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Abstract 
Integrated scientific assessments of semi-arid agroecosystems with mathematical models 
are challenging because of computational constraints. These constraints arise from 
exponentially increasing decision options due to dynamic interactions between the 
biophysical states of rangeland vegetation and farsighted decisions taken by pastoral 
stakeholders. This study applies a methodology that integrates these interactions in a 
computationally feasible manner. We equip a dynamic land use decision model with a 
detailed representation of biophysical processes by using a Markov chain meta-model of 
EPIC (Environmental Policy Impact Calculator). Using separate Markov chains for 
different weather scenarios, we investigate the economic and ecological impacts of 
droughts on rangeland management in southern Morocco. The drought simulations (two 
years with 33% less precipitation) show a decrease in profits from pastoralism by up to 
57%. Pastoral land use of the rangeland in our model increases surface runoff by 20%, 
doubles infiltration, and thus influences irrigation agriculture. The economic and 
ecological impacts of drought in our simulation go substantially beyond its 
meteorological time horizon.  
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1 Introduction 
Pastoralism is the dominant land use in semi-arid and arid areas. These areas occupy 41% 
of the world’s land surface and are inhabited by more than two billion people 
(Millennium Ecosystem Assessment, 2005). However, in several large-scale economic 
assessments of global change, semi-arid areas have been found to not play an important 
role because the overall impacts of climate change are accounted for mostly in terms of 
the percentage of global gross domestic product (GDP) (e.g. Tol, 2009), and drylands 
have the lowest GDP per capita (UNCCD, 2007). Hence, the socio-economic effects of 
climate change in these areas are at present of no great influence in large-scale economic 
models and the resolution of system properties is low. Furthermore, grazing is not 
generally considered as part of dynamic global vegetation models (Diaz et al., 2007). 
Nevertheless, especially in developing countries, pastoralism is a major source of income 
for large parts of the population (Gertel and Breuer, 2007). At the same time, the social 
impact of climate change for people living in semi-arid areas has the potential to be quite 
substantial, since 90% of the affected areas are located in developing countries 
(Millennium Ecosystem Assessment, 2005) and drylands have the highest infant 
mortality rates compared to other land use types (UNCCD, 2007). The conflict in the 
Sudanese Dafur, which can be traced back in part to changes in a pastoral agroecosystem, 
exemplifies the impacts climate change can have on society (Prunier, 2005). Hence, 
investigating the effects of climate change in these areas is of great importance. 
In order to adequately assess the influence of climate change on large-scale 
agroecosystems and society, mathematical models can be used. However, these often 
require very high levels of computational effort, in particular for the integration of 
vegetation dynamics in combination with decision-making. If human decision-making is 
farsighted, the number of possible land management plans and related vegetation states 
can quickly lead to the so-called “curse of dimensionality” (Bellman, 1961), where the 
computational effort is exponentially related to the number of considered time periods. 
To overcome this, large-scale land use models use either a static representation of 
biophysical properties, such as biomass growth, or myopic decision-making, such as 
prescribed scenarios or exclusion of inter-temporal planning (Lambin et al., 2000; 
Schaldach and Priess, 2008).  
The aim of this study is to quantify the implications of droughts in a medium-scale 
Moroccan pastoral agroecosystem, and we approach this by estimating the changes in 
profits from pastoral activities of rural households. In addition, we also assess the 
relationships between land use intensity and local hydrological and biophysical 
properties, including the infiltration of water into the groundwater, surface runoff, 
evapotranspiration (ETP), and albedo. These biophysical parameters might have further 
implications for land use decisions since, for example, altered hydrological properties can 
affect downstream oasis agriculture.  
To address these aims, we develop an augmented mathematical land use decision model 
(LDM) that combines a dynamic representation of vegetation with farsighted, profit-
oriented decision-making. In this way, it is hoped that our research will help bridge the 
scientific gap between those existing models that address either the detailed 
representation of farsighted decision-making on the one hand, or concentrate on 
describing accurately the biophysical vegetation dynamics on the other. We use a Markov 



chain to integrate into our LDM the results of an elaborated biophysical soil-vegetation 
model, as well as parts of its dynamic properties. The applied method is suitable for use 
at large scales, i.e. for a more adequate representation of dryland agroecosystems in 
global LDMs, such as GLOBIOM (Havlík, et al., 2010).  
 

 
Fig 1 Location of the study area, situated in the Drâa-river catchment and depicted on the map by the bold 
black boundary line. The lighter black lines represent rivers. 
 

2 Methodology 

2.1 Study site and setup 
The study site is located in the Moroccan province of Ouarzazate, on the southern slopes 
of the High Atlas mountain range (Fig. 1). The region is characterized by a semi-arid to 
arid climate and a strong precipitation gradient (200 mm to more than 700 mm per year), 
which exists because of a similarly steep altitudinal gradient (Schulz and Judex, 2008). 
Climate projections for this region differ greatly and indicate large uncertainty in the 
direction of precipitation development (Sillmann and Roeckner, 2008; Born et al., 2008; 



