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Abstract 
 
More technology implies higher welfare. Therefore, it is individually rational to cooperate on 
technological development. It is not individually rational cooperate on greenhouse gas emission 
reduction. If technology cooperation only comes with cooperation on emission reduction, 
incentives to free ride on the emission reduction agreement are reduced. However, countries 
would prefer to cooperate on technology but not on emission reduction. If technology progresses 
through a learning-by-doing mechanism, more emission reduction technology does not 
necessarily imply higher emission reduction. However, for reasonable parameter choices, it does. 
This implies that technological cooperation is an effective instrument in emission reduction 
policy, also if that policy is of a non-cooperative nature. It also implies that it is in the best 
interest of technology leaders to subsidise the export of greenhouse gas reducing technology. 
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1. Introduction 
Climate change is a long-term problem with strong international externalities. It thus makes sense 
to look at it from a game-theoretic perspective, and to place technology in the heart of the 
analysis. This paper investigates the interactions between incentives to cooperate on greenhouse 
gas emission reduction and endogenous technological development and diffusion. 
 
International cooperation is needed for substantial greenhouse gas emission reduction (Nordhaus 
and Yang, 1996; Tol, 1999a). However, cooperation on a large scale is not individually rational. 
The grand coalition is not stable, nor is any coalition with a substantial number of members 
(Barrett, 1994; Carraro and Siniscalco, 1992, 1993). Game theory suggests two ways to establish 
cooperation in such a situation. Firstly, one could use transfers, that is, use the social gains of 
cooperation to compensate the individual losers of cooperation. If utility is transferable, it is 
known that there is a transfer scheme so that the potential Pareto improvement of a cooperative 
solution can be made into an actual Pareto improvement that leaves no one worse off and some 
better (Friedman, 1991; Gibbons, 1992). However, climate change is such a large problem and 
differences between countries are so great that the side payments would be very large and 
unprecedented. Furthermore, money can be transferred but utility cannot. Incomes are so 
disparate across the world that utility cannot be assumed to be proportional to income. The 
theoretical prerequisites for compensation thus do not hold, and one can show that in practice 
there is indeed no Pareto improving transfer scheme possible (Tol, 1997; see also Germain et al., 
1998). 
 
Secondly, one can use issue linkage to establish cooperation. Combining problems with different 
asymmetries in their externalities, one can construct situations in which the incentives to free-ride 
are substantially if not fully reduced (Cesar and de Zeeuw, 1994). In practice, it is hard to find 
issues that could be linked to greenhouse gas emission reduction. A number of potential 
candidates have asymmetries similar to climate change, and thus would increase rather than 
reduce free-riding incentives. Separate international treaties regulated many potential candidates, 
so that issue linkage would be impractical from a diplomatic and bureaucratic perspective. 
Technology diffusion is an issue that is often thought to be a promising candidate for linking to 
emission abatement (Carraro et al., 1993; Carraro and Siniscalco, 1996; Katsoulacas, 1996). This 
paper investigates this hypothesis. Because treaties on international trade, investment and 
intellectual property rights already regulate technology diffusion, the analysis here is restricted to 
emission reduction technology. Existing emission reduction technology also falls under 
international regulation, but one can argue that emission abatement technology developed under 
pressure of the UNFCCC should be regulated under that treaty. Thus, the paper is restricted to the 
diffusion of new emission reduction technology. 
 
The bulk of the paper adopts learning by doing as the main mechanism by which new 
technologies emerge; Tol et al. (2000) show that our findings on coalition formation also hold for 
research and development driven technological progress; our findings on incentives for emission 
reduction readily carry over to R&D. Greenhouse gas emission reduction policy is a matter for 
national governments. Emission reduction technology development is a matter of 
commercialising existing and proven technologies, not a matter of fundamental research. 
Arguably, governments have a role in fundamental research, but should leave applied research to 
the market (Gomulka, 1990). Thus, governments should not themselves invest in research and 
development of emission reduction technologies, but provide incentives to firms to do so. In this 



paper, the government does so by levying emission taxes. Firms then develop new technology to 
reduce their emission taxes. To the government, it appears as if the new technology emerges 
spontaneously, in reaction to past policy. Learning by doing is the appropriate formulation for 
this phenomenon. 
 
Section 2 looks at the effect of learning by doing on optimal emission reduction trajectories. This 
section brings nothing new, but it is provides the basic building stones for Section 3, which 
investigates whether the spoils of learning by doing can be used as a means to build larger 
emission reduction coalitions. Section 4 then turns to the question what learning and doing and 
technology transfer do to emissions and incentives to reduce emissions. Section 5 concludes. 
  
