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Abstract 

The so-called AK models (and models that reduce to AK models without generating 

transitional dynamics) give rise to a very special property that is called constancy 

conditions. These conditions impose fix ratios among quantities of the model from the 

start. Hence, knowing one of the initial values of stock variables becomes sufficient to 

derive time paths of other variables, given constancy conditions. One source of 

upsetting these conditions is physical shocks. When a shock disturbs these conditions, 

preserving intertemporal maximization requires restoring them, preferably immediately. 

This can be done only by employing a temporary maximization problem, in general. 

Barro and Sala-i-Martin (1995, pp.172-9) offer a solution procedure based on the idea 

that the abundant variable has to be kept constant while the scarce variable is let to grow 

till the condition is satisfied. This note contributes to the discussion in two ways. First, 

it shows that the solution procedure suggested by Barro and Sala-i-Martin (1995) 

contains flaws. Second, it shows the right solution procedure that restores constancy 

conditions. 
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1 Introduction 

 

In some growth problems, two or more quantities are ‘forced’ to keep a constant ratio 

among them from the start that we call them constancy conditions. In such cases, if the 

path of one variable is known, then, necessarily, the time-paths of the rest are also 

known. What makes these models interesting is the observation that these constant ratios 

are not tolerant to disturbances. In other words, the conditions need to be restored as 

quickly as possible (preferably immediately), if an unexpected shock (e.g., an 

earthquake) causes a deviation from these conditions because otherwise intertemporal 

maximization cannot be sustained. 

It would not be wrong to say that constancy conditions in growth models have been 

rarely paid attention. There are two reasons behind this: first, constancy conditions do 

arise only in a limited number of growth-modeling approaches. Indeed, to our 

knowledge, the so-called AK  models are the only frames that generate constancy 

conditions from the start. Second, the issue of shocks itself has been rarely studied in 

deterministic growth modeling approaches.1 Hence, neither constancy conditions nor the 

question of how to restore these conditions after a shock has been studied sufficiently in 

deterministic growth models. 

One exception to our argument above is Chapter 5 of Barro and Sala-i-Martin (1995). 

In that chapter, Barro and Sala-i-Martin (henceforth BSM) discuss, in an extended AK  

model, how to restore a constancy condition between the physical capital and human 

capital after a physical shock on capital (e.g., a war) or on human capital (e.g., an 

epidemic). In their study, BSM argue that, after a shock, a temporary optimization policy 

that restricts the growth of the abundant quantity while letting the scarce variable to grow 

is sufficient to restore a constancy condition. This paper agrees with their intuition but 

objects to the solution procedure they offer. In particular, this paper aims to (i) show that 

BSM’s solution procedure is ad hoc and contains technical and conceptual caveats, (ii) 

denote the right solution mechanism that eradicates the technical and conceptual mistakes 

of the BSM procedure. 

                                                           
1 These few works include Oulton (1993), Selcuk and Yeldan (2001), Kepenek et al. (2001), and Yetkiner 
(2003). 
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The organization of the paper is as follows. The next section is all about restoring 

constancy conditions. We first discuss the basic AK  model, aiming at introducing the 

concept. Next, we discuss the solution procedure of BSM (1995) when these conditions 

are upset. We show that their solution procedure contains flaws. Third, we present our 

solution mechanism that restores constancy conditions. The main contribution of this 

section is that it advances our understanding on adjustment dynamics after a shock. The 

last section is reserved for concluding remarks. 

 

 

2 Restoring Optimality Conditions 

 

2.1 The Basics 
Constancy conditions arise in AK  type models or in models that ultimately reduce to 

AK  form without generating transitional dynamics. The basic AK  model is the natural 

starting point for familiarizing with the condition. Define the overall utility as 
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where  is aggregate consumption, C ρ  is the discount rate, and θ  is the (absolute) value 

of elasticity of marginal utility. We assume that 0>ρ  and 0>θ , and that the population 

is normalized to one and does not grow. 

