
1

The Hotelling�s Rule Revisited in a Dynamic General Equilibrium Model

Beatriz Gaitan
Department of Economics, Hamburg University, Germany

Richard S.J. Tol
Research Unit Sustainability and Global Change, Hamburg University and Centre for
Marine and Atmospheric Sciences, Hamburg, Germany
Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
Center for Integrated Study of the Human Dimensions of Global Change, Carnegie Mel-
lon University, Pittsburgh, PA, USA

I. Hakan Yetkiner
Research Unit Sustainability and Global Change, Hamburg University and Centre for
Marine and Atmospheric Sciences, Hamburg, Germany

Working Paper FNU-44

Abstract
The validity of the Hotelling�s rule, the fundamental theorem of nonrenewable resource eco-
nomics, is limited by its partial equilibrium nature. One symptom of this limitation may be
the disagreement between the empirical evidence, showing stable or declining resource prices,
and the rule, predicting exponentially increasing prices. In this paper, we study the optimal
depletion of a nonrenewable resource in a dynamic general equilibrium framework. We show that
in, the long run, the price of a nonrenewable (i) is constant when the nonrenewable is essential
in production, and (ii) it increases only if the rate of return of capital is larger than the capital
depreciation rate and if the non-renewable is an inessential input in production. We believe that
our model offers a theoretical explanation to non-growing nonrenewable prices and hence at least
partially solves the paradox between the Hotelling�s rule and the empirical regularities. We also
show that two factors play a crucial role in determining the long run behavior of non-renewable
prices, namely the elasticity of substitution between input factors, and the long run behavior of
the real interest rate. Another major achievement of this study is the full analytical solution of
the model under a Cobb-Douglas technology.
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1. Introduction

In his seminal article, Hotelling (1931) showed that the price for a nonrenewable resource will rise
at the real interest rate in an efficient market equilibrium,1 a result known as the �Hotelling�s rule�
since then.2 Hotelling�s rule has become the pillar of the theory of nonrenewable resource economics
and has provided the fundamental insight into the long-run behavior of the price and extraction of
a resource since then.3 In time, it has been documented that the Hotelling�s rule is not supported
by empirical evidence. In particular, almost all empirical studies have shown that nonrenewable
resources have either declining or constant prices in the last 150 years (e.g., see Krautkraemer,
1998). The response to this paradox has been the modiÞcation of the basic Hotelling�s formulation
by incorporating additional elements into the model (e.g., exploration costs, capital investment
and capacity constraints, ore quality variations, output substitution, or uncertainty), although
some authors tried alternative econometric techniques or data so as to generate rising resource
prices.

Surprisingly, no one ever questioned a probable shortage in Hotelling�s approach, namely the
exogeneity of the discount rate. This paper approaches the paradox from this point of view and
shows that the paradox may indeed be Þctitious in the sense that the true Hotelling�s rule may not
suggest an ever-increasing nonrenewable resource price, at least not in all instances. Recall that
Hotelling�s rule takes the interest rate as given if the resource sector is considered in isolation. Crit-
ical information is hence lost because the interaction between the marginal productivity of capital
and the nonrenewable resource is not taken into consideration. In a general equilibrium setting,
on the other hand, the level of extraction has a determining role on the marginal productivity of
capital and hence on the real rate of interest, where the latter inßuences the resource price and the
level of extraction. Hence, in general equilibrium, the resource price and real interest rate are de-
termined simultaneously, in sharp contrast with the partial equilibrium approach. Let us illustrate
this endogenous determination of factor prices in case both inputs are essential4. The marginal
productivity of capital decreases if the percentage change in resource extraction is dominated by
the decline in percentage change in capital. It follows that the rental rate of capital decreases.
Consequently, the rate of increase in the price of the nonrenewable declines because, according to
the Hotelling�s rule, the rate of increase of the resource price cannot deviate from the real interest
rate. Therefore, the endogenous interaction between factor prices and factor quantities may deÞne
a different time pattern for resource price than what partial equilibrium Hotelling�s rule suggests.
We believe that this critical endogenous interaction is missing in the �partial equilibrium� version of
the Hotelling�s rule. Hence, a contradiction may arise between empirics and theory. The paradox
vanishes if a �complete� solution, in the sense of an integrated nonrenewable resource sector and a
good sector, is studied.

The Hotelling�s rule was incorporated into (neoclassical) growth theory a long time ago, espe-

1Hotelling (1931) assumes the real interest rate to be a constant.
2Note that Faustmann (1839) derived essentially the same result.
3A short review of the literature is as follows. Gray (1914) was the Þrst who discussed the nonrenewable resource

problem from the Þrm�s viewpoint. Hotelling (1931) made the full analytical treatment. HerÞndahl (1955) studied
Gray�s work analytically. Gordon (1967) presented a concise review of the literature and discussed a case where
cumulative extraction increases costs. Smith (1968) presented a uniÞed theory of production of natural resources.
Dasgupta and Heal (1974), Solow (1974), and Stiglitz (1974a, 1974b) investigated conditions for a sustainable con-
sumption in one-sector growth models constrained by nonrenewable resources. These papers show that technological
change and a high degree of substitutability between nonrenewables and reproducible capital are necessary conditions
for achieving a non-decreasing consumption. See surveys of Peterson and Fisher (1977) and Krautkraemer (1988) for
a good exposure to the rest of the literature.