2. Learning by doing and optimal emission reduction trajectories 
Let us first consider the case with one player. The player seeks to minimise the net present value 
of the costs of greenhouse gas emission abatement and climate change: 
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As usual, t denotes time. Rt is the variable denoting emission reduction as a fraction of emissions; 
0≤Rt≤1. St is the variable denoting the stock of greenhouse gases in the atmosphere, and S0 is a 
constant indicating its value at time zero. Ht is the stock of knowledge. H0 is the constant 
indicating its starting value at time zero. Below, we introduce more actors, and H0 becomes a 
decision variable, depending on the chosen institutional rules of the game. The net present value 
of the total costs, C, is the discounted sum of the costs of emission reduction, ft, and the costs of 
climate change, gt. The discount rate is ρ. 
  
The following example is used throughout the paper: 
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Et denotes the fixed exogenous assumption for the business as usual emission path. The 
atmospheric stock, St, increases with actual emissions (1-Rt-1)Et-1, and decreases with the natural 
deterioration of atmospheric carbon dioxide. Greek letters are all parameters: the α in equation 
(2) reflects the costs of emission abatement; the γ in equation (3) is the exogenous increase in 
knowledge;1 the δ  in equation (4) denotes the natural decline of carbon in the atmosphere; the β 

                                                 
1  Note that γ differs from the more common AEEI (autonomous energy efficiency improvement); γ drives 
emission reduction costs only whereas AEEI drives baseline emissions. 



in equation (5) reflect the costs of climate change. This framework is very similar to that of 
Goulder and Mathai (1998); it is also used in Tol (1999b) and Tol et al. (2000). 
 
The first-order conditions for this problem are: 
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Equation (7) is not a very helpful expression, particularly since a, b and c depend on emission 
reduction at times other than t. It is instructive to note that a≥0, b≥0, and c≥0. To a first 
approximation, this implies that if c increases (corresponding to higher impacts of climate 
change), emission reduction goes up. It also implies that if b decreases (corresponding to higher 
future cost savings induced by current emission abatement), emission reduction goes up. So, the 
framework makes intuitive sense. 
 
Without learning-by-doing, the first-order conditions would be 
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Without learning-by-doing, optimal emission reduction would be smaller.2 
 
Note the effect of an exogenous increase in knowledge. More knowledge would reduce the costs 
of emission reduction and decrease the slope of the marginal abatement costs curve. This would 
increase optimal emission reduction, reducing the costs of climate change. Thus, total costs are 
reduced. 
 
A similar line of argument does not hold in the case of learning-by-doing. It is true that more 
knowledge implies less costs implies more emission reduction. However, more knowledge 
reduces the value of additional knowledge, reducing the incentives to reduce greenhouse gas 
emissions for knowledge accumulation�s sake. Figure 1 demonstrates this graphically for 1 time 
period, ignoring the feedback of other time periods. 
 
 

                                                 
2  Note that one cannot draw any conclusions from this. For policy applications, the models with and without 
learning-by-doing should be calibrated to the same data set. The parameters of the models (α and particularly γ) 
would be different. 



 
Figure 1. Marginal cost and benefit curves for one time period, ignoring the feedback from other 
time periods, with and without learning-by-doing. The arrows denote the effect of an exogenous 
increase in the stock of knowledge. More knowledge decreases the costs of emission reduction, 
and decreases the benefits of accumulating more knowledge. The impact of knowing more is in 
later periods, and here presented as a discounted benefit. The dots denote optimal emission 
reduction levels. 
 
Thus, we have that more technology does not imply more emission reduction, if technological 
development is major reason to reduce emissions. 
 
Therefore, under learning-by-doing, it is not necessarily the case the optimal emission reduction 
is increasing over time. Without learning-by-doing, optimal emission reduction is increasing with 
time (Tol, 1999b; Wigley et al., 1996). 
 
3. Cooperation and technology transfer 
Even though the effect of exogenously increased knowledge on optimal emission reduction is 
ambiguous, its effect on total costs is not. It follows from equation (1) that increased knowledge 
implies reduced costs for unchanged policy: 
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* denote the optimal policy if H0=H*. Then 

(10) * * * *
0 0( , , ) ( , , )C R H S C R H h S> +

v v
 

for any h>0, and after minimising costs according to (1), 
(11) * * # *

0 0( , , ) ( , , )C R H h S C R H h S+ ≥ +
v v

 

emission reduction

m
ar

gi
na

l c
os

ts
 a

nd
 b

en
ef

its

marginal costs of emission reduction

marginal benefits of emission reduction

without learning-by-doing

with learning-by-doing



where Rt
# is the optimal policy for H0=H*+h. Thus, exogenously acquired knowledge is 

unambiguously welfare-improving. 
 