Huebener and Kerschgens, 2007). Precipitation is currently the limiting factor for 
agricultural activities in this region, and a likely scenario for the future is characterized by 
increased water scarcity and increased interannual variability of precipitation. To cope 
with variable precipitation levels and a low average value, a mixed system of irrigation 
agriculture in river oases and livestock grazing on natural rangelands is traditionally used 
to secure livelihoods (Barrow and Hicham, 2000). Traditional livestock grazing takes the 
form of transhumance, i.e. the variability in rainfall is mitigated by the mobility of 
pastoralists. However, developments in recent decades and expectations of the herders 
indicate that this traditional system is changing more and more towards the use of 
sedentary flocks (Breuer, 2007; Davis, 2006).  
For this study, we develop an augmented LDM on a landscape level. The data for 
parameterization, calibration and validation of the model were collected in the 
surroundings of the rural village of Taoujgalt (6.322203° W, 31.38994° N). The village is 
situated approximately 100 km north of the provincial capital Ouarzazate and consists of 
37 households (pers. comm. El Moudden). The mean annual temperature is 14 °C, and 
annual precipitation (2001–2008) is relatively variable at 270 ± 70 mm. The parent 
material for the soil is Jurassic limestone and red siltstones (couches rouges) covered by 
Calcisols. The dominant vegetation (pasture) consists of Artemisia herba-alba – Stipa 
parviflora steppes. Meteorological data are taken from the recordings of a meteorological 
station under the IMPETUS project, situated 2 km from the village (Schulz et al., 2010). 
Similarly, vegetation data, recorded annually by the BIOTA project on permanent 
monitoring plots inside and outside an exclosure experiment (BIOTA, 2010), are used. 
Soil and surface properties of the study region are retrieved from the IMPETUS database 
(IMPETUS, 2010). The pastures surrounding the settlement are located at altitudes of 
between 1800 and 2400 m above sea level. Our simulations relate to the pastures around 
the village, which are in reach for the sedentary livestock (goats and sheep). The 
livestock are kept in stables overnight in the village, and the ranges of livestock herds, as 
determined by collar data, does not exceed more than 3 km and 400 m in altitude per day 
(Mahler, 2010). In total, the investigated area covers 2500 hectares. 
 

2.2 The LDM  
Bioeconomic LDMs are used to assess the economic and ecologic impacts of land use 
changes, environmental developments and relevant policies (Janssen and van Ittersum, 
2007). These models are applied at very different scales, ranging from the plot level to 
global studies. For the present study, we developed a LDM to depict extensive grazing 
management in a semi-arid area under variable precipitation conditions. The agricultural 
activities simulated by the model include a range of different intensities of grazing and a 
constant demand of firewood. 

2.2.1 General structure  
Our LDM is a mathematical optimization model that jointly depicts farsighted land use 
decision-making, livestock, and biophysical vegetation dynamics. The biophysical 
vegetation dynamics were derived from simulations using the Environmental Policy 
Impact Calculator (EPIC; Williams et al, 1989). We parameterized EPIC with local 
monitoring data from the study site and included it as a Markov chain meta-model into 



the LDM. The model uses homogenous response units (HRUs; Skalsky et al., 2008) to 
portray different land qualities, which themselves aggregate raster-based GIS data to 
avoid repeated calculations of spatial units with similar physical properties (soil type, 
slope, and altitude). 
In order to model human decision-making it is necessary to make certain behavioral 
assumptions. Following a utilitarian approach, we assume people are rational and make 
their strategic decisions based on a maximization of utility. In aggregated agricultural 
assessments (landscape to global), it has been shown that the assumption of profit 
maximization mostly holds (Lambin et al., 2000). Therefore, the objective function of our 
LDM is formulated as given in Eq. 1. 
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where Nst,l,c is the number of livestock sold in year t and p is the corresponding producer 
price on the local market. The livestock in our model includes two species (index l: goats 
and sheep) and three age classes (index c: less than one year old, 1–2 years old, and more 
than 2 years old). The price is not constant over time, as livestock producer prices in 
Morocco are usually lower during droughts (Hazell et al., 2001; Skees et al., 2001). Nst,l,c 
needs to be non-negative, and for simplicity we assume that selling takes place at the end 
of the year, with the units as heads of animals per year. The total number of animals at 
the end of year t equals the sum of animals sold and animals kept for the following year 
(Eq. 2). 
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where Net,l,c is the number of animals at the end of a year t and Nbt,l,c is the number of 
animals at the beginning of the following year t+1. 
The number of animals per year is subject to various constraints, as represented in general 
by Eq. 3. 
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where bt,l,c,j are j times t different constraints on the number of animals, which may be 
different for each livestock and age class. Technical coefficients (al,c,j) relate the livestock 
variables Net,l,c to the individual constraints, which include resource endowments such as 
the maximum availability of fodder for the animals.  
The general structure of the livestock growth module is given in Eq. 4. 
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where the factor gt,l,c,ĉ maps the number of living animals at the beginning of each year 
onto the number of animals at the end of the year. The indices c and ĉ separate the 
"source" and "destination" of age classes. For instance, the source age classes for lambs 



are all mature age classes, and the source age class for the one-year-olds is the previous 
year's lambs. The factor gt,l,c,ĉ includes reproduction and survival rates of the livestock 
and is calculated by several other equations. The livestock growth rate is limited by the 
availability and quality of fodder. If fodder is scarce, gt,l,c declines in order to fulfill the 
energetic needs of the remaining ewes. If fodder is too scarce to fulfill the basic energy 
demands of the animals, growth stops entirely and animals must be sold to prevent 
starvation. Thus, the growth module is still linear technically, but behaves like a typical 
sigmoid growth function. Goats and sheep are treated separately because in relation to 
body weight, the maximum dry-matter consumption of goats is up to 40% higher than for 
sheep. This makes it possible for goats to tolerate a diet with lower energy content (Le 
Houerou, 1980).  
An important class of variables in the LDM are land use variables, which indicate the 
land use management (intensity and pattern of grazing, firewood collection) within the 
individual HRUs. The land use variables control the removed biomass within a HRU, as 
given in Eq. 5. 
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where Xt,HRU,m,s are the land use variables with m possible management alternatives and s 
possible vegetation states. The states of vegetation are needed to represent the dynamic 
behavior of vegetation. EPIC_yieldHRU,m,s is the productivity data per unit area of a HRU 
dependent of management and state and is precalculated by the EPIC model. The 
parameter RBt,HRU represents the total amount of removed biomass (dry-matter), which is 
gathered from a HRU in year t by applying management m. This removed biomass 
includes fodder for livestock and firewood for households. The fodder is one of the j 
constraining factors bt,l,c,j of Eq. 3. For every HRU the sum of land use variables has to 
equal the area of the HRU, i.e. a HRU can be subdivided into a maximum of s times m 
sub-units. Since HRUs are the smallest spatial units in our LDM, these sub-units cannot 
be localized spatially.  
 