4We call a factor input essential if a positive amount of such input is necessary to produce a positive level of
output.
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cially in the issue of sustainable consumption. Several papers written in the 1970s hinted at the
two means of achieving sustainability when an economy is dependent on nonrenewable resource:
substitution for a reproducible factor and technological change (see Dasgupta and Heal (1974) and
Stiglitz (1974a)). Surprisingly enough, these studies ignored a distinguishing feature of growth
models with nonrenewable resources that we believe prevented them to expose the true general
equilibrium version of the Hotelling�s rule. A peculiar characteristic of growth models with nonre-
newables is that resource price and rental rate of capital only depend on the ratio of capital and
resource extraction, and are determined independently from the rest of the model (i.e., consump-
tion, capital, and resource extraction).5 If the rental rate of capital and the rate of discount on
proÞts in the extraction sector are assumed identical, it leads to a differential equation in terms
of capital-resource extraction ratio that does not have any counter-force on the accumulation of
this ratio. The end result turns out to be a distortion of the solutions of rental rate of capital and
resource price. A good illustration is the basic Solow (1956) model. If depreciation is removed
from the fundamental equation of growth, capital and hence output would grow to inÞnite levels.
Dasgupta and Heal (1974) and Stiglitz (1974a) neglected this aspect in their models and this led
them to reproduce the partial equilibrium results of Hotelling�s rule in a general equilibrium model.
However, Hotelling�s rule is not reproduced if capital depreciates.

A summary of our model is as follows. There are two factors of production, namely a repro-
ducible capital and a nonrenewable resource, and one Þnal output, which can be consumed or
invested. The two factors may be complements or substitutes in the production of the Þnal good.
ProÞt-maximizing Þrms operating in the good market imply a unique resource price/rental ratio and
a corresponding optimal capital/resource ratio. A nonrenewable resource-extracting sector solves
the dynamic problem of maximizing discounted proÞts over an inÞnite horizon, constrained by the
initial stock of the nonrenewable. An exogenous savings rate assumption in the Solovian sense on
the allocation of factor income and market clearing conditions for capital and the nonrenewable
complete the model.

The organization of the paper is as follows. The second section presents the model under the
Cobb-Douglas technology assumption. We show that the paradox between the Hotelling�s rule and
the empirical evidence may indeed be Þctitious and that the true Hotelling�s rule may suggest a
constant nonrenewable resource price. The third section discusses the CES version of the model
and presents numerical simulation results. The last section presents concluding remarks.

2. The Model

We assume that physical capital K and a nonrenewable resource R are used to produce a Þnal
good Y . The Þnal good production technology is represented by F (K,R). It is supposed that F (�)
is increasing, strictly concave, twice differentiable, homogenous of degree one, and shows a constant
elasticity of substitution (CES) between K and R. The nonrenewable resource sector production
technology is based on extraction. For matter of simplicity, we assume that the intertemporal
consumption-investment trade-off is given to the model, as in Solow (1956). Our motivation behind
this assumption is twofold. First, we would like to fully focus on the �production� side of the
economy. Second, this assumption allows us to solve the model analytically, when the elasticity of
substitution equals one, without loosing substantial information on the time patterns of variables.
Indeed, we will show that in the long run (steady state) the constant savings rate assumption does
not play any role in the behavior of the nonrenewable resource price, which, at least partially,
legitimizes our simpliÞcation.

5This peculiar characteristic holds only if the marginal cost of extraction is constant.
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2.1. Production sector

The representative Þrm producing output Y solves the problem:

max
Y =0

{Y −C (r, q, Y )} (1)

where r and q are the real rental rate of capital and the nonrenewable resource price, and C (r, q, Y )
is the optimized value (or cost function) of the cost minimization problem:

C ≡ min
K,R=0

{rK + qR|Y 5 F (K,R)} (2)

For analytical tractability we will exploit the Cobb-Douglas technology in the production of
output Y . In Section 3 we will generalize the model by using a CES technology. It is easy to
show that if the technology is of the Cobb-Douglas type, say, Y = KαR1−α, then the cost function
associated with problem (2) equals

C (r, q, Y ) = MC (r, q)Y =
³ r
α

´αµ q

1− α
¶1−α

Y (3)

where MC (r, q) is the marginal cost of producing a unit of output Y. The conditional factor
demands for K and R can be found by applying Shephard�s Lemma to the cost function:

K = Cr (r, q, Y ) = MCr (r, q)Y (4)

and

R = Cq (r, q, Y ) = MCq (r, q)Y (5)

The constant returns to scale property of the technology implies that C (r, q, Y ) is linear in Y and
thus the proÞt maximization problem (1) can be rewritten as

max
Y =0

{Y −MC (r, q)Y } (6)

Note that proÞt maximization implies

MC (r, q) = 1 (7)

or the well known zero proÞt condition of perfect competition, where marginal cost equals output
price. In this economy, we assume that a fraction s of total output Y is used to accumulate the
capital stock of the economy in the form of investment

K̇ = sY − δK (8)
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where s is the exogenous saving rate, δ is the depreciation rate, and a dot over a variable denotes
its time derivative. We assume that the economy begins with an amount of physical capital K0.
Using (3) and (4) the demand for capital, given output level Y , is found to be

K =
αMC (r, q)

r
Y =

α

r
Y. (9)

Using (3) and (7) we can solve for r as follows

r =

Ã
αα (1− α)1−α

q1−α

! 1
α

(10)

Solving for Y from (9) , and substituting for Y and r in equation (8) we obtain

K̇ =
s

α
rK − δK =

s

α

Ã
αα (1− α)1−α

q1−α

! 1
α

K − δK (11)

This is nothing but a Þrst order differential equation with a variable coefficient and its solution is

K (t) = K0e
R t

0 ( sα r(τ)−δ)dτ =K0e

R t
0

Ã
s
α(αα(1−α)1−α)

1
α
q(τ)−

1−α
α −δ

!
dτ

(12)

If we knew the path of q (t) then from (12) the path of K (t) would also be known. To solve for
the path of q (t) we now look at the nonrenewable extracting sector�s problem.