Thus, we have that more technology means higher welfare. 
 
Let us now introduce N players, denoted by subscript r, who share the atmosphere and the stock 
of knowledge. For each player, the problem looks like this. 
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The ωt,r reflects the contribution of region r at time t to the shared knowledge stock Ht+s. The ωs 
sum to ½ to ensure consistency with equation (3). 
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The first-order conditions for this problem are: 
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Equation (19) has properties similar to (7), but b� and c� now also depend on the other players� 
actions. 
 
Without learning-by-doing, the first-order conditions would be 
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Let us now introduce co-operation between the N players. The problem now looks like this. 
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with the cost functions and state equations as in (13)-(17).  
 
The first-order conditions for this problem are: 
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Alternatively, 
(23) 0'')1('''' 1

,, =−+− −− cRbRa r
rtrt

ω  
Equation (23) has properties similar to (19), but b�� and c�� are substantially larger, because 
regions now care about their effect on other regions� climate change impacts and emission 
reduction costs. Thus, co-operation increases optimal emission reduction. Costs of climate 
change are, of course, reduced. Costs of emission reduction, per unit, are reduced because of the 
greater extent of learning-by-doing. The aggregate total costs for all players are lower than 
without co-operation. 
 
Without learning-by-doing, the first-order conditions would be 
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Let us now return to the non-co-operative case, �privatising� the stock of knowledge. For each 
player, the problem looks like this. 
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Equations (16) and (17) complete the problem. 
 
The first-order conditions are: 
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Alternatively, 
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Equation (28) has properties similar to (19), but b��� is substantially larger than b�, reducing 
optimal greenhouse gas emission reduction. 
 
Above, optimal emission reduction trajectories are characterised for a number of cases, that is, 
with and without international co-operation, with and without learning-by-doing, and with and 
without a free flow of knowledge between players. Comparison of these cases reveals various 
insights. Co-operation increases optimal emission reduction, and reduces costs of climate change. 
The availability of cheap alternatives to fossil fuels reduces costs, in the absence of learning-by-



doing, increases optimal emission abatement over time. With learning-by-doing, the latter finding 
does not hold: the shape of the optimal emission reduction trajectory is ambiguous. 
 
Equations (9)-(11) establish that an exogenous increase in knowledge unambiguously improves 
welfare. Equations (14) and (26) behave much the same as equation (3). Thus, access to other 
players� technologies improves welfare, while granting access does not cost anything (provided 
that the other players do not substantially increase their emissions after granting access). 
 
Thus, we have that, since technology is welfare improving, cooperation on technology is 
individually rational. 
 
However, we also know that cooperation on emission reduction is not individually rational. 
 
If a coalition has the ability to keep policy-induced technology to itself, then members have a 
smaller incentive to leave the coalition. Non-members have a larger incentive to join the 
coalition. Thus, in the presence of mechanisms to prevent the diffusion of gainful technology 
between countries, it is possible to have a greater coalition than in the absence of these 
mechanisms. 
 
Thus, we have that making cooperation on emission reduction a condition for technology 
cooperation reduces free-riding. 
 
By restricting technology diffusion into countries outside the coalition, greenhouse gas emissions 
outside the coalition may go up.3 We further analyse this below, arguing that, for all practical 
purposes, less technology means more emissions. The coalition may thus hurt itself if it decides 
to punish defectors. 
 
Furthermore, it is reasonable to assume that if the coalition restricts non-members from using its 
technology, non-members would react likewise and prevent the coalition from using its 
technology. This is a sure welfare loss, by (9)-(11). 
 
So, we have established that if given a choice, countries would cooperate on technology but not 
on emission reduction. 
 
Now consider the case of a large coalition, and a small country that is considering whether or not 
to defect. If it does, it will be denied access to a lot of technology, while its own emissions and 
technology are insignificant compared to the emissions and technology of the coalition. The 
coalition may thus retaliate without excessive costs. The question is then whether the threat of 
restricting technology diffusion is effective? The incentive to defect is unambiguously smaller 
with potentially restricted technology diffusion than without. Assuming that the coalition 
exercises its threat, would a country want to leave the coalition? 
 

                                                 
3  With less clients, the rewards for developing new technologies within the coalition are also weakened; the 
model ignores this effect. 