2.2.2 Planning horizon and recursivity 
A dynamic program simultaneously determines the optimal decisions for all considered 
time steps t (Eq. 1). The solution can be interpreted as the optimal trajectory for a 
decision maker in order to achieve the highest utility over the entire planning horizon T. 
When simulating an agroecosystem, one needs to consider that strategic decision-making 
is normally constrained to a certain finite time horizon. Furthermore, decision-making is 
influenced at all time steps by updated information. For instance, future weather 
conditions can only be estimated, while for the current year decisions are based on actual 
precipitation and temperature. To incorporate this feature into our model, we use a mixed 
recursive-dynamic specification, similar to that developed by Barbier and Bergeron 
(2001).  
 



  
Figure 2 depicts the recursive-
dynamic setup, where a forward-
looking planning horizon of 5 
years is used. As shown in the top 
part of Fig. 2, the optimization of 
the first recursive step t1 is 
calculated based on initial data. A 
weather scenario is prescribed for 
the first year of the optimization, 
while some expected weather is 
used for the remaining years of the 
planning horizon. After 
calculating the optimal 
combination of land use options, 
the results of the first year of the 
optimization are recorded. Parts of 
the results, such as the numbers of 
livestock (Eq. 2) and the values of 
all land use variables (Eq. 5) are 
used to initiate the model at the 
next recursive step t2 (Fig. 2, 
middle). Specifically, the 
combined impacts of each year’s 
management and weather regime 
is used recursively to update the 
initial vegetation state and herd 
size for the following year’s 
planning process. This procedure 
is repeated for every year of the 
entire model runtime (Fig. 2, 
bottom).  
In economic models, discounting 
future profits expresses the time 

preferences of decision makers (a sheep now is more valuable than a sheep in ten years). 
The higher the discounting rate the less future profits or losses are taken into account, i.e. 
the more myopic the behavior. In our model, a shortening of the planning horizon to 
two years results in a less farsighted behavior of the model, as the state of vegetation in 
the third year and beyond is no longer accounted for in the model. A longer planning 
horizon, on the other hand, leads to a more sustainable behavior, as in this case the model 
will take more care for the future wellbeing of its resource base. Hence, adjusting the 
length of the planning horizon in our dynamic-recursive LDM is similar in its effect to 
the widely applied discounting of profits in dynamic LDMs. In order to keep things 
simple, we do not use an additional discounting of the profits in our optimization 
procedure, since it is difficult to assess which discounting rate the pastoralists are using 

Fig 2 Mixed recursive-dynamic LDM with a planning 
horizon of five years. The indices t1 to tT represent individual 
years of the entire model runtime. Grey boxes represent the 
results of the first years of dynamic optimization, which are 
used as initial conditions for the next time step and results of 
the recursive model. 
 



within a planning horizon. Instead, the model is calibrated to observed time preferences 
by manually adjusting the length of the planning horizon (see section 2.2.7). 
To prevent unrealistic activity planning in the last year of each optimization, we use 
terminal values for the livestock. These values represent the benefits of livestock 
remaining beyond the end of the model’s planning horizon. We parameterize terminal 
values by averaging shadow prices of livestock of a model run with a 20-year planning 
horizon. 
 

2.2.3 Vegetation dynamics 
In representing extensive grazing in semi-arid rangelands, the main dynamic entities in 
our model are livestock and vegetation. Both are linked and controlled by biophysical 
constraints and human management. Capturing the dynamics of vegetation and livestock, 
as well as their interactions under different climate scenarios, is our main interest in 
developing this model. Hence, the fodder endowment in our LDM is not an exogenous 
parameter, but instead depends on management and the weather of current and previous 
years. The variable used as a proxy for the state of vegetation is above ground plant 
material (AGPM) in tons per hectare. AGPM is an explicit parameter in the EPIC model, 
is frequently measured in field experiments, and reflects the productivity of pastures 
under certain weather and management regimes (Wiegand et al., 2004; Navarro et al., 
2006; Schlecht et al., 2009). The fraction of AGPM utilized for fodder and firewood 
corresponds to the removed biomass of pastures. The longer a herd stays in an area and 
the bigger the herd, the more fodder they consume and the less AGPM they leave at the 
end of the season. Since productivity of a pasture is correlated to AGPM, the fodder 
consumption and firewood extraction of one year influences the productivity of the 
pasture in the following year. Adequate representation of this relationship in LDMs 
causes a computational problem similar to that described by Schneider (2007) for carbon 
sequestration. In particular, to maximize the utility from land use decisions over a multi-
period planning horizon (Eq. 1), the dynamic model has to find the optimal management 
trajectory with corresponding states of vegetation. For example, if a farmer could choose 
between 10 alternative grazing intensities in each year, he would face 10 alternatives in 
year one, 102 combinations of current and future land use alternatives over two years, 103 
over three years, and so forth. It is easy to see how an approach that includes every 
possible trajectory as an individual choice can become computationally very expensive. 
For example, suppose a dynamic model depicts six regions, two soil types, two livestock 
classes, three livestock cohorts, 10 different grazing intensities, and five time periods. 
The total number of possible decision paths would equal 12 · 605 (~ 9 · 109) alternatives. 
Such a dynamic decision model would require a huge amount of calculations, even 
though it is not yet that big. In addition, for every possible management decision path, 
one would have to compute the biophysical impacts upon vegetation with EPIC. 
To overcome these computational hurdles, we classify discrete states of vegetation and 
calculate future states by a given current state and a transition probability between old 
and new states (Markov process). We assume that this property holds true in our context, 
i.e. that the impacts of past management and climate are sufficiently contained in the 
current state of vegetation expressed as AGPM. In this way, we reduce the necessary 
computational effort by several orders of magnitude. At the same time, we are able to 



include biophysical simulation results and dynamic properties of EPIC into the 
augmented LDM. This technique, referred to as “meta-modeling” (Wei et al., 2009), is 
described in the following section. 
 