2.2. Extraction sector

Hotelling (1931) determined the optimal extraction of nonrenewable resources in a perfectly
competitive market economy in a partial equilibrium setup. We exploit his setup in order to
determine the dynamics deÞned by the resource sector. Suppose that extraction is costless. The
representative Þrm taking q as given solves the following maximization problem:

max
R=0

½Z ∞

0
q (t)R (t) e−

R t
0 (r(τ)−δ)dτ

¯̄̄̄Z ∞

0
R (t) 5 S0

¾
(13)

According to equation (13), the representative Þrm in the resource sector maximizes discounted
proÞts over an inÞnite horizon subject to the physical resource constraint that total extraction can
be utmost the initial stock S0. In (13), r (t)− δ is the real interest rate. In contrast to the partial
equilibrium Hotelling�s approach the real interest rate is endogenously determined in our model.
Equation (13) is an isoperimetric problem of calculus of variations. The Lagrangian integrand
becomes

L = q (t)R (t) e−
R t

0 (r(τ)−δ)dτ − λR (t) (14)
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where λ is Lagrange multiplier and constant (see Chiang, 1992, p.139-143 for a proof of argu-
ment). The solution of this isoperimetric calculus of variations problem leads to the following
Euler-Lagrange equation:

q (t) = λe
R t

0 (r(τ)−δ)dτ (15)

The transversality condition of this problem is given by (see Chiang, 1992, p.101-102)

lim
t→∞qRe

− R t0 (r(τ)−δ)dτ = 0 (16)

Taking the log time derivative of (15) and employing Leibniz�s rule we obtain the Euler condition
of problem (13)

q̇ (t)

q (t)
= r (t)− δ (17)

Equation (17) is a non-arbitrage condition saying that the nonrenewable is essentially an asset
and therefore its (real) price must grow at the real interest rate.

Substituting (10) into (17) we obtain:

q̇ (t) = q (t)

Ãαα (1− α)1−α

q1−α

! 1
α

− δ

 (18)

The solution to this differential equation is given by:

q (t) =


³
αα (1− α)1−α

´ 1
α

δ
+

1

e
1−α
α
δt

q (0)
1−α
α −

³
αα (1− α)1−α

´ 1
α

δ




α
1−α

(19)

As time evolves to inÞnity, the nonrenewable resource price q converges to

qss = lim
t→∞q (t) =

Ã
αα (1− α)1−α

δα

! 1
1−α

(20)

That is, q is constant in the long run. Note that equation (19) depends on q (0) which has to be
determined from the model. To Þnd the value of q (0) , we use the constraint

Z ∞

0
R (t) 5 S0 (21)

First, we employ the factor-input condition obtained by using (4) and (5)
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R =

µ
1− α
α

¶
r

q
K (22)

Next, substituting (10) and (12) into (22) we obtain

R (t) =
(1− α)

α

r

q
K0e

R t
0

Ã
s
α(αα(1−α)1−α)

1
α
q(τ)−

1−α
α −δ

!
dτ

(23)

We can integrate (23) to solve for q (0) if (21) holds with equality. We claim that if an equilibrium
exists then (21) must hold with equality. Note that equation (15) indicates that λ = q (0). For an
equilibrium to exist it must be the case that q (0) is positive. Otherwise, sector Y would demand
an inÞnite amount of R, which is unfeasible since R is bounded by S0. Thus, the existence of
equilibrium requires q (0) (= λ) to be positive and therefore the constraint (21) holds with equality.
This allows us to use (21) to solve for q (0) . Substituting (23) into (21) and solving for q (0) we
obtain (see appendix A for derivations of this result)

q (0) =

µ
1− α
α− s

¶
K0

S0
(24)

We impose the condition that the share of capital is greater than the savings rate (α > s) in
order to assure a positive initial resource price. Indeed, this condition is also required by the
transversality condition deÞned by (16). To see this, Þrst note that q = λe

R t
0 i(τ)dτ from equation

(15). Hence, the tranversality condition, equation (16) , can be rewritten as

lim
t→∞λe

R t
0 i(τ)dτR (t) e−

R t
0 i(τ)dτ = λ lim

t→∞R (t) = 0 (25)

Thus, for the transversality to be satisÞed we must have that

lim
t→∞R (t) = 0 (26)

which can be trivially shown under the assumption that α > s (cf., equation (30) below).
It should be noted that the long run value of q is only inßuenced by technological parameters

and the depreciation rate of capital δ, though the exogenous savings rate s has some effect on its
value transitionally. In other words, the long run value (steady state) of q is free of the constant
savings rate assumption, that at least partially alleviates the exogenous saving rate assumption in
our model. Substituting (20) and (24) into (19) we obtain the path of q (t) which is given by

q (t) =

Ã
q

1−α
α

ss +

Ãµ
1− α
α− s

K0

S0

¶ 1−α
α

− q
1−α
α

ss

!
e−

1−α
α
δt

! α
1−α

(27)

