviet Union, suggesting a convergence of prices to the level of price in Central & Eastern 

 23



Europe in the year 2020 (see Figure B 2). Total available cropland is assumed to stay on current 

level (see Figure B 3) for the entire simulation. 
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Figures 

 

 
Figure 1: Coupling scheme of the KLUM@LPJ model. The share of total biomass stored in 

the human edible part of the crop are used in KLUM as potential yield, the rest of the plant’s 

biomass is scaled by the calculated area share and enters the soil litter pool for further 

decomposition. 

 25



 
Figure 2: Ratio of simulated and observed area share for the year 2000. The values are 

compared on NUTS2 level; simulated values are averaged over the grid cells within one 

NUTS2 region. 

 26



 
Figure 3: Temporal development of indicators describing the natural system according to 

KLUM@LPJ. A: Mean total biomass at harvest time; B: Mean of the ratio of a crop’s storage 

organs to total biomass; C: Ratio of gridcells, where full maturity is reached to total grid cells; 

D: Mean soil organic carbon 
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Figure 4: Soil organic carbon changes according to KLUM@LPJ. The small left-most plots 

illustrate the spatial distribution of SOC averaged over the reference period 1995-2005; the 

remaining plots depict the percentage changes relative to this situation for averages of the 

periods 2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure 5: Temporal development of agroeconomic indicators according to KLUM@LPJ. A: 

Area share of total European cropland; B: Total European crop production; C: Ratio of grid 

cells, where a crop is cultivated to total grid cells; D: Total European Revenue from crop 

production (the gray line depicts the summed revenue). 
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Figure 6: Wheat allocation changes according to KLUM@LPJ. The small left-most plots 

illustrate the spatial distribution of wheat allocation averaged over the reference period 1995-

2005; the remaining plots depict the percentage changes relative to this situation for averages 

of the periods 2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure 7: Maize allocation changes according to KLUM@LPJ. The small left-most plots 

illustrate the spatial distribution of maize allocation averaged over the reference period 1995-

2005; the remaining plots depict the percentage changes relative to this situation for averages of 

the periods 2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure 8: Soil organic carbon changes according to LPJ-C standalone. The small left-most 

plots illustrate the spatial distribution of SOC averaged over the reference period 1995-2005; the 

remaining plots depict the percentage changes relative to this situation for averages of the periods 

2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure 9: Percentage difference of KLUM standalone versus KLUM@LPJ for European 

area share (A) and revenue (B). The differences for rice are given in 10% in order to fit in 

the scheme. 
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Figure 10: Wheat allocation changes according to KLUM standalone. The small left-most 

plots illustrate the spatial distribution of wheat allocation averaged over the reference period 

1995-2005; the remaining plots depict the percentage changes relative to this situation for 

averages of the periods 2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure 11: Maize allocation changes according to KLUM standalone. The small left-most 

plots illustrate the spatial distribution of maize allocation averaged over the reference period 

1995-2005; the remaining plots depict the percentage changes relative to this situation for 

averages of the periods 2045-2050 and 2090-2100 for scenarios A1 and B2. 
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Figure B 1: Total cropland in ha for the different NUTS2 regions. (adopted from (Eurostat New 

Cronos, 2005)) 
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Figure B 2: Price scenario for the different economic regions. 
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Figure B 3: Climate forcing for the different scenarios averaged over the simulation grid. 

 

 38



Working Papers 

Research Unit Sustainability and Global Change 

Hamburg University and Centre for Marine and Atmospheric Science 
 

Ronneberger, K., L. Criscuolo, W. Knorr, R.S.J. Tol (2006), KLUM@LPJ: Integrating dynamic land-use decisions 
into a dynamic global vegetation and crop growth model to assess the impacts of a changing climate. A feasibility 
study for Europe, FNU-113 (submitted) 

Schwoon, M. (2006), Learning-by-doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles, FNU-112 
(submitted). 

Strzepek, K.M., G.W. Yohe, R.S.J. Tol and M. Rosegrant (2006), The Value of the High Aswan Dam to the Egyptian 
Economy, FNU-111 (submitted). 

Schwoon, M. (2006), A Tool to Optimize the Initial Distribution of Hydrogen Filling Stations, FNU-110 (submitted). 

Tol, R.S.J., K.L. Ebi and G.W. Yohe (2006), Infectious Disease, Development, and Climate Change: A Scenario 
Analysis, FNU-109 (submitted). 