2.2.4 EPIC simulations  
To address the requirements of a Markov chain formulation of dynamic properties of 
vegetation, we use a state index s for the land use variable Xt,HRU,m,s (Eq. 5). The state 
index s represents different discrete states of AGPM. The transition probabilities between 
the individual AGPM states are derived from vegetation development functions 
calculated beforehand by EPIC. These calculations are carried out for all soil types, 
climate scenarios, and alternative managements (grazing pattern and intensity). In our 
case, we start from an existing set of plant parameters in EPIC called "rangeland" 
developed for semi-arid areas in the United States. The default rangeland 
parameterization is adapted to observed values in our study region regarding plant growth 
height, maximum leaf area index (LAI), and the necessary heat units for plant maturity. 
Furthermore, we prescribe soil and terrain properties (slope) and weather (from 
meteorological data). The management impact is given as a set of arbitrary variations in 
grazing intensities and number of grazing days per year, which should cover a range of 
theoretically possible intensities. The EPIC simulations are automatically prepared and 
executed using a PYTHON-based program. To investigate different climate conditions, 
we use a precipitation scenario according to the observed average for the period 2002–
2008 as a basis for comparison, which we will refer to hereafter as "average weather". To 
investigate droughts and to validate our model with observed data, we use dryer- or 
wetter-than-average precipitation data from individual years in the period 2002–2008. 
To establish the vegetation development functions for the computation of state transition 
probabilities, each EPIC simulation starts with two extreme initial conditions: i) a 
minimum AGPM value of zero; and ii) a maximum AGPM value, in our case the value 
after 15 years of zero grazing management. All EPIC simulations span a 15-year horizon 
under constant management to ensure that the model comes close to a steady state for a 
certain regime. Since EPIC uses a random daily weather generator, based on the monthly 
averages for observed meteorological data, we use at least 20 ensemble runs to calculate 
state transition probabilities. The ensemble runs of EPIC are averaged and standard 
deviations calculated. Figure 3 shows the simulated AGPM values for two different 
management options under 2002–2008 average precipitation. The observed variability of 
AGPM is classified into 12 states. For each state, climate and management, parameters 
such as average value and standard deviation of plant transpiration, surface runoff, and 
LAI are written to a data file for subsequent usage in the augmented LDM. 
 



 
Fig 3 Results of the EPIC ensemble runs (n=20) for zero grazing management (left) and medium intensity 
grazing management (right). AGPM is the above ground plant material at the end of the year in t ·ha-1. 
Black solid lines represent the results of initializing with the maximum AGPM values, grey solid lines of 
initializing with a zero AGPM, and dotted lines depict the interval of standard deviation for the 
correspondingly colored ensemble runs.  
 

2.2.5 State transition probabilities 
The vegetation development functions from the EPIC simulations (Fig. 3) are 
approximated by polynomial functions between the initial state and the steady state. 
Beyond the steady state, constant values are used. To transform the polynomial functions 
into transition probabilities for Markov chains, the parameter space for AGPM is 
classified into 12 states (the same states as used to record plant transpiration, LAI etc.). 
The transition probabilities are arranged within a transition probability matrix (TPM), 
where the initial state corresponds to rows and the subsequent state after one time step to 
columns (Table 1). Such a TPM is established for each HRU, management and climate 
regime. Each cell contains the probability of a particular transition and lies between 0 and 
1. The row sum in the TPM has to equal one as the system is conservative.  
 
Table 1: Example of a vegetation state transition probability matrix for a given HRU, management 
and climate regime (rows: old state, columns: new state). 
 

 State 1 State 2 State 3 … State 12

State 1 0 0.65 0.35 … 0 

State 2 0 0 1 … 0 

… … …  …  

State 12 0 0 0 … 0 



 

 
Fig 4 Determination of transition probabilities between states of AGPM for a given HRU, management and 
climate regime. AGPM is displayed against time. Grey arrowed lines measure one time step starting from 
the lower boundary of vegetation state 1, and black arrowed lines measure one time step starting from the 
upper boundary of vegetation state 1. Heights of the shaded squares indicate the range of possible 
vegetation states after one time step. 
 
 
The determination of transition probabilities is illustrated by Fig. 4 for the case of 
transitions from state 1 to follow-on states. The black polynomial starting at the origin 
describes a development function of AGPM (y-axis) for a certain regime as calculated by 
EPIC. It passes the state boundaries at certain points in time. For both the lower and 
upper boundary of state 1 (grey and black arrows, left part), we determine the point on 
the polynomial that is reached after exactly one year (grey and black arrows, right). The 
probabilities of the transitions are calculated by comparing the share of individual new 
states to the range covered by all new states together. Thus, for all possible starting points 
within state 1 (filled square, 100%), the new state after one time step will be within the 
range depicted by the shaded squares covering a portion of state 2 and state 3. The 
specific probability of reaching either state 2 or state 3 from state 1 is proportional to the 
shares of the shaded square that lies below (shaded grey square) or above (shaded black 
square) the boundary between state 2 and state 3, respectively. In our example, starting 
from state 1, 65% of the vegetation will be in state 2 after one year and 35% will be in 
state 3. The result of this calculation is then written into the TPM (Table 1). The 
described procedure is then repeated to calculate the transition probabilities between all 
12 states for all HRUs, managements and climate regimes. More details on the numerical 
computation of the TPM are given in Schneider (2007).  
 