Thus q (t) approaches qss from below (above) if

K0

S0
< ( > )

³α
δ

´ α
1−α

(α− s) (28)
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and converges asymptotically to a constant. This Þnding is important for two reasons. Firstly, we
show that non-renewable price does not necessarily increase in the long-run, even in such a case that
it is an essential input in production. Secondly, transitionally, the resource price may increase or
decrease, depending on the relative size of the initial capital stock to resource stock. For example,

if K0
S0
<
¡
α
δ

¢ α
1−α

(α− s), the resource price will increase at decreasing rates and converge to its
steady-state value from below. Hence, resource prices may transitionally show diverging behaviors
in different economies and/or for different nonrenewable resource stocks. This may help explain
why different nonrenewable resources may have different price behaviors in the short run.

We also have from (12) and (24) that6

K (t) = K0

µ
q (t)

q (0)

¶ s
α

e−(α−sα )δt (29)

= K0

µ
q (t)

µ
α− s
1− α

¶
S0

K0

¶ s
α

e−(α−sα )δt

Note that as t goes to inÞnity K (t) approaches zero and its long run growth rate equals − ¡α−sα ¢
δ.

Equation (20) and (17) imply that r does not grow in the long run and equals the depreciation rate
of capital δ. Using (22) and (29) we obtain

R (t) =

µ
1− α
α

¶
r (t)

q (t)
K0

µ
q (t)

µ
α− s
1− α

¶
S0

K0

¶ s
α

e−(α−sα )δt (30)

Thus asymptotically R (t) shows the same properties as K. The single most important Þnding of
the model is that the resource price q is constant in the long run. Our explanation is that resource
depletion has immediate impacts on factor prices that are fed back to capital accumulation and
resource extraction. In the C-D case, though capital stock starts to decline after a while, the
decrease in resource extraction lowers marginal productivity of capital and hence the real interest
rate. The decrease in the interest rate means a lower rate of growth in the resource price that further
lowers extraction level. The �vicious� cycle generates an optimal (contraction) path for all variables.
This Þnding is a counter-example to the partial equilibrium Hotelling�s rule suggesting that resource
prices are not necessarily growing. It also contradicts with previous general equilibrium studies,
e.g., Dasgupta and Heal (1974). Below, we compare and contrast our results (GTY) with that
study (D-H) for the C-D technology.

6Note that

e
R t

0

³
s
α

³
q̇
q

+δ
´
−δ

´
dτ

= e
R t

0
s
α
d ln q
dτ dτ+( s−αα )δt

= e
s
α ln

q(t)
q(0)

+( s−αα )δt

=

µ
q (t)

q (0)

¶ s
α

e(
s−α
α )δt
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Table 1 Long run behavior of variables
D-H GTY

r 0 δ

q ∞
³
αα(1−α)1−α

δα

´ 1
1−α

K 0 0

R 0 0

The basic difference between our model and Dasgupta and Heal�s model can be observed from
Table 1. Firstly, recall that q and r in a growth model with a nonrenewable are solely function
of K/R and that they are independent from the rest of the model. In Dasgupta and Heal, the
ratio K/R approaches inÞnity (which is a �forced� result); therefore, they conclude that q and r
approach inÞnity and zero, respectively. In our model, K/R approaches a constant and hence q
and r also approach a constant. We believe that it is against the notion of optimality to Þnd that
a contracting economy can offer higher and higher prices to a nonrenewable while less and less of
everything is used.

2.3. Monopoly

An alternative market structure assumption in the resource market is monopoly. In our model,
a monopolist who owns all deposits takes into account the relationship between q and R, so that
the necessary condition in (15) becomes marginal revenue equal to marginal user cost. Hence,
marginal revenue (and not price) will rise at the rate of interest (in case of zero extraction costs).
But this in itself does not tell us whether the resource will be extracted more or less rapidly than
by competitive producers. Some, following Hotelling (1931, p.153), might assume that the rate
of resource extraction is reduced because of �the general tendency for production to be retarded
under monopoly�. However, as Weinstein and Zeckhauser (1975), Sweeney (1977), Stiglitz (1976),
and Kay and Mirrlees (1975) discussed and showed, the deviation in the extraction behavior of
monopolist with respect to the perfectly competitive case depends on the price elasticity of demand.
In particular, under the constant elasticity demand schedules, with zero extraction costs, monopoly
prices and competitive equilibrium prices will in fact be identical, and hence the rate of utilization
of the natural resource. Since our analytical model exploits a Cobb-Douglas technology, it implies
a constant elasticity demand and therefore monopoly and perfectly competitive cases are identical.
Unfortunately, algebra becomes unnecessarily complicated for the CES case. Therefore, we ignore
these analysis in this paper.