Lau, M.A. (2006), An analysis of the travel motivation of tourists from the People’s Republic of China, FNU-108 
(submitted). 

Lau, M.A. and R.S.J. Tol (2006), The Chinese are coming – An analysis of the preferences of Chinese holiday 
makers at home and abroad, FNU-107 (submitted). 

Röckmann, C., R.S.J. Tol, U.A. Schneider, and M.A. St.John (2006), Rebuilding the Eastern Baltic cod stock under 
environmental change - Part II: The economic viability of a marine protected area. FNU-106 (submitted) 

Ronneberger, K., M. Berrittella, F. Bosello and R.S.J. Tol (2006), KLUM@GTAP: Introducing biophysical aspects 
of land-use decisions into a general equilibrium model. A coupling experiment, FNU-105 (submitted). 

Link, P.M. and Tol, R.S.J. (2006), Economic impacts on key Barents Sea fisheries arising from changes in the 
strength of the Atlantic thermohaline circulation, FNU-104 (submitted). 

Link, P.M. and Tol, R.S.J. (2006), The economic impact of a shutdown of the Thermohaline Circulation: an 
application of FUND, FNU-103 (submitted). 

Tol, R.S.J. (2006), Integrated Assessment Modelling, FNU-102 (submitted). 

Tol, R.S.J. (2006), Carbon Dioxide Emission Scenarios for the USA, FNU-101 (submitted). 

Tol, R.S.J., S.W. Pacala and R.H. Socolow (2006), Understanding Long-Term Energy Use and Carbon Dioxide 
Emissions in the USA, FNU-100 (submitted). 

Sesabo, J.K, H. Lang and R.S.J. Tol (2006), Perceived Attitude and Marine Protected Areas (MPAs) establishment: 
Why households’ characteristics matters in Coastal resources conservation initiatives in Tanzania, FNU-99 
(submitted). 

Tol, R.S.J. (2006), The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of 
FUND, FNU-98 (submitted) 

Tol, R.S.J. and G.W. Yohe (2006), The Weakest Link Hypothesis for Adaptive Capacity: An Empirical Test, FNU-97 
(submitted, Global Environmental Change) 

Berrittella, M., K. Rehdanz, R.Roson and R.S.J. Tol (2005), The Economic Impact of Water Pricing: A Computable 
General Equilibrium Analysis, FNU-96 (submitted) 

Sesabo, J.K. and R. S. J. Tol (2005), Technical Efficiency and Small-scale Fishing Households in Tanzanian coastal 
Villages: An Empirical Analysis, FNU-95 (submitted) 

 39

mailto:KLUM@GTAP


Lau, M.A. (2005), Adaptation to Sea-level Rise in the People’s Republic of China – Assessing the Institutional 
Dimension of Alternative Organisational Frameworks, FNU-94 (submitted) 

Berrittella, M., A.Y. Hoekstra, K. Rehdanz, R. Roson and R.S.J. Tol (2005), The Economic Impact of Restricted 
Water Supply: A Computable General Equilibrium Analysis, FNU-93 (submitted) 

Tol, R.S.J. (2005), Europe’s Long Term Climate Target: A Critical Evaluation, FNU-92 (forthcoming, Energy 
Policy) 

Hamilton, J.M. (2005), Coastal Landscape and the Hedonic Price of Accomodation, FNU-91 (submitted) 

Hamilton, J.M., D.J. Maddison and R.S.J. Tol (2005), Climate Preferences and Destination Choice: A 
Segmentation Approach, FNU-90 (submitted) 

Zhou, Y. and R.S.J. Tol (2005), Valuing the Health Impacts from Particulate Air Pollution in Tianjin, FNU-89 
(submitted) 

Röckmann, C. (2005), International Cooperation for Sustainable Fisheries in the Baltic Sea, FNU-88 
(forthcoming, in Ehlers,P./Lagoni,R. (Eds.): International Maritime Organisations and their Contribution 
towards a Sustainable Marine Development.) 