2.2.6 Integration into the LDM 
To include the dynamic interaction between land management and vegetation, the TPM is 
used in an inter-temporal balancing equation of vegetation states (Eq. 6). This equation 
assures that vegetation states are influenced by past weather and management. 
 

)( sHRUtTPMXX
sm

ssmtsmHRUt
m

smHRUt ,,
,

ˆ,,1ˆ,,,1,,, ∀⋅= ∑∑ →−−
)

  (6)  

 
where Xt,HRU,m,s are the land use variables, s is the index for the classified states of 
vegetation, and m the applied management (grazing intensity and pattern). The index for 
the states of land use variables in the period t-1 is given by ŝ. TPM t-1,m,ŝ→s is the TPM, 
which describes all transitions from old states ŝ to new states s given the applied 
management m. It is time-dependent since it is specific for the weather scenario chosen in 
each year. 
 

 
Fig 5 AGPM trajectories simulated with our augmented LDM using transition probability matrices. For 
comparability with EPIC results (Fig. 3), we forced zero grazing management (left) and medium grazing 
management (right) over 15 years starting from both minimum and maximum AGPM values. Dotted lines 
give the 90 percent confidence intervals derived from the EPIC deviations. 
 
By using Eq. 6, our augmented LDM is able to approximate the dynamics of vegetation 
as simulated by the EPIC model, since vegetation is influenced by past management and 
past weather events. An example is given in Fig. 5, where we display some AGPM values 
from our augmented LDM against time. We use the same constant management 
intensities and weather as for the EPIC example in Fig. 3. It is immediately evident that 
the graphs in Fig. 4 are virtually the same as those in Fig. 3, which demonstrates the 
correct implementation of the Markov chain in our augmented LDM. The accuracy of the 
reproduction of the EPIC results is determined by the number of classes chosen to 
characterize the state space. The more states chosen, the more accurate the Markov chain 
representation. By using 12 sates, the correlation with the EPIC output is very high, with 
R² > 0.99 (except for the steady state segments, where the correlation is affected more by 
the chosen class-width). 



 

2.2.7 Model parameterization and calibration 
Both the EPIC model and our augmented LDM are parameterized with observed data. 
Most data were made available by the IMPETUS project (Schulz and Judex, 2008) and 
the BIOTA Maroc project (Finckh et al., 2007), which were active in the region of our 
study site in the period 2001–2009. A summary of the data sources for parameterization 
is provided in Table 2. 
 
Table 2: Parameters and data sources used for EPIC and the augmented LDM. 
 
Model Parameters Source 
EPIC Soil: carbon, texture, bulk density, depth, pH, coarse 

fragment, CaCO3 content 
IMPETUS database (IMPETUS, 2010) 

 Elevation, slope IMPETUS database (IMPETUS, 2010) 

 Vegetation: above ground plant material (AGPM), leaf 
area index (LAI), heat units, growth height, rooting 
depth 

BIOTA-Maroc Database (Finckh et al., 2010) and 
Baumann (2009) 

   
EPIC/LDM Meteorological data (monthly averages): Maximum 

temperature, minimum temperature, precipitation, 
relative humidity, solar radiation, wind velocity 

IMPETUS database (IMPETUS, 2010) 

   
LDM Livestock: prolificacy, fertility, live weights, energy 

consumption, energy consumption for pregnancy and 
lactation, survival rates, survival rates for new born, 
maximum daily dry-matter consumption 

Boudiab (1981), Guessous et al. (1989), 
Hossaini-Hilali and Benlamlih (1995), and 
Hossaini-Hilali and Mouslih (2002) Kamphues et 
al. (2004), Le Houerou (1980) 

 Energy content of vegetation Le Houerou (1980), Heneidy (1996) and Bryl 
(2009) 

 Luzerne production in oasis Kirscht (2008), El Moudden (2004), Hayek et al. 
(2009) 

 Household consumption of firewood El Moudden (2004) 

 Price data for livestock Own fieldwork, livestock Market at Ait’Toumert, 
May 2009  

 
 
The EPIC model is parameterized with observed field data on plant growth height, 
rooting depth, LAI, and the necessary heat units for the plants to reach maturity. Using 
zero grazing management, the model is calibrated to match the observed value of 3.2 t per 
ha AGPM in 2008 after eight years of livestock exclosure (Baumann, 2009, pers. comm. 
Akasbi). For calibrating the EPIC output to the observed AGPM value, we use the plant 
population density as a tuning parameter (since EPIC cannot calculate plant population 
dynamics). Data for calibration are retrieved from the monitoring database of the BIOTA-
Maroc project (BIOTA, 2010). To calculate the TPMs with EPIC, five HRUs are 
established for the study site, which are characterized by three slope classes (less than 
5%, 5–15%, and more than 15%) and two altitude ranges (less than 2000 m and 2000–
2400 m). 
Weather scenarios for the augmented LDM are generated from observed daily data for 
the period 2002–2008, and the mean annual precipitation (MAP) of "average weather" is 
270 mm. For validation of our model, we calculate TPMs with reduced or increased mean 
precipitation corresponding to the observed values for the individual years. To address 



our research questions, we use a 33% reduction of precipitation (which corresponds to 
180 mm MAP) in order to simulate a two-year drought. We prescribe the actual sequence 
of years to be used by our augmented LDM in a separate weather file.  
 