3. The CES technology

We now assume that the technology for producing output Y is given by

Y = (αKρ + (1− α)Rρ)
1
ρ (31)

where ρ6 (−∞, 1] , α is the distribution parameter, and σ = 1
1−ρ is the elasticity of substitution

between K and R.With this technology the cost function similar to the one speciÞed in (3) is given
by

C (r, q, Y ) = MC (r, q)Y =
³
α

1
1−ρ q

ρ
ρ−1 + (1− α)

1
1−ρ r

ρ
ρ−1

´ρ−1
ρ
Y (32)
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Since the envelope properties of the cost function still hold we have that

K = Cr (r, q, Y ) =
α

1
1−ρ r

1
ρ−1³

α
1

1−ρ q
ρ

ρ−1 + (1− α)
1

1−ρ r
ρ

ρ−1

´ 1
ρ

Y (33)

and

R = Cq (r, q, Y ) =
(1− α)

1
1−ρ q

1
ρ−1³

α
1

1−ρ q
ρ

ρ−1 + (1− α)
1

1−ρ r
ρ

ρ−1

´ 1
ρ

Y (34)

Using the zero proÞt condition (7) and (32) we can simplify K to get

K =
α

1
1−ρ

r
1

1−ρ
Y (35)

Substituting this expression into (8) we obtain

K̇ = s
r

1
1−ρ

α
1

1−ρ
K − δK (36)

Using (7) and (32) we can solve for r in terms of q to obtain

r =

Ã
α

1
1−ρ q

ρ
1−ρ

q
ρ

1−ρ − (1− α)
1

1−ρ

!1−ρ
ρ

(37)

substituting (37) into (36) we obtain

K̇ =
s

α
1

1−ρ

Ã
α

1
1−ρ q

ρ
1−ρ

q
ρ

1−ρ − (1− α)
1

1−ρ

! 1
ρ

K − δK (38)

the solution to this Þrst order differential equation is given by

K (t) = K0e

R t
0

µ
sα

−1
1−ρ r(τ)

1
1−ρ−δ

¶
dτ

(39)

= K0e

R t
0

sα −1
1−ρ

µ
α

1
1−ρ q

ρ
1−ρ

¶ 1
ρ
µ
q(τ)

ρ
1−ρ−(1−α)

1
1−ρ

¶− 1
ρ−δ

dτ
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Analogous to the Cobb-Douglas case, if we knew how q evolves over time then the path of K
would be fully determined. We now turn into the extracting sector�s problem to Þnd the path of
q (t) . Substituting (37) into (17) we obtain

q̇ (t)

q (t)
=

 α
1
ρ q³

q
ρ

1−ρ − (1− α)
1

1−ρ
´1−ρ

ρ

− δ

 (40)

This expression however does not have an analytical solution. Therefore, we solve the model
numerically and Þnd the transition path of all the variables of the model under different elasticity
assumptions. Before this let us look at the stability and long run properties of the model in the
CES case.

3.1. Long run equilibria and stability properties

In this subsection, we present the long-run stability properties and long run equilibria of the
CES case. Note that all the variables of the model could be found if the path of q (t) were known.
Thus, it is sufficient to look at the stability properties of equation (40). To this end, we compute
the derivative of (40) and examine it under each of the possible long-run behaviors of q:

Case 1 q̇
q = 0 in the long run =⇒ q is constant in the long run

Case 2 q̇
q < 0 in the long run =⇒ lim

t→∞q (t) = 0

Case 3 q̇
q > 0 in the long run =⇒ lim

t→∞q (t) = ∞

Recall that for a system to be stable around some value q∗ we should have that dq̇
dq

¯̄̄
q∗
< 0.

Denote as 6 the derivative dq̇
dq which is given by

dq̇

dq
= α

1
ρ q

³
q

ρ
1−ρ − 2 (1− α)

1
1−ρ
´

³
q

ρ
1−ρ − (1− α)

1
1−ρ
´ 1
ρ

− δ (41)

Case 1 q̇
q = 0

If q̇q = 0, then (17) implies that r = δ. Using (37) to solve for q and setting r = δ, we have that
as t evolves to inÞnity q approaches its long run or steady state value q∗ss

q∗ss =

Ã
(1− α)

1
1−ρ δ

ρ
1−ρ

δ
ρ

1−ρ − α 1
1−ρ

!1−ρ
ρ

(42)

We now use (41) and the rule dq̇
dq

¯̄̄
q∗ss
< 0 to verify whether Case 1 and (42) represent a stable long

run equilibrium. (41) evaluated at (42) equals
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6q∗ss = δ

"
α

1
1−ρ − δ ρ

1−ρ

α
1

1−ρ

#
(43)

Note that 6q∗ss is less than zero as long as α
1

1−ρ < δ
ρ

1−ρ or α < δρ. That is, if α < δρ then a long
run equilibrium for which q̇

q = 0 represents a stable equilibrium. Note that the Cobb-Douglas case
presented in the previous subsection refers to the case where ρ = 0. Since α < 1 then Case 1 applies
to the Cobb-Douglas technology.

Case 2 q̇
q < 0

We can easily rule out case 2 as a long run equilibrium solution. Note that if q̇q < 0 then we must
have that lim

t→∞ q (t) = 0, in such case sector Y �s problem does not have a solution and equilibrium

does not exist.