Ceronsky, M., D. Anthoff, C. Hepburn and R.S.J. Tol (2005), Checking the price tag on catastrophe: The social 
cost of carbon under non-linear climate response FNU-87 (submitted, Climatic Change) 

Zandersen, M. and R.S.J. Tol (2005), A Meta-analysis of Forest Recreation Values in Europe, FNU-86 
(submitted, Journal of Environmental Management) 
Heinzow, T., R.S.J. Tol and B. Brümmer (2005), Offshore-Windstromerzeugung in der Nordsee -eine ökonomische 
und ökologische Sackgasse? FNU-85 (Energiewirtschaftliche Tagesfragen, 56 (3), 68-73) 

Röckmann, C., U.A. Schneider, M.A. St.John, and R.S.J. Tol (2005), Rebuilding the Eastern Baltic cod stock under 
environmental change - a preliminary approach using stock, environmental, and management constraints, FNU-84 
(forthcoming, Natural Resource Modeling) 

Tol, R.S.J. and G.W. Yohe (2005), Infinite uncertainty, forgotten feedbacks, and cost-benefit analysis of climate 
policy, FNU-83 (submitted, Climatic Change) 

Osmani, D. and R.S.J. Tol (2005), The case of two self-enforcing international agreements for environmental 
protection, FNU-82 (submitted) 

Schneider, U.A. and B.A. McCarl, (2005), Appraising Agricultural Greenhouse Gas Mitigation Potentials: Effects of 
Alternative Assumptions, FNU-81 (submitted) 

Zandersen, M., M. Termansen, and F.S. Jensen, (2005), Valuing new forest sites over time: the case of afforestation 
and recreation in Denmark, FNU-80 (submitted) 

Guillerminet, M.-L. and R.S.J. Tol (2005), Decision making under catastrophic risk and learning: the case of the 
possible collapse of the West Antarctic Ice Sheet, FNU-79 (submitted, Climatic Change) 

Nicholls, R.J., R.S.J. Tol and A.T. Vafeidis (2005), Global estimates of the impact of a collapse of the West 
Antarctic Ice Sheet: An application of FUND, FNU-78 (submitted, Climatic Change) 

Lonsdale, K., T.E. Downing, R.J. Nicholls, D. Parker, A.T. Vafeidis, R. Dawson and J.W. Hall (2005), Plausible 
responses to the threat of rapid sea-level rise for the Thames Estuary, FNU-77 (submitted, Climatic Change) 

Poumadère, M., C. Mays, G. Pfeifle with A.T. Vafeidis (2005), Worst Case Scenario and Stakeholder Group 
Decision: A 5-6 Meter Sea Level Rise in the Rhone Delta, France, FNU-76 (submitted, Climatic Change) 

Olsthoorn, A.A., P.E. van der Werff, L.M. Bouwer and D. Huitema (2005), Neo-Atlantis: Dutch Responses to Five 
Meter Sea Level Rise, FNU-75 (submitted, Climatic Change) 

Toth, F.L. and E. Hizsnyik (2005), Managing the inconceivable: Participatory assessments of impacts and responses 
to extreme climate change, FNU-74 (submitted) 

Kasperson, R.E. M.T. Bohn and R. Goble (2005), Assessing the risks of a future rapid large sea level rise: A review, 
FNU-73 (submitted, Climatic Change) 

 40



Schleupner, C. (2005), Evaluation of coastal squeeze and beach reduction and its consequences for the Caribbean 
island Martinique, FNU-72 (submitted) 

Schleupner, C. (2005), Spatial Analysis As Tool for Sensitivity Assessment of Sea Level Rise Impacts on Martinique, 
FNU-71 (submitted) 

Sesabo, J.K. and R.S.J. Tol (2005), Factors affecting Income Strategies among households in Tanzanian Coastal 
Villages: Implication for Development-Conservation Initiatives, FNU-70 (submitted) 

Fisher, B.S., G. Jakeman, H.M. Pant, M. Schwoon. and R.S.J. Tol (2005), CHIMP: A Simple Population Model for 
Use in Integrated Assessment of Global Environmental Change, FNU-69 (forthcoming, Integrated Assessment 
Journal) 

Rehdanz, K. and R.S.J. Tol (2005), A No Cap But Trade Proposal for Greenhouse Gas Emission Reduction Targets 
for Brazil, China and India, FNU-68 (submitted) 

Zhou, Y. and R.S.J. Tol (2005), Water Use in China’s Domestic, Industrial and Agricultural Sectors: An Empirical 
Analysis, FNU-67 (Water Science and Technoloy: Water Supply, 5 (6), 85-93) 

Rehdanz, K. (2005), Determinants of Residential Space Heating Expenditures in Germany, FNU-66 (forthcoming, 
Energy Economics) 