We cannot answer that question with our analytic model. Therefore, we used a numerical version 
of the above, programmed in GAMS. The source code is in the Appendix. Figure 1 compares the 
gains from free-riding (that is, lower emission reduction with almost equal climate impacts) with 
the losses from less technology (that is, higher emission reduction costs). Figure 1 presents a base 
case, with all parameters set of central estimates, and a range of sensitivity analyses. It is also 
presents a maximum scenario, in which all parameters are set to the limits of their ranges so as to 
maximise the loss of restricted access to technology. Even in the maximum case, the losses due to 
restricted technology access are less than 3.5% of the gains of free-riding. 

 
 
Figure 1. The loss of losing access to the grand coalition�s technology as a fraction of the gains of 
free-riding for various parameter choices. In the base case, all parameters are set to their �best 
guess�. Then, from bottom to top, the parameters that control the relative costs of emission 
reduction, the relative impact of climate change, the rate of learning, the relative baseline 
emissions, the discount rate, and the welfare weights of the grand coalition and the potential 
defector, are varied between their high and low values. In the top bar, all parameters are set so 
that the technology losses are maximised relative to the gains of free-riding. Source: Tol et al. 
(2000). 
  
4. Technology transfer and greenhouse gas emissions 
If countries share their technologies, emission reduction costs are reduced. We have seen above 
this implies that countries want to increase their emission reduction for climate reasons, but 
reduce their emission reduction for knowledge accumulation�s sake. It is not known which of the 
two effects is stronger. 
 
A further complication is that a country�s need to reduce greenhouse gas emissions depends on 
the emission abatement in other countries. If the benefits of emission reduction are linear in the 
amount reduced, this feedback is nil. However, if benefits are sub-linear, countries would want to 
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reduce less (more) if other countries reduce more (less). For all practical purposes, however, the 
benefits of emission reduction are linear as is shown in Figure 2 (cf. Tol, 1999c). 

Figure 2. The incremental, net present costs of carbon dioxide emissions in the decade 2000-2009 
as a function of the size of the emission disturbance for utility discount rates of 0%, 1% and 3%; 
the estimates are based on FUND2.1 (Tol, 2001a,b; Tol and Downing, 2000). 
 
Thus, we have that, if more technology means less emissions, then technological cooperation is 
good for climate policy. That is, technological cooperation on greenhouse gas emission reduction 
needs to be established, regardless of the question whether countries cooperate on emission 
abatement itself. 
 
Now consider the case in which only one country hold advanced knowledge of emission 
reduction technology. That is, other countries can learn from this country, but this country cannot 
learn from other countries. Above, we assume that all countries can learn from each other. We 
already established that countries gain from acquiring knowledge, and are in principle prepared to 
pay for this. The other way around may also be true, that is, a country may want to subsidise the 
export of its technology. The reason is as follows. If the technology importing countries can be 
expected to use the technology to reduce emissions, and not use the imports to replace technology 
acquisition, then this is in the benefit of the technology exporter as well, since climate change and 
its impacts are reduced. 
 
Thus, we have that if more technology means less emissions, then technology leaders should 
subsidise technology transfer. 
 
Having established that countries benefit from sharing technology � whether or not they 
cooperation on greenhouse gas emission reduction, and whether or not knowledge is symmetric � 
it is now time to return to our original question. Does technology transfer help establish 
cooperation on emission abatement? 
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We have already seen that linking technology transfer and emission abatement does not help. 
Suppose that technology sharing reduce emissions in all countries. Thus, with technology 
sharing, non-cooperative emission control is higher than without technology sharing. Comparing 
equations (18) and (22), the effect of cooperation is that a country does not set its marginal 
emission reduction costs equal to its marginal benefits, but rather that a country equals its 
marginal emission reduction costs to the sum of marginal benefits of all countries. Therefore, if 
non-cooperative emission control is higher, the distance between cooperation and non-
cooperation shrinks, and so do the benefits of free-riding. The reverse is, of course, true if 
technology sharing increases emissions. 
 
However, a closer look at (18) reveals that, under cooperation, a country does not only heed to its 
effect on other countries� impacts of climate change, but also to its effect on other countries� 
emission reduction costs. Since a country�s emission reduction effort contributes to other 
countries� welfare, this is a positive effect, increasing the distance between cooperative and non-
cooperative emission control. 
 