Case 3 q̇
q > 0

Using (37) q can be expressed in terms of r:

q =

Ã
(1− α)

1
1−ρ r

ρ
1−ρ

r
ρ

1−ρ − α 1
1−ρ

!1−ρ
ρ

(44)

(44) implies that for q to be inÞnite it must be that r
ρ

1−ρ approaches α
1

1−ρ . The other alternatives
for q to approach inÞnity such as r→∞ or r→ 0 can be easily ruled out (see Appendix B). Note

that since r approaches α
1
ρ as time goes to inÞnite, then it is also the case that q̇q approaches the

constant r − δ = α
1
ρ − δ. To study if q̇q > 0 represents a stable equilibrium we Þrst normalize q as

follows. Let

eq =
q

e

µ
α

1
ρ−δ

¶
t

(45)

so that

·eqeq =
q̇

q
−
³
α

1
ρ − δ

´
(46)

note that
·eqeq = 0 in the long run, that is eq is constant. Substituting for q̇q = r− δ and using (37) we

have that

·eqeq =

Ã
α

1
1−ρ q

ρ
1−ρ

q
ρ

1−ρ − (1− α)
1

1−ρ

!1−ρ
ρ

− α 1
ρ

=
α

1
ρ e

µ
α

1
ρ−δ

¶
teqÃ

e
ρ

1−ρ

µ
α

1
ρ−δ

¶
teq ρ

1−ρ − (1− α)
1

1−ρ

!1−ρ
ρ

− α 1
ρ (47)
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setting
·eq = 0 and simplifying we get

eq =

eq ρ
1−ρ − (1− α)

1
1−ρ

e
ρ

1−ρ

µ
α

1
ρ−δ

¶
t


1−ρ
ρ

(48)

for this to hold we must have that both α
1
ρ − δ > 0 (note that for q̇

q > 0 to hold it must be that

α
1
ρ −δ > 0) and ρ > 0. That is, for q to represent a �stable� equilibrium when it approaches inÞnite

it must be that α
1
ρ − δ > 0 and ρ > 0.

We now summarize. The following represent stable long run equilibria:

i) If α
1
ρ < δ then,

lim
t→∞

q̇
q = 0 (49)

lim
t→∞q =

µ
(1−α)

1
1−ρ δ

ρ
1−ρ

δ
ρ

1−ρ−α
1

1−ρ

¶ 1−ρ
ρ

(50)

lim
t→∞r = δ (51)

lim
t→∞K = 0 (52)

lim
t→∞R = 0 (53)

ii) If α
1
ρ > δ and ρ > 0 then,

lim
t→∞

q̇
q = α

1
ρ − δ > 0 (54)

lim
t→∞q = ∞ (55)

lim
t→∞r = α

1
ρ (56)

lim
t→∞K = ∞ (57)

lim
t→∞R = 0 (58)

For an economy to afford higher values of q at the steady state (as case (ii) indicates) it must

be that the marginal physical product of capital r = α
1
ρ (> δ) is large enough as to compensate for
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the lost of capital due to depreciation. In such case capital accumulates and the economy displays
positive growth. Note that only when ρ > 0, output can be positive even though R may be zero,
(Y (K, 0) > 0). In other words, capital and the nonrenewable resource must be substitutes in pro-
duction, if positive output has to be assured. Hence, a precondition for the prices of nonrenewables
to approach inÞnite (q →∞) is the ability of the economy to accumulate capital and the degree of
substitution between K and R.

At this point, we would like to pinpoint another contributing aspect of our study. Contrary to
what Dasgupta and Heal (1974) propose, here we Þnd that the long run behavior of q does not only
depend on whether inputs are substitutes or not in production. In addition to this, the long run
behavior of q also depends on the size of the rate of depreciation and the CES share parameter α.
In Dasgupta and Heal (1974), σ > 1 always leads the economy to inÞnitely value the nonrenewable
in the long-run. We above showed that for low levels of substitution (i.e., ρ values approach to zero

from the right), the condition
³
α

1
ρ < δ

´
holds and the result q̇q = 0 realizes. Figure 1 below depicts

the threshold level.

Stability of q(t) for α=0.7 and δ=0.04

0.00

0.30

0.60

0 0.2 0.4 0.6 0.8 1

ρρρρ

αααα 1/ρ  1 /ρ  1 /ρ  1 /ρ  

δ=0.04 δ=0.04 δ=0.04 δ=0.04 

Figure 1 Stability of q(t)

When
³
α

1
ρ < δ

´
holds, the long run marginal productivity of capital becomes insufficient to

compensate for the loss in capital depreciation and hence results diverge from the �general solution�,
where resource price grows to inÞnite values. This result also shows that the rate of depreciation
plays an important role in the behavior of the nonrenewable resource price.

3.2. Simulations

The simulations of the CES case reveal valuable information on the time path of the model�s
variables under varying elasticity of substitution assumptions. Below, we present the time paths
of the rental rate of capital r, resource price q, capital K, and extraction rate R. We assume the
following parameter values: s = 0.2, δ = 0.04, α = 0.7, K0 = 50, S0 = 25, and ρ = 1

3 (⇒ σ = 1.5),
or ρ = 0 (⇒ σ = 1), or ρ = −1

9 (⇒ σ = .9). Note that when ρ = 1
3 (⇒ σ = 1.5) we have that

the conditions of stability for Case 3 hold (α
1
ρ − δ = 0.545 > 0 and ρ = 1

3 > 0) and therefore the
price of the nonrenewable grows to inÞnity (see Figure 2.b). When ρ = 0 (⇒ σ = 1), and ρ = −1

9
(⇒ σ = 0.9) the stability condition of Case 1 holds which refers to the case when q converges to
a constant.