 
Fig 6 Stocking rates (at the beginning of a season) and composition of flocks for average weather with 270 
mm precipitation (years 1 and 2) and 180 mm precipitation (later). Error bars indicate 90% confidence 
intervals over ensemble simulations (n = 6). 
 
 
The objective function specification and the length of the planning horizon are the only 
tuning parameters outside of EPIC in our augmented LDM, which are used to match 
observed AGPM results under grazing and flock composition. The specification of the 
objective function in the augmented LDM poses a two-fold challenge. First, we need to 
assume the objective(s) that drive farmers’ decisions, i.e. concerning the stocking rates of 
their animals. Possible preferences may include individual objectives such as the 
maximization of annual profits or utility from livestock herds, but also their 
combinations. Second, we need to assume the farmers’ planning horizon and expectations 
about weather conditions for the years ahead. Since we want to model aggregated 
behavior of pastoralists, we do not base the decision-making in our model on a survey of 
individuals, but instead try to calibrate our objective function by hand and compare the 
output to observed behavior. The model output, for example concerning the different 
mixing ratios of sheep and goats in the flocks, is very sensitive to the expected weather in 
the following year(s). For instance, if a sequence of dry years is always expected, sheep 
are slowly disappearing. On the other hand, the conditions of the pastures (i.e. AGPM 
state) are influenced little by flock composition in our model and thus can be interpreted 
well independently of it. Hence, we chose our utility function and the length of the 
planning horizon manually in a way to a) fit to observed values of AGPM for the year 
2009 under applied grazing and average weather (2002–2008 average), and b) fit to 
observed livestock compositions of the flocks as reported in a census (Schulz and Judex, 
2008). Satisfying a) and b), we use a maximization of profits over a five-year horizon as 
the objective function. Furthermore, within the planning horizon, the weather, as 
described by the weather file, is taken for the first year of optimization. The same weather 



is then expected for years two and three, and for years four and five average weather is 
expected, i.e. the seven-year average. To show the sensitivity of flock composition in our 
model to weather shifts, we display the reaction of animal numbers Nb to a shift from 
average weather at the beginning to 33% less precipitation (Fig. 6). The shift to a dryer 
weather regime (from year 3 on) leads to lower stocking rates and the composition of the 
flock changes towards more goats. This agrees well with observations from dryer areas 
adjacent to our study site (Heidecke and Roth, 2008). 
However, in order to match observations, we had to introduce two further constraints in 
our model. First, as fuel for cooking and heating is collected by the people of Taoujgalt 
from the surrounding pastures, we introduce an additional demand for biomass (taken 
from low quality fodder). This demand is parameterized based on household data and the 
average origin of firewood (pers. comm. El Moudden). Second, following empirical 
evidence by Le Houerou (1980), our model does not permit sheep production on a pure 
browse diet because the energy content of fodder plants is insufficient, especially for the 
high energy demand of gestation and lactation. Therefore, to match observations, we 
introduce the possibility of using Lucerne produced in the oasis as additional fodder. This 
modification makes it possible for the model to simulate lamb production. The 
parameterization for the production of Lucerne is taken from the average crop mix in the 
region (Kirscht, 2008) and the cultivated area in the oasis. 
Price data for our augmented LDM were gathered from informal interviews performed in 
May 2009 at the livestock market in Ait’Toumert, which is the closest market to our 
study site. Average local prices for one-year-old sheep and goats in good years were 60 € 
and 40 € per head, respectively. During droughts prices are on average 50% lower than 
during good years. 
 

2.2.8 Validation of the model 
The LDM is validated against a time series of observed AGPM data from the study site. 
Figure 7 shows the precipitation values for every year in the period 2002–2009, data 
which are used as an external weather file for our augmented LDM. Figure 8 shows the 
results of our model for AGPM with zero grazing management and measured values of 
AGPM from the BIOTA project at fenced sites, which excluded grazing. Figure 9 
compares results from our augmented LDM with grazing management and corresponding 
values from the BIOTA database, which were measured outside the fence.  
 

 
Fig 7 Measured precipitation at the study site, used as an external weather file in the augmented LDM.  



 
 
 

 
Fig 8 AGPM under zero grazing management. Comparison of observed (BIOTA) and modeled values 
(LDM). 
 

 
Fig 9 AGPM with grazing. Comparison of observed (BIOTA) and modeled values (LDM). The amount of 
removed biomass as calculated by the LDM is given on a secondary x-axis (to the right).  
 
 
As seen in Figs. 7–9, our model fits relatively well to the observed values of AGPM. 
However, the model performs better at sites with grazing than at sites without grazing; in 
particular, the most recent value of AGPM under zero grazing (summer 2009) deviates 
notably from modeled results. This might be due to the fact that plant population 
dynamics are not included. As data from the BIOTA Maroc project reveal, the relatively 
wet winter of 2008/2009 has led to a 12% increase in plants per square meter. EPIC and 



the meta-model of it are not capable of simulating plant population dynamics, which is a 
clear limitation. However, we achieve a relatively good fit from our model for the 
remaining years and especially under grazed conditions. Furthermore, the quite low 
AGPM values under grazing for 2006 and 2008 indicate, both for the model and for the 
observations, a delayed impact of the low precipitation years 2005 and 2007. This reflects 
the appropriateness of including vegetation dynamics in our augmented LDM.  
The simulated results for stocking rates from our augmented LDM can be compared to 
empirical livestock data. A census conducted in early summer of 2009 revealed a 
stocking rate of 0.5 heads per hectare in the area around Taoujgalt, which is close to the 
lower boundary of our estimates (0.6–0.96). Since there was no evidence of institutional 
regulation of animal numbers, the deviation may be due to the fact that only herds from 
the village were included and counted. However, transhumant pastoralists pass the region 
several times a year and substantially increase the stocking rate during these times. A 
regional agricultural census for the investigated area revealed a huge variation of between 
1 and 60 heads per hectare (Heidecke and Roth, 2008). As our simulations show, the 
upper section of this range may not be realistic. 
 