Ronneberger, K., R.S.J. Tol and U.A. Schneider (2005), KLUM: A Simple Model of Global Agricultural Land Use as 
a Coupling Tool of Economy and Vegetation, FNU-65 (submitted, Climatic Change) 

Tol, R.S.J. (2005), The Benefits of Greenhouse Gas Emission Reduction: An Application of FUND, FNU-64 
(submitted, Global Environmental Change) 

Röckmann, C., M.A. St.John, U.A. Schneider, F.W. Köster, F.W. and R.S.J. Tol (2006), Testing the implications of a 
permanent or seasonal marine reserve on the population dynamics of Eastern Baltic cod under varying 
environmental conditions, FNU-63-revised (submitted) 

Letsoalo, A., J. Blignaut, T. de Wet, M. de Wit, S. Hess, R.S.J. Tol and J. van Heerden (2005), Triple Dividends of 
Water Consumption Charges in South Africa, FNU-62 (submitted, Water Resources Research) 

Zandersen, M., Termansen, M., Jensen,F.S. (2005), Benefit Transfer over Time of Ecosystem Values: the Case of 
Forest Recreation, FNU-61 (submitted) 

Rehdanz, K., Jung, M., Tol, R.S.J. and Wetzel, P. (2005), Ocean Carbon Sinks and International Climate Policy, 
FNU-60 (forthcoming, Energy Policy) 

Schwoon, M. (2005), Simulating the Adoption of Fuel Cell Vehicles, FNU-59 (submitted) 

Bigano, A., J.M. Hamilton and R.S.J. Tol (2005), The Impact of Climate Change on Domestic and International 
Tourism: A Simulation Study, FNU-58 (submitted) 

Bosello, F., R. Roson and R.S.J. Tol (2004), Economy-wide estimates of the implications of climate change: Human 
health, FNU-57 (Ecological Economics, 58, 579-591) 

Hamilton, J.M. and M.A. Lau (2004) The role of climate information in tourist destination choice decision-making, 
FNU-56 (forthcoming, Gössling, S. and C.M. Hall (eds.), Tourism and Global Environmental Change. London: 
Routledge) 

Bigano, A., J.M. Hamilton and R.S.J. Tol (2004), The impact of climate on holiday destination choice, FNU-55 
(forthcoming, Climatic Change) 

Bigano, A., J.M. Hamilton, M. Lau, R.S.J. Tol and Y. Zhou (2004), A global database of domestic and international 
tourist numbers at national and subnational level, FNU-54 (submitted) 

Susandi, A. and R.S.J. Tol  (2004), Impact of international emission reduction on energy and forestry sector of 
Indonesia, FNU-53 (submitted) 

Hamilton, J.M. and R.S.J. Tol (2004), The Impact of Climate Change on Tourism and Recreation, FNU-52 
(forthcoming, Schlesinger et al. (eds.), Cambridge University Press) 

Schneider, U.A. (2004), Land Use Decision Modelling with Soil Status Dependent Emission Rates, FNU-51 
(submitted) 

 41



Link, P.M., U.A. Schneider and R.S.J. Tol (2004), Economic impacts of changes in fish population dynamics: the 
role of the fishermen’s harvesting strategies, FNU-50 (submitted) 

Berritella, M., A. Bigano, R. Roson and R.S.J. Tol (2004), A General Equilibrium Analysis of Climate Change 
Impacts on Tourism, FNU-49 (forthcoming, Tourism Management) 

Tol, R.S.J. (2004), The Double Trade-Off between Adaptation and Mitigation for Sea Level Rise: An Application of 
FUND, FNU-48 (forthcoming, Mitigation and Adaptation Strategies for Global Change) 

Erdil, Erkan and Yetkiner, I. Hakan (2004), A Panel Data Approach for Income-Health Causality, FNU-47  

Tol, R.S.J. (2004), Multi-Gas Emission Reduction for Climate Change Policy: An Application of FUND, FNU-46 
(forthcoming, Energy Journal) 

Tol, R.S.J. (2004), Exchange Rates and Climate Change: An Application of FUND, FNU-45 (forthcoming, Climatic 
Change) 

Gaitan, B., Tol, R.S.J, and Yetkiner, I. Hakan (2004), The Hotelling’s Rule Revisited in a Dynamic General 
Equilibrium Model, FNU-44 (submitted) 

Rehdanz, K. and Tol, R.S.J (2004), On Multi-Period Allocation of Tradable Emission Permits, FNU-43 (submitted) 

Link, P.M. and Tol, R.S.J. (2004), Possible Economic Impacts of a Shutdown of the Thermohaline Circulation: An 
Application of FUND, FNU-42 (Portuguese Economic Journal, 3, 99-114) 

Zhou, Y. and Tol, R.S.J. (2004), Evaluating the costs of desalination and water transport, FNU-41 (fWater 
Resources Research, 41 (3), W03003) 

Lau, M. (2004), Küstenzonenmanagement in der Volksrepublik China und Anpassungsstrategien an den 
Meeresspiegelanstieg,FNU-40 (Coastline Reports, Issue 1, pp.213-224.) 