Symbolically, let NC denote non-cooperation in emission reduction, and C cooperation. Let NT 
denote non-cooperation in technology, and T cooperation. Let R denote emission reduction. 
R(C,NT) > R(NC,NT) and R(NC,T) > R(NC,NT). Thus, R(C,NT)-R(NC, NT) > R(C,NT)-R(NC,T). 
However, R(C,T) > R(C,NT). Therefore R(C,T)-R(NC,T) ? R(C,NT)-R(NC,NT). 
 
We have shown above that, if more knowledge means reduced emissions, technology cooperation 
and transfer can act a climate policy instrument in itself. As so many of the findings hinge on the 
question whether or not emissions go up or down if emission abatement technology is improved, 
we analyse this further. For this, we use a simpler, two-period model. 
 
Consider two periods, one player. The costs in period 1 follow 
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The benefits of emission reduction are assumed to be linear in emission reduction (Figure 2). The 
problem is then 
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The first order conditions for the second period are 
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The first order conditions for the first period are 
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In this formulation, more knowledge in period 1 (a higher H1) implies that optimal emission 
reduction in periods 1 and 2 is higher. In turn, higher emission reduction in period 1 implies still 
higher emission reduction in period 2. 
 
If we extend this model to more players, the optimal emission reductions are essentially the same. 
Diffusion of technology can be modelled as an increase of knowledge for one player, leading to 
higher emission reduction in that region. The other regions benefit because their climate impacts 
go down. 
 
The conclusion holds for a more general functional specification as well. Let the costs in period 1 
be 

(29�) 1
1 1

1

C R
H

λα=  with λ > 0. 

and the costs in period 2 

(30�) 2
2 2

2

C R
H

λα=  

with 
(31�) ( )2 1 11H H R γ= +  with 0 < γ < 1. 
The benefits are again linear in emission reduction. The problem is then 

(32�) 
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1 2
1 2 1 1 2 2,
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The first order conditions for the second period are 

(33�) 
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The first order conditions for the first period are 

(34�) 
( )

11 2 2
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1 1 1
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λ
λ

γ
λα γα β

δ
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Substituting R2
* for R2, we get 

(35�) ( )
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If γ < λ-1, (35�) can be rewritten as 

(35��) ( )
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In this case, more knowledge in period 1 (a higher H1) implies that optimal emission reduction in 
periods 1 and 2 is higher. In turn, higher emission reduction in period 1 implies still higher 
emission reduction in period 2. 
 
However, if γ > λ-1, no general statement can be made about the relationship between H1 and R1. 
 
Now return to the original, less general formulation, with three periods this time. The problem is 
(36)
 

( ) ( )1 2 3

2 2 231 2
1 2 3 1 1 2 2 3 32 2, ,

1 1 1 1 1 2

1 1 1 1min
1 11 1 11 1R R R

R R R R R R
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The first order conditions for the third period are 

(37) 
( )

3 1 1 2*3 3
3 322
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The first order conditions for the second period are 

(38) 
( )
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Substituting R3
* for R3, we get 

(39) 
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So, period 2 and 3 in the three-period model behave much the same as period 1 and 2 in the two-
period model. More knowledge means more emission reduction in period 2 and 3, while more 
emission reduction in period 2 implies more emission reduction in period 3. 
 
The situation is more complication for period 1. The first order conditions are: 

(40) 
( ) ( )

22
3 31 2 2

1 11.5 1.52
1 1 1 1 2 1

2 0
2(1 ) 1 2(1 ) 1 1

RRR
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Substituting R3
* for R3, and multiplying by (1+R1)1.5, 

(41) ( )
2 22

1.5 3 1 2 3 1 21 2 2
1 1 1 12 2
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From (39), we conclude that R2
2 is more than linear in H1. An increase in knowledge would thus 

increase the constant in (41). The linear and the non-linear components in (41), however, have an 
opposite dependence on H1. Therefore, an increase in knowledge would increase emission 
reduction for some initial R1, and decrease emission reduction for other values of R1. 
 



Figure 3 shows the outcomes of a numerical analysis, repeating the above analysis for 200 
periods. The model is given in the appendix. Figure 3 shows the changes in optimal emissions in 
the years 2010, 2050 and 2100 due to a 25% increase in knowledge in the first period. Figure 3 
does so for various combinations of the parameters γ and λ. As the analysis above suggests, if γ < 
λ-1, more knowledge leads to lower emissions. For lower values of λ, however, the effect 
disappears. This is due to the fact that optimal emission control falls to zero in both the base case 
and the enhanced knowledge case. In Figure 4, we increase the impact of climate change. As 
suspected, if γ > λ-1, more knowledge may indeed lead to lower emission control. However, the 
changes are so small that the effect is negligible. 