The rental rate of capital shows a similar behavior in the three cases in the sense that it always
converges to a constant (see Figure 2.a). Nonetheless, r converges to different levels, depending on
the elasticity of substitution assumption. In particular, when ρ = 1

3 (⇒ σ = 1.5), r converges to

r = α
1
ρ , given that α

1
ρ −δ > 0 holds. When ρ = 0 (⇒ σ = 1) or ρ = −1

9 (⇒ σ = .9) we observe that
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r tends to δ. In the former case, the level of r is large enough to compensate for the loss of capital
due to depreciation, and hence, capital accumulates and tends to inÞnity as Figure 2.c displays.
Otherwise, capital stock tends to zero level after showing some increase initially. The behavior of
resource price is substantially affected by the rental rate of capital. When that rate converges to
δ, the net return for capital assets become zero, and hence the price of nonrenewable converges
to a constant. Otherwise, its price explodes (see Figure 2.b). The extraction R path of the non-
renewable resource tends to zero for any elasticity of substitution assumption; nonetheless, larger
levels of extraction are observed in the short run when the resource is a substitute in production.
This is optimal as the economy calculates that it may initially exploit resource stocks for accelerating
capital accumulation, which can be later used to substitute for the resource as it depletes (see Figure
2.d).

Rental rate of capital r(t)
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Figure2.a The time path of r(t)

Resource price q(t)
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Figure 2.b The time path of q(t)

Capital K(t)
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Figure 2.c The time path of K(t)
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Resource use R(t)
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Figure 2.d The time path of R(t)

4. Conclusion

In this paper, inspired by Dasgupta and Heal (1974), we have studied the growth behavior
of an economy in the presence of a nonrenewable resource. Like Dasgupta and Heal (1974), we
integrated a nonrenewable resource sector with an output sector. In contrast to them, we focused
on market solution, as it reveals clearer information on the behavior of variables and on Hotelling�s
rule. The basic difference between our model and Dasgupta and Heal�s model, however, is that we
differentiate between the rental rate of capital and interest rate, which is used to discount proÞts
in the resource sector. This single difference substantially changes the transitional and long-run
behavior of the rental rate of capital r and the non-renewable resource price q. This is because
the efficiency rule for resource extraction can be expressed as a differential equation in terms of
capital-resource extraction ratio, which grows inÞnitely if there is no countervailing factor. We
Þrst show analytically that, with a Cobb-Douglas technology, the nonrenewable resource price
converges to a constant. Next, we extend our analysis to CES technology using simulations, and
show that a similar behavior of resource price is observed if the nonrenewable is a complement.
Our simulation analysis also reveals that the elasticity of substitution assumption heavily affects
the path of depletion and capital accumulation. We show that for levels of elasticity of substitution
close to one from the right the model reproduces results similar to those cases when R is an essential
input in production. We conclude that the economy would shrink if elasticity of substitution is not
sufficiently greater than one.

Our analysis shows that the dynamic general equilibrium version of Hotelling�s rule does not
imply an inÞnitely growing resource price. This solves, at least partially, the paradox between
the Hotelling�s rule and the empirical evidence that resource prices are constant in the long-run.
However, our results are not complete due to at least two reasons, which brings us to suggest two
research questions.

First, our analysis needs to be extended into Ramsey setup, where the saving/consumption
allocation is endogenously made. We believe that the (long-run) results would not change qualita-
tively. Nevertheless, an endogenous saving/consumption allocation brings into stage an important
additional factor in depleting-resource analysis: the consumer�s patience. When it is known that a
nonrenewable resource is being depleted, discounting the future plays a crucial role in consumption-
investment decisions. In that respect, the impact of the consumer�s patience on the optimal deple-
tion of resources must be signiÞcant and deserves investigation.

Secondly, we ignored technological improvements in our analysis. However, technological change
is the second alternative way of mitigating resource needs and may reduce the demand for non-
renewable resources. Hence, the optimal behavior of resource price depends on technology and
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technological change. This is the second area that we suggest for future work.



18

References

Chiang, A.C. (1992), Elements of Dynamic Optimization, McGraw-Hill, International Editions,
Singapore.

Dasgupta, P., and Heal, G. (1974), �The Optimal Depletion of Exhaustible Resources�, Review of
Economic Studies (Symposium on the economics of exhaustible resources), 41, 3-28.

Gordon, R.L. (1967), �A Reinterpretation of the Pure Theory of Exhaustion�, The Journal of
Political Economy, 75, 274-86.

Gray, L.C. (1914), �Rent under the Assumption of Exhaustibility�, Quarterly Journal of Economics,
28, 66-89.

HerÞndahl, O.C. (1955), �Some Fundamentals of Mineral Economics�, Land Economics, 31, 131-38.

Hotelling, H. (1931), �The Economics of Exhaustible Resources�, Journal of Political Economy, 39,
137-75.

Kay, J.A. and Mirrlees, J.A. (1975) �The Desirability of Natural Resource Depletion�, In The
Economics of Natural Resource Depletion (Ed. D.W. Pearce and J. Rose), pp.140-76. New
York: John Wiley.

Krautkraemer, J.A. (1998), �Nonrenewable Resource Scarcity�, Journal of Economic Literature,
36 (4), 2065-2107.

Peterson, F.M. and Fisher, A.C. (1977) �The Exploitation of Extractive Resources A Survey�, The
Economic Journal, Vol.87, pp.681-721.

Smith, Vernon L. (1968) �Economics of Production from Natural Resources�, The American Eco-
nomic Review, Vol.58 (3), pp.409-31.