The production function is defined as 

 

AKY =           (2) 

 

where Y  is aggregate output,  is the exogenous technology parameter, and A K  is the 

aggregate physical capital stock. The model is closed by the macroeconomic budget 

constraint 
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KCAKK δ−−=&          (3) 

 

where K&  is the instantaneous rate of change in the capital stock and δ  is the rate of 

depreciation of capital. The solution of this problem is part of many textbooks (e.g., BSM 

(1995)) and we will not elaborate it here. The system generates steady state growth 

without transitional dynamics: 2 

 

θ
δρ −−

===
AKCg ˆˆ* .        (4) 

 

In (4),  is the rate of growth (a hat over a variable indicates the rate of change of the 

respective variable). A steady state growth without transitional dynamics entails also that 

variables of the system, namely consumption C  and physical capital 

*g

K , hold a constant 

ratio between them from the start. In particular, it is straightforward to show that 

 

*
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tC
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Hence, there is a constant ratio between capital and consumption, starting from initial 

values  and C . Consequently, consumption is not a free choice but a function of 

initial capital stock, given parameter values. This is called “closed-form policy function” 

(see BSM, 1995, p.143, footnote 3). Furthermore, the condition is “binding” not only 

once-and-for-all but permanently, implying that the constant ratio between consumption 

and capital must be satisfied at all times.

)0(K )0(

3 Finally, it is worth to note that a change on the 

right hand side of equation (5) does not violate the condition but just alters ‘the rule’ in 

accordance with the change. A violation arises if any of the quantities on the left-hand 

side (i.e., physical quantities) is upset. BSM offered a solution procedure in chapter 5 of 

                                                           
2 Note that this result can be derived after the usual transversality condition on capital is applied. 
3 Perhaps an association can be made between constancy conditions and the saddle-path stability (e.g., 
Cass-Koopmans framework) in the sense that the value of the initial control variable is dependent on the 
initial value of state variable in the case of saddle-path stability as well. The difference is that saddle-path 
stability does not require a constant ratio between quantities at all time points. 
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their 1995 book for restoring constancy conditions after a disturbance. We next look at 

their solution procedure in detail. 

 

2.2 The BSM Example 
BSM (1995, pp.172-9) is a two-sector growth model, which reduces to an AK  model. 

Details of the model are as follows. BSM (1995) assume a Cobb-Douglas production 

function that exhibits constant returns to physical capital K  and human capital H : 

 
αα −= 1HAKY           (6) 

 

where 10 ≤≤α . Output can be used for consumption or investment in physical or human 

capital. The economy’s resource constraint is 

 

HK IICHAKY ++== −αα 1         (7) 

 

where  and  are gross investment in physical and human capital, respectively. The 

changes in the two capital stocks are given by 

KI HI

 

KIK K δ−=&           (8) 

HIH H δ−=&           (9) 

 

BSM assume that, for matter of clarity purposes, the stocks of physical and human capital 

depreciate at the same rate, δ . The Hamiltonian is  

 

{ } { } { }HKHK
t IICYHIKIvCueJ −−−+−+−+= − ωδµδρ )(    (10) 

 

where  is momentary utility (cf. equation (1)),  and )(Cu v µ  are shadow prices 

associated with state variables K  and H , and ω  is the Lagrange multiplier associated 

with the budget constraint (cf. equation (7)). The familiar first order conditions yield that 
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)1/(/ αα −=HK          (11) 

 

and that all quantities grow at the constant rate 

 

θ
δραα αα −−−

====
−1)1(ˆˆˆ AHKCg .      (12) 

 

In (12), g  is the rate of growth. Next, BSM (1995) question what happens if the  

ratio deviates from the value 

HK /

)1/( αα −  due to a shock on one of the quantities. They state 

that the constancy condition dictates adjustments in the two stocks, preferably 

instantaneously, in order to attain the value )1/( αα − . BSM (1995) add that 

instantaneous adjustment (“reversible investment”) is not viable because “it depends on 

the possibility of an infinite positive rate of investment in one form of capital and an 

infinite negative rate of investment in the other form” (BSM, 1995, p.175). They argue 

that a more realistic assumption is to limit the growth of the abundant stock variable 

while the scarce stock variable is allowed to grow. 

For matter of illustration, let us continue with one of the examples in their analysis. 

Suppose that a war destructed part of the capital stock and hence the constancy condition 

between capital and human capital has been upset. Since human capital becomes 

abundant compared to physical capital, BSM’s solution procedure proposes to limit the 

growth of the abundant stock: human capital in that case. From equation (9), we observe 

that keeping gross investment in human capital  at zero implies  

BSM’s interpretation is that the social planner realizes that the economy has too much 

HI teHtH δ−= )0()( .