 
Figure 3. The change in optimal emissions in the years 2010, 2050 and 2100 due to a 25% 
increase in knowledge, expressed as a percentage of optimal emissions without that knowledge 
increase, for various combinations of the parameters λ and γ of equation (36) extended to 200 
periods. 
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Figure 4. The change in optimal emissions in the years 2010, 2050 and 2100 due to a 25% 
increase in knowledge, expressed as a percentage of optimal emissions without that knowledge 
increase, for parameters λ=1.50 and γ=0.75 in equation (36) extended to 200 periods, as a 
function of the impact of climate change. 
 
5. Conclusions 
In this paper, we establish that technology developed through greenhouse gas emission reduction 
policy cannot act as a stabilizer of emission reduction coalitions. The reason is that such 
technology, like other types of technologies, is a club good. Countries like to cooperate on 
technological development and share their knowledge. Restricting access to technology is not a 
credible threat, because potential retaliation would hurt. The threat may also be ineffective, that 
is, the gains of free riding on emission reduction may outweigh the losses of restricted access to 
technology. 
 
Technological cooperation may well be good for emission reduction policy. We show that if 
technologies help combat global externalities, countries should actually subsidise technology 
transfer. We argue that technological cooperation does not necessarily reduce free-riding 
incentives on emission abatement. However, technological cooperation is likely to help reduce 
greenhouse gas emissions. 
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* EndoCoal
* Richard S.J. Tol, July 9, 1999

SETS
T time periods /1*200/
TF(T) first period
TL(T) last period

SCALARS
A1 costs of emission reduction player 1 /2/
A2 costs of emission reduction player 2 /2/
B1 costs of climate change player 1 /0.02/
B2 costs of climate change player 2 /0.02/
C1 LbD parameter player 1 /0.45/
C2 LbD parameter player 2 /0.06/
D1 secondary benefits player 1 /0.001/
D2 secondary benefits player 2 /0.006/
RHO discount rate /0.03/
DELTA carbon uptake /0.01/
S0 initial stock of carbon /350/
E01 initial emissions player 1 /2.0/
E02 initial emissions player 2 /0.2/
DGE1 decline of growth rate of emissions player 1 /0.995/
DGE2 decline of growth rate of emissions player 2 /0.995/
GE10 initial growth rate of emissions player 1 /0.01/
GE20 initial growth rate of emissions player 2 /0.01/
H0 initial knowledge stock /1/
H10 initial knowledge stock player 1 /1/
H20 initial knowledge stock player 2 /1/

PARAMETERS
GE1(T) growth rate of emissions player 1
GE2(T) growth rate of emissions player 2
E1(T) level of emissions player 1
E2(T) level of emissions player 2
DISC(T) discount factor
NP1
NP2
NP;

TF(T) = YES$(ORD(T) EQ 1);
TL(T) = YES$(ORD(T) EQ CARD(T));

DISPLAY TF, TL;

GE1(T) = GE10*DGE1**ORD(T);
GE2(T) = GE20*DGE2**ORD(T);
E1(T) = E01*(1+GE1(T))**ORD(T);
E2(T) = E02*(1+GE2(T))**ORD(T);
DISC(T) = (1+RHO)**(-ORD(T));



DISPLAY GE1, GE2, E1, E2, DISC;

VARIABLES
R1(T) emission control rate player 1
R2(T) emission control rate player 2
S(T) carbon stock
H1(T) knowledge stock player 1
H2(T) knowledge stock player 2
H(T) knowledge stock player 1 + 2
TC1(T) total costs player 1
TC2(T) total costs player 2
NPVC1 net present costs player 1
NPVC2 net present costs player 2
NPVC net present costs player 1 + 2;

POSITIVE VARIABLES
R1, R2, H1, H2, H, S, TC1, TC2;

EQUATIONS
UTIL objective function
ETC total costs
HIN knowledge stock initialization
H1IN
H2IN
HEQ knowledge stock evolution
HEQQ
H1EQ
H2EQ
SIN carbon stock initialization
SEQ carbon stock evolution
TC1RD total costs player 1 restricted diffusion
TC1FD total costs player 1 free diffusion
TC2RD total costs player 2 restricted diffusion
TC2FD total costs player 2 free diffusion
NPV net present value
NPV1
NPV2;