Solow, R. M. (1956). �A Contribution to the Theory of Economic Growth.� Quarterly Journal of
Economics, Vol. 70, No. 1 (February) 65-94.

Solow, R.M. (1974), �Intergenerational Equity and Exhaustible Resources�, Review of Economic
Studies (Symposium on the economics of exhaustible resources), 41, 29-45.

Stiglitz, J.E. (1974a), �Growth with Exhaustible Natural Resources: Efficient and Optimal Growth
Paths�, Review of Economic Studies (Symposium on the economics of exhaustible resources),
41, 123-37.

Stiglitz, J.E. (1974b), �Growth with Exhaustible Natural Resources: The Competitive Economy�,
Review of Economic Studies (Symposium on the economics of exhaustible resources), 41, 139-52.

Stiglitz, J.E. (1976), �Monopoly and the Rate of Extraction of Exhaustible Resources�, American
Economic Review, 66(4), 655-61.

Sweeney, J.L. (1977), �Economics of Depletable Resources: Market Forces and Intertemporal Bias�,
Review of Economic Studies, 44, 125-42.

Weinstein, M.C. and Zeckhauser, R.J. (1975) �The Optimal Consumption of Depletable Natural
Resources�, The Quarterly Journal of Economics, Vol.89 (3), pp.371-92.



19

Appendix A
Here we show that q (0) =

³
1−α
α−s

´
K0
S0
. Note that the resource constraint that the total amount

of extractions
¡R∞

0 R (t)dt
¢
must equal the initial stock of the non-renewable S0 can be rewritten

as

Z ∞

0
R (t) dt =

1− α
α

Z ∞

0

r (q)

q
K0e

R t
0 ( sα r(τ)−δ)dτdt = S0 (59)

Since r =
³
αα(1−α)1−α

q1−α

´ 1
α
and by q̇

q = r − δ (59) can be rewritten as

Z ∞

0
q (t)−

1
α e

R t
0

³
s
α

³
q̇
q

+δ
´
−δ
´
dτ
dt =

1

(1− α)
1
α

S0

K0
(60)

Note that

e
R t

0

³
s
α

³
q̇
q

+δ
´
−δ
´
dτ

= e
R t

0
s
α
d ln q
dτ

dτ+( s−αα )δt

= e
s
α

ln
q(t)
q(0)

+( s−αα )δt

=

µ
q (t)

q (0)

¶ s
α

e(
s−α
α )δt (61)

Substituting (61) into (60) we get

1

q (0)
s
α

Z ∞

0
q (t)

s−1
α e(

s−α
α )δtdt =

1

(1− α)
1
α

S0

K0
(62)

Claim

Z ∞

0
q (t)

s−1
α e(

s−α
α )δtdt =

q (t)
s−α
α e(

s−α
α )δt

(s− α) (1− α)
1−α
α

¯̄̄̄
¯
∞

0

=
q
s−α
α

ss lim
t→∞e

( s−αα )δt − q (0)
s−α
α

(s− α) (1− α)
1−α
α

=
q (0)

s−α
α

(α− s) (1− α)
1−α
α

(63)

Since this limit must exist we impose that s < α.
Proof. It suffices to show that
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d

µ
q(t)

s−α
α e(

s−α
α )δt

(s−α)(1−α)
1−α
α

¶
dt

= q (t)
s−1
α e(

s−α
α )δt (64)

Taking the time derivative we get

d

µ
q(t)

s−α
α

(s−α)(1−α)
1−α
α
e(

s−α
α )δt

¶
dt

=
q (t)

s−α
α e(

s−α
α )δt

(s− α) (1− α)
1−α
α

µ
s− α
α

q̇

q
+

µ
s− α
α

¶
δ

¶

=
q (t)

s−α
α e(

s−α
α )δt

α (1− α)
1−α
α

 q̇q + δ| {z }
r



=
q (t)

s−α
α e(

s−α
α )δt

α (1− α)
1−α
α

αα
α (1− α)

1−α
α

q
1−α
α


= q (t)

s−1
α e(

s−α
α )δt (65)

Substituting (63) into (62) we get

q (0) =
K0

S0

µ
1− α
α− s

¶
(66)

Appendix B
Firstly, if r→∞ and ρ > 0 we have that (44) becomes

lim
r−→∞,ρ>0

q = lim
r−→∞,ρ>0

(1− α)
1

1−ρ

1− α
1

1−ρ

r
ρ

1−ρ


1−ρ
ρ

= (1− α)
1
ρ (67)

that is q would be a constant in the long run contradicting that q̇q > 0. Now if r → ∞ and ρ < 0
then applying L�Hôspital�s rule to (44) we have

lim
r−→∞,ρ<0

q = lim
r−→∞,ρ<0

(1− α)
1
ρ r³

r
ρ

1−ρ − α 1
1−ρ
´1−ρ

ρ

= lim
r−→∞,ρ<0

− α
1

1−ρ (1− α)
1
ρ³

r
ρ

1−ρ − α 1
1−ρ
´ 1
ρ

= −α
1

1−ρ (1− α)
1
ρ³

−α 1
1−ρ
´ 1
ρ

(68)
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This also implies that q is constant in the long run (even perhaps a complex number) contradicting
q̇
q > 0. Secondly, if r→ 0, then q̇

q = −δ which contradicts q̇q > 0. Thus the only admissible way for

q to be inÞnite is when r = α
1
ρ .
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