Rehdanz, K. and Maddison, D. (2004), The Amenity Value of Climate to German Households, FNU-39 (submitted) 

Bosello, F., Lazzarin, M., Roson, R. and Tol, R.S.J. (2004), Economy-wide Estimates of the Implications of Climate 
Change: Sea Level Rise, FNU-38 (submitted, Environmental and Resource Economics) 

Schwoon, M. and Tol, R.S.J. (2004), Optimal CO2-abatement with socio-economic inertia and induced technological 
change, FNU-37 (submitted, Energy Journal) 

Hamilton, J.M., Maddison, D.J. and Tol, R.S.J. (2004), The Effects of Climate Change on International Tourism, 
FNU-36 (Climate Research, 29, 255-268) 

Hansen, O. and R.S.J. Tol (2003), A Refined Inglehart Index of Materialism and Postmaterialism, FNU-35 
(submitted) 

Heinzow, T. and R.S.J. Tol (2003), Prediction of Crop Yields across four Climate Zones in Germany: An Artificial 
Neural Network Approach, FNU-34 (submitted, Climate Research) 

Tol, R.S.J. (2003), Adaptation and Mitigation: Trade-offs in Substance and Methods, FNU-33 (Environmental 
Science and Policy, 8 (6), 572-578) 
Tol, R.S.J. and T. Heinzow (2003), Estimates of the External and Sustainability Costs of Climate Change, FNU-32 
(submitted) 
Hamilton, J.M., Maddison, D.J. and Tol, R.S.J. (2003), Climate change and international tourism: a simulation 
study, FNU-31 (Global Environmental Change, 15 (3), 253-266) 
Link, P.M. and R.S.J. Tol (2003), Economic impacts of changes in population dynamics of fish on the fisheries in the 
Barents Sea, FNU-30 (ICES Journal of Marine Science, 63 (4), 611-625) 
Link, P.M. (2003), Auswirkungen populationsdynamischer Veränderungen in Fischbeständen auf die 
Fischereiwirtschaft in der Barentssee, FNU-29 (Essener Geographische Arbeiten, 35, 179-202) 
Lau, M. (2003), Coastal Zone Management in the People’s Republic of China – An Assessment of Structural Impacts 
on Decision-making Processes, FNU-28 (Ocean & Coastal Management, No. 48 (2005), pp. 115-159.) 
Lau, M. (2003), Coastal Zone Management in the People’s Republic of China – A Unique Approach?, FNU-27 
(China Environment Series, Issue 6, pp. 120-124; http://www.wilsoncenter.org/topics/pubs/7-commentaries.pdf )  