HIN(TF).. H(TF) =E= H0;
H1IN(TF).. H1(TF) =E= H10;
H2IN(TF).. H2(TF) =E= H20;
HEQ(T+1).. H(T+1) =E= H(T)*(1+R1(T))**C1*(1+R2(T))**C2;
HEQQ(T+1).. H(T+1) =E= H(T);
H1EQ(T+1).. H1(T+1) =E= H1(T)*(1+R1(T))**C1;
H2EQ(T+1).. H2(T+1) =E= H2(T)*(1+R2(T))**C2;

SIN(TF).. S(TF) =E= S0;
SEQ(T+1).. S(T+1) =E= S(T)-DELTA*(S(T)-S0)+(1-R1(T))*E1(T)+(1-
R2(T))*E2(T);

TC1RD(T).. TC1(T) =E= A1*R1(T)*R1(T)/H1(T) - D1*R1(T)**0.5 +
B1*(S(T)/S0)*(S(T)/S0);
TC1FD(T).. TC1(T) =E= A1*R1(T)*R1(T)/H(T) - D1*R1(T)**0.5 +
B1*(S(T)/S0)*(S(T)/S0);
TC2RD(T).. TC2(T) =E= A2*R2(T)*R2(T)/H2(T) - D2*R2(T)**0.5 +
B2*(S(T)/S0)*(S(T)/S0);



TC2FD(T).. TC2(T) =E= A2*R2(T)*R2(T)/H(T) - D2*R2(T)**0.5 +
B2*(S(T)/S0)*(S(T)/S0);

NPV1.. NPVC1 =E= SUM(T,TC1(T)*DISC(T));
NPV2.. NPVC2 =E= SUM(T,TC2(T)*DISC(T));
NPV.. NPVC =E= SUM(T,(10*TC1(T)+TC2(T))*DISC(T));

R1.UP(T) = 0.99999; R1.LO(T) = 0.00001;
R2.UP(T) = 0.99999; R2.LO(T) = 0.00001;
H.LO(T) = 0.01; H1.LO(T) = 0.01; H2.LO(T) = 0.01;

option iterlim = 99999;
option reslim = 99999;
option solprint = off;
option limrow = 0;
option limcol = 0;

MODEL COOQ /HIN, HEQQ, SIN, SEQ, TC1FD, TC2FD, NPV1, NPV2, NPV/;

SOLVE COOQ MINIMIZING NPVC USING NLP;

SOLVE COOQ MINIMIZING NPVC USING NLP;

MODEL COOP /HIN, HEQ, SIN, SEQ, TC1FD, TC2FD, NPV1, NPV2, NPV/;

SOLVE COOP MINIMIZING NPVC USING NLP;

SOLVE COOP MINIMIZING NPVC USING NLP;

NP1 = 1000000*NPVC1.L;
NP2 = 1000000*NPVC2.L;
NP = 1000000*NPVC.L;

DISPLAY NP1, NP2, NP;

DISPLAY R1.L, R2.L, S.L, H.L, TC1.L, TC2.L, NPVC1.L, NPVC2.L, NPVC.L;

MODEL NCFD /HIN, HEQ, SIN, SEQ, TC1FD, TC2FD, NPV1, NPV2, NPV/;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCFD MINIMIZING NPVC2 USING NLP;

SOLVE NCFD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCFD MINIMIZING NPVC1 USING NLP;

SOLVE NCFD MINIMIZING NPVC1 USING NLP;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCFD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCFD MINIMIZING NPVC1 USING NLP;



R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCFD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCFD MINIMIZING NPVC1 USING NLP;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCFD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCFD MINIMIZING NPVC1 USING NLP;

NP1 = 1000000*NPVC1.L;
NP2 = 1000000*NPVC2.L;
NP = 1000000*NPVC.L;

DISPLAY NP1, NP2, NP;

DISPLAY R1.L, R2.L, S.L, H.L, TC1.L, TC2.L, NPVC1.L, NPVC2.L, NPVC.L;

MODEL NCRD /H1IN, H2IN, H1EQ, H2EQ, SIN, SEQ, TC1RD, TC2RD, NPV1, NPV2, NPV/;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCRD MINIMIZING NPVC2 USING NLP;

SOLVE NCRD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCRD MINIMIZING NPVC1 USING NLP;

SOLVE NCRD MINIMIZING NPVC1 USING NLP;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCRD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCRD MINIMIZING NPVC1 USING NLP;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCRD MINIMIZING NPVC2 USING NLP;

R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCRD MINIMIZING NPVC1 USING NLP;

R1.UP(T) = R1.L(T); R1.LO(T) = R1.L(T);

SOLVE NCRD MINIMIZING NPVC2 USING NLP;