3 Simulation results 
To investigate the effects of drought in our agroecosystem of interest, we simulate two 
years with 33% less precipitation. The overall time horizon is ten years, with years 4 and 
5 experiencing the drought. The remainder years are simulated with average weather. We 
use an ensemble of six model runs to separate the effects of droughts from the effects of 
the model’s initial state. The 90% confidence intervals of the individual runs are shown 
by error bars in Figs. 10–12. 
 

 
Fig 10 Stocking rates as given by our augmented LDM. Drought is simulated in years 4 and 5. Error bars 
indicate 90% confidence intervals over the ensemble simulations (n = 6). 
 



 
Fig 11 AGPM and removed biomass as given by our augmented LDM. Drought is simulated in years 4 and 
5. Error bars indicate 90% confidence intervals over the ensemble simulations (n = 6). 
 
The augmented LDM simulations show for the first three years with average weather 
conditions an optimal stocking rate of 0.6 (± 0.01) total animals per hectare at the 
beginning, and 0.96 (± 0.01) at the end of a grazing season. The stocking rates for the 
beginning of a season are displayed in Fig. 10. The resulting AGPM under average 
weather is on average 0.60 (± 0.04) t ha-1 (Fig. 11). Total biomass consumption of 
grazing livestock averages 0.42 (± 0.02) t ha-1 yr-1 DM (Fig. 11). At the beginning of the 
drought in year 4, stocking rates are reduced by 20% (Fig. 10). During the first year of 
the drought, the model projects more animal sales than usual because the drought is 
expected to last longer than one year. However, because prices decrease by about 50% in 
years with low precipitation, the profit from sold livestock drops by 25% (Fig. 12).  
 

 
Fig 12 Relationship between precipitation and income as calculated by our augmented LDM. Drought is 
simulated in years 4 and 5. Error bars indicate 90% confidence intervals over ensemble simulations (n = 6). 



 
In the second year of the drought, the profits decrease further to 43% of normal values 
(Fig. 12). This is due to low prices in the second year of the drought and a low potential 
for removing biomass from pastures, which reaches a minimum of about 0.3 tones per 
hectare and year (Fig. 11). The simulation of reduced precipitation leads to economic and 
ecological impacts, which go substantially beyond the meteorological time horizon of the 
drought. For instance, even though precipitation is back to normal levels and animal 
prices are high in year 6, removed biomass of the pasture and profits remains at low 
levels (Figs. 11 and 12). 

  
Fig 13 Leaf area index under the assumption of a two-year drought (years 4 and 5) with grazing (dashed, 
black line) and without (grey, solid). The six ensemble simulations do not show deviations in this 
parameter. 
 
The model results also indicate that continued grazing in areas affected by a drought may 
lead to substantial variation in LAI over the years (Fig. 13). Since LAI is an important 
factor for local climatic processes, this implies the existence of dynamic interactions 
between human management and radiative properties of the steppes.  
The pastures studied in our research are situated within the catchment of the oasis of 
Taoujgalt. Therefore, it is of interest how hydrological properties of the landscape are 
affected by human management under given weather scenarios. As we are unable to 
calibrate our model output with observed data, we instead refer to relative differences in 
our results (Figs. 14–16). Evapotranspiration (ETP; Fig. 14) is almost unaffected by 
grazing in our augmented LDM. The model indicates very high rates of evaporation, and 
therefore the effect of grazing on plant transpiration is of less significance to changes in 
total ETP. However, under average weather conditions, groundwater recharge of grazed 
pastures is 20% higher than the recharge of abandoned pastures (Fig. 15). During a 
drought, the simulated infiltration with grazing is still higher than without. The most 
pronounced effect of human management is shown by our model as being surface runoff. 
This parameter doubles relative to fully developed vegetation if grazing is applied (Fig. 
16). During drought, surface runoff is heavily reduced, with the influence of human 
management further enhancing the decrease. It can be seen from Figs. 14–16 that human 
management is in general less important to hydrological properties of the landscape than 



precipitation. However, human management is important for infiltration and surface 
runoff, which further influences the availability of irrigation water in the oasis. 
 

 
Fig 14 Simulated total annual ETP as the sum of plant transpiration (framed, upper part) and evaporation 
(lower part of bar). Average weather (270 mm annual precipitation) and 33% reduction of precipitation are 
investigated (180 mm). 
 
 

 
Fig 15 Simulated total annual groundwater recharge (infiltration). Average weather (270 mm annual 
precipitation) and 33% reduction of precipitation are investigated (180 mm). 
 



 
Fig 16 Simulated total annual surface runoff. Average weather (270 mm annual precipitation) and 33% 
reduction of precipitation are investigated (180 mm). 
 