 42

http://www.wilsoncenter.org/topics/pubs/7-commentaries.pdf


Roson, R. and R.S.J. Tol (2003), An Integrated Assessment Model of Economy-Energy-Climate – The Model 
Wiagem: A Comment, FNU-26 (Integrated Assessment, 6 (1), 75-82) 
Yetkiner, I.H. (2003), Is There An Indispensable Role For Government During Recovery From An Earthquake? A 
Theoretical Elaboration, FNU-25 
Yetkiner, I.H. (2003), A Short Note On The Solution Procedure Of Barro And Sala-i-Martin for Restoring Constancy 
Conditions, FNU-24 
Schneider, U.A. and B.A. McCarl (2003), Measuring Abatement Potentials When Multiple Change is Present: The 
Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry, FNU-23 (submitted) 
Zhou, Y. and Tol, R.S.J. (2003), The Implications of Desalination to Water Resources in China - an Economic 
Perspective, FNU-22 (Desalination, 163 (4), 225-240) 
Yetkiner, I.H., de Vaal, A., and van Zon, A. (2003), The Cyclical Advancement of Drastic Technologies, FNU-21 
Rehdanz, K. and Maddison, D. (2003) Climate and Happiness, FNU-20 (Ecological Economics, 52 111-125) 
Tol, R.S.J., (2003), The Marginal Costs of Carbon Dioxide Emissions: An Assessment of the Uncertainties, FNU-19 
(Energy Policy, 33 (16), 2064-2074). 
Lee, H.C., B.A. McCarl, U.A. Schneider, and C.C. Chen (2003), Leakage and Comparative Advantage Implications 
of Agricultural Participation in Greenhouse Gas Emission Mitigation, FNU-18 (submitted). 
Schneider, U.A. and B.A. McCarl (2003), Implications of a Carbon Based Energy Tax for U.S. Agriculture, FNU-17 
(submitted). 
Tol, R.S.J. (2002), Climate, Development, and Malaria: An Application of FUND, FNU-16 (forthcoming, Climatic 
Change). 
Hamilton, J.M. (2003), Climate and the Destination Choice of German Tourists, FNU-15 (revised and submitted). 
Tol, R.S.J. (2002), Technology Protocols for Climate Change: An Application of FUND, FNU-14 (Climate Policy, 
4, 269-287). 
Rehdanz, K (2002), Hedonic Pricing of Climate Change Impacts to Households in Great Britain, FNU-13 
(forthcoming, Climatic Change). 
Tol, R.S.J. (2002), Emission Abatement Versus Development As Strategies To Reduce Vulnerability To Climate 
Change: An Application Of FUND, FNU-12 (forthcoming, Environment and Development Economics). 
Rehdanz, K. and Tol, R.S.J. (2002), On National and International Trade in Greenhouse Gas Emission Permits, 
FNU-11 (Ecological Economics, 54, 397-416). 
Fankhauser, S. and Tol, R.S.J. (2001), On Climate Change and Growth, FNU-10 (Resource and Energy Economics, 
27, 1-17). 
Tol, R.S.J.and Verheyen, R. (2001), Liability and Compensation for Climate Change Damages – A Legal and 
Economic Assessment, FNU-9 (Energy Policy, 32 (9), 1109-1130). 
Yohe, G. and R.S.J. Tol (2001), Indicators for Social and Economic Coping Capacity – Moving Toward a Working 
Definition of Adaptive Capacity, FNU-8 (Global Environmental Change, 12 (1), 25-40). 
Kemfert, C., W. Lise and R.S.J. Tol (2001), Games of Climate Change with International Trade, FNU-7 
(Environmental and Resource Economics, 28, 209-232). 
Tol, R.S.J., W. Lise, B. Morel and B.C.C. van der Zwaan (2001), Technology Development and Diffusion and 
Incentives to Abate Greenhouse Gas Emissions, FNU-6 (submitted). 
Kemfert, C. and R.S.J. Tol (2001), Equity, International Trade and Climate Policy, FNU-5 (International 
Environmental Agreements, 2, 23-48). 
Tol, R.S.J., Downing T.E., Fankhauser S., Richels R.G. and Smith J.B. (2001), Progress in Estimating the Marginal 
Costs of Greenhouse Gas Emissions, FNU-4. (Pollution Atmosphérique – Numéro Spécial: Combien Vaut l’Air 
Propre?, 155-179). 
Tol, R.S.J. (2000), How Large is the Uncertainty about Climate Change?, FNU-3 (Climatic Change, 56 (3), 265-
289). 
Tol, R.S.J., S. Fankhauser, R.G. Richels and J.B. Smith (2000), How Much Damage Will Climate Change Do? 
Recent Estimates, FNU-2 (World Economics, 1 (4), 179-206) 
Lise, W. and R.S.J. Tol (2000), Impact of Climate on Tourism Demand, FNU-1 (Climatic Change, 55 (4), 429-449). 

 43


	KLUM@LPJ: Integrating dynamic land-use decisions into a dynamic global vegetation and crop growth model to assess the impacts of a changing climate.  
	A feasibility study for Europe 
	Kerstin Ronnebergera,b,c(, Luca Criscuolod,c, Wolfgang Knorre and Richard S.J. Tola,f,g 
	1 Introduction 
	2 Modelling Framework 
	2.1 The LPJ-C model 
	2.2 The KLUM model 
	2.3 KLUM@LPJ 

	3 Experimental Design 
	4 Evaluation of the coupled framework 
	5 Simulation results 
	5.1 Climate change analysis with the coupled system 
	5.2 Impact and relevance of the coupling 

	6 Discussion and conclusions 
	A KLUM’s interior 
	B Scenarios 