R2.UP(T) = R2.L(T); R2.LO(T) = R2.L(T);

SOLVE NCRD MINIMIZING NPVC1 USING NLP;

NP1 = 1000000*NPVC1.L;
NP2 = 1000000*NPVC2.L;
NP = 1000000*NPVC.L;

DISPLAY NP1, NP2, NP;

DISPLAY R1.L, R2.L, S.L, H1.L, H2.L, TC1.L, TC2.L, NPVC1.L, NPVC2.L, NPVC.L;

 
 
* EndoCoal2
* Richard S.J. Tol, November 5, 2000

SETS
T time periods /1*200/
TF(T) first period
TL(T) last period

SCALARS
A1 costs of emission reduction player 1 /2/
B1 costs of climate change player 1 /0.1/
C1 LbD parameter player 1 /0.5/
D1 curvature /2/
RHO discount rate /0.03/
DELTA carbon uptake /0.01/
S0 initial stock of carbon /350/
E01 initial emissions player 1 /2.0/
DGE1 decline of growth rate of emissions player 1 /0.995/
GE10 initial growth rate of emissions player 1 /0.01/
H10 initial knowledge stock player 1 /1/

PARAMETERS
GE1(T) growth rate of emissions player 1
E1(T) level of emissions player 1
Ea(T)
Eb(T)
Ec(T)
Eab(T)
Ebc(T)
DISC(T) discount factor
LBD
Hadd
NP1;

TF(T) = YES$(ORD(T) EQ 1);
TL(T) = YES$(ORD(T) EQ CARD(T));

DISPLAY TF, TL;

GE1(T) = GE10*DGE1**ORD(T);
E1(T) = E01*(1+GE1(T))**ORD(T);
DISC(T) = (1+RHO)**(-ORD(T));

DISPLAY GE1, E1, DISC;



VARIABLES
R1(T) emission control rate player 1
S(T) carbon stock
H1(T) knowledge stock player 1
TC1(T) total costs player 1
NPVC1 net present costs player 1;

POSITIVE VARIABLES
R1, H1, S, TC1;

EQUATIONS
UTIL objective function
ETC total costs
H1IN knowledge stock initialization
H1EQ knowledge stock evolution
SIN carbon stock initialization
SEQ carbon stock evolution
TC1E total costs player 1 restricted diffusion
NPV1;

H1IN(TF).. H1(TF) =E= Hadd*H10;
H1EQ(T+1).. H1(T+1) =E= H1(T)*(1+LBD*R1(T))**C1;

SIN(TF).. S(TF) =E= S0;
SEQ(T+1).. S(T+1) =E= S(T)-DELTA*(S(T)-S0)+(1-R1(T))*E1(T);

TC1E(T).. TC1(T) =E= A1*R1(T)**D1/H1(T) + B1*(S(T)/S0)*(S(T)/S0);
NPV1.. NPVC1 =E= SUM(T,TC1(T)*DISC(T));

R1.UP(T) = 0.9999; R1.LO(T) = 0.0001;
H1.LO(T) = 0.01;

option iterlim = 99999;
option reslim = 99999;
option solprint = off;
option limrow = 0;
option limcol = 0;

MODEL NCRD /H1IN, H1EQ, SIN, SEQ, TC1E, NPV1/;

LBD = 0.00;
Hadd = 1;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
Ea(T) = (1-R1.L(T))*E1(T);
LBD = 0.33;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
LBD = 0.67;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
LBD = 1.00;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;



SOLVE NCRD MINIMIZING NPVC1 USING NLP;
Eb(T) = (1-R1.L(T))*E1(T);

NP1 = 1000000*NPVC1.L;

DISPLAY NP1, R1.L, S.L, H1.L, TC1.L, NPVC1.L;

Hadd = 1.00;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
SOLVE NCRD MINIMIZING NPVC1 USING NLP;
Ec(T) = (1-R1.L(T))*E1(T);

NP1 = 1000000*NPVC1.L;

DISPLAY NP1, R1.L, S.L, H1.L, TC1.L, NPVC1.L;

Eab(T) = 100*(Ea(T)-Eb(T))/Ea(T);
Ebc(T) = 100*(Eb(T)-Ec(T))/Eb(T);
DISPLAY E1, Ea, Eb, Ec, Eab, Ebc;

 
 


	TECHNOLOGY DEVELOPMENT AND DIFFUSION AND INCENTIVES TO ABATE GREENHOUSE GAS EMISSIONS
	
	
	
	
	February 1, 2001

	Abstract
	Key words
	Acknowledgements
	References