H  

in relation to K , but since it is infeasible to have negative gross investment in H , they 

allow H  to depreciate at the exogenously given rate δ . 

BSM state that, given that 0=HI , the social planner has to solve a temporary 

optimization problem, which is nested in equation (10) 

 

{ }KCHAKCueJ t δυ ααρ −−+= −− 1)(        (13) 
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where υ  is costate variable and a bar on top of a variable shows that its value is given 

exogenously. Noticeably, this set up is equivalent to the standard Cass-Koopmans 

framework, where the rate of exogenous technological change is δα )1( −− , as H  

depreciates at the rate of δ . BSM argue that the  ratio will rise and reach the value HK /

)1/( αα −  in finite time and thereafter the system will return to the pre-shock equilibrium. 

BSM has two minor fallacies in their analysis. First, BSM (1995, p.176) use the 

expression that “(…) the constraint of nonnegative gross investment in human capital 

becomes nonbinding” to refer to the time point that the pre-shock condition is recovered. 

It is not correct to use this phrase to describe what is happening there. State-space and 

control constraints are used to restrict the movement of the respective variable above or 

below certain values at all times. For instance, referring to BSM’s example, the 

nonnegativity constraint on human capital investment is “active” at all times, even though 

the constraint may not be binding at all (indeed, since the undisturbed model (cf. equation 

(10)) generates endogenous growth, the nonnegativity constraints are not binding at all 

before the shock). When the shock hits, the constraint becomes binding in a temporary 

optimization condition; however, the nonnegativity constraint does not imply any 

termination rule in the temporary problem. In that sense, it is wrong to state that the 

nonnegativity constraint will become nonbinding.  

The second fallacy of equation (13) is that it assumes the shock hits the model 

economy at time zero, which invalidates, by definition, the very existence of optimality 

conditions unless constancy conditions are taken as initial values. 

BSM (1995) have one big caveat in their analysis. We know from the basic AK  

model that all quantities in such models grow at the same rate from the start, and keep 

constant ratios among them. In particular, the BSM model (cf. equation (10)) yields that 

there is indeed a second condition in addition to equation (11):  

 

ρθ
α

+−
=

gtC
tK

)1()(
)( .         (14) 

 

Therefore, if constancy conditions between quantities have to be ever restored, it requires 

one to consider not only the condition between K  and H , but also the one between K  
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and . Evidently, the temporary problem suggested by BSM (cf. equation (13)) ignores 

the second constancy condition. It is easy to see from equation (13) that consumption will 

change over time during the temporary optimization, and that there is no rule that secures 

the second constancy condition at the terminal time of the temporary problem. We may 

conclude that a more thorough thinking on the question of restoring constancy conditions 

is needed. In the next subsection, we elaborate our solution procedure. 

C

 

 

2.3 The Simple-Response Procedure and Others 
 

We conjecture that there are infinite ways of restoring constancy conditions. For 

example, first the constancy condition between physical capital and consumption and 

next the constancy condition between human capital and physical capital can be restored. 

Evidently, any combination of the abovementioned program such as restoring halfway 

the constancy condition between human capital and physical capital following a halfway 

in restoring the constancy condition between physical capital and consumption after 

completing the first halfway in restoring the constancy condition between human and 

physical capitals and so on can also be setup. Recall however that the aim of the social 

planner in this temporary optimization program is to restore the original programme in 

the shortest time. In that respect, we speculate that the immediate restriction of growth of 

all undisturbed variables in the model seems to be the best policy in order to restore 

constancy conditions, given that discrete adjustment is not possible. We do not have any 

theoretical proof to this argument but intuition dictates that a program with multiple 

stages should prolong the duration for restoring the conditions. This policy can be called 

as ‘simple response policy’ in the sense that the policy-maker follows a very simple 

scheme in order to restore optimality conditions. Figure 1 below illustrates the simple 

response policy: 
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Figure 1. Simple response policy: 

(drawn linear for matter of presentation) 

 

 

In figure 1, at time T , a physical shock hits, say, the capital sector, and thus the 

constancy between 

e

K  and H , and C  and H  are disturbed. Since there are two 

constancy conditions, it is not possible to restore them without constraining the growth of 

both of the undisturbed variables. As figure 1 shows, we must restrict then the growth of 

H  and  immediately after the shock and release them to grow at the point that C K  

reaches the pre-shock level. Before presenting the analytical solution, let us illustrate