4 Discussion 
The Markov-chain-based integration of EPIC with an economic LDM has succeeded in 
providing a more accurate picture of the complex land use system dynamics than the two 
modeling components alone. However, the reduction of EPIC to a single-state-variable-
based Markov chain is not cost-free. We assume that the entire land management history 
of a certain site is fully captured by the value of a single state variable, namely AGPM. In 
reality, the grazing and precipitation history affects many other factors, including species 
composition, plant morphology, plant population density, and soil structure. The impact 
on these other factors is not considered explicitly in our augmented LDM, and thus biases 
our results. To overcome this deficiency, one could introduce more state variables at the 
expense of increased computation and calibration requirements. Furthermore, we assume 
that transitions do not occur between different vegetation types, and we justify that by the 
observation that pastoral agroecosystems, especially in the Mediterranean, are 
characterized by a long and continuous grazing history. Therefore, transitions between 
different vegetation types are limited (Navaro, 2006; Diaz et al. 2007). For this reason, 
we use only a single state variable and calibrate the model against measured AGPM data. 
This represents a compromise between simplicity of the model and accuracy of the model 
output, as given in Figs. 7–9.  
The major advantage of our augmented LDM is the joint representation of farsighted 
decision-making and vegetation dynamics, even though both components are simplified. 
The combined modeling of human decision-making and environmental processes leads to 
new insights. For instance, in a transdisciplinary study for southern Morocco, de Jong et 
al. (2008) demonstrated a conceptual model of the importance of human land use 
management for evaluating the impact of climate change. In their study, the authors 
exogenously prescribed land use management. Our augmented LDM provides 
quantitative results on human impacts on hydrological parameters under altered climate, 



while using land use management as an internal variable. Thus, using Markov-chain-
based replications of biophysical models within economic models increases the 
explanatory power of such models. Due to non-exponential computational requirements 
over explicit time periods, the method can be used for regional or global models.  
The results from applying our augmented LDM to investigate a Moroccan agroecosystem 
demonstrate clearly the importance of dynamic vegetation for evaluating the socio-
economic effects of droughts with mathematical models. As Fig. 10 shows, the stocking 
rates of goats and sheep themselves are not sufficient to explain the drought-induced 
changes. Hence, the interplay between stocking rates and dynamic vegetation must be 
responsible for the observation of longer-lasting effects of a drought on parameters such 
as profit and AGPM (Figs. 11–12).  
Concerning the social effects of droughts, a close look at the results of our augmented 
LDM demonstrates the problem of increasing long-term social inequality, i.e. making 
poorer farmers poorer and richer farmers richer. Since we use only one aggregated agent 
for the entire village of Taoujgalt, the model has the option to suspend livestock selling in 
the year after the drought (Fig. 12) in order to restock the pastures and apply optimal 
management (Fig. 10). However, disaggregating the model to a higher resolution of 
agents would certainly lead to farmers with lots of animals and farmers with few animals. 
At a certain threshold of animal numbers, the latter would be forced to sell a substantial 
part of their herd after the drought in order to sustain their livelihoods. In this way, their 
future profits would be reduced due to delayed restocking. Wealthier farmers, on the 
other hand, might take advantage of the situation, since proportionally more fodder would 
be available for their animals after the drought and restocking would result in greater 
profits for them later. Hence, the dynamics displayed by our model demonstrate the 
polarizing effect of droughts. A more detailed representation of farmers in our augmented 
LDM could therefore make it possible to better investigate the social impacts of droughts 
in semi-arid areas. Instead of calculating the loss of GDP, a further developed LDM 
could assess the risk of impoverishment of rural people. Furthermore, land use policy 
options could be investigated, which reduce the risk of emerging social inequality due to 
repeated occurrence of droughts.  
However, in order to apply such an augmented LDM to real-world problems, empirical 
data for calibration and validation of the model are essential (see Figs. 7–9). Especially 
for developing countries, time series of vegetation and biomass dynamics in semi-arid 
areas under consideration of human land use are scarce. The application of our 
augmented LDM to the investigation of social effects of land use policies in semi-arid 
areas emphasizes the singular value of ecological long-term monitoring campaigns, such 
as those carried out under the BIOTA Maroc and IMPETUS projects.  
Surface water runoff and groundwater recharge in our augmented LDM are influenced by 
land use decisions in ways that fit with experimental studies (e.g. Murphy et al., 2004, Le 
Maitre et al., 2007). In our model, during normal years, livestock husbandry increases 
water availability for downstream oasis agriculture. This might be an important influence 
of landscape management on irrigation agriculture: the observation of relatively high 
grazing pressure around oases could be attributed to the evolutionary success of coupling 
high intensity grazing with concentrated irrigation agriculture. Therefore, an agricultural 
decision model for such regions should depict this relationship. Similarly, climate-
relevant parameters such as LAI are influenced by human management (25% less under 



grazing management in our model), which certainly has implications for regional climate 
and predictions of it.  
 

5 Conclusion 
The methodology presented in this paper allows a computationally feasible integration of 
a complex biophysical model into an economic LDM. The dynamic interactions between 
land management and vegetation in semi-arid areas can be more accurately depicted. The 
Markov-chain-based approximation of the biophysical impacts reduces drastically the 
computational requirements compared to a direct coupling with explicit land use 
management trajectories. By using separate Markov chains for different weather 
scenarios, locations, and management regimes, we are able to investigate the economic 
and environmental effects of a drought, including the likely adaptation of management.  
Our simulations show that a 33% decrease in precipitation reduces profits from 
pastoralism by up to 57%, although losses in the first year can be kept at relatively low 
levels. Through the inclusion of a dynamic vegetation module, the relationship between 
precipitation and profits in our model becomes history-dependent, i.e. the impact of 
reduced precipitation on profits depends on the grazing management of previous years. 
Furthermore, our model results indicate that, for the studied agroecosystem, human land 
use increases surface runoff and infiltration to the groundwater relative to undisturbed 
conditions, but decreases LAI. This shows the importance of including physical 
relationships into socio-economic models, or vice-versa, including human management 
adaptation into biophysical models. The exclusion or exogenous specification of land use 
management can bias the results and conclusions of agroecological and climate models. 
The insights from our interdisciplinary modeling approach emphasize the need for 
ecological long-term monitoring campaigns in order to be able to parametrize and 
validate bioeconomic land use models.  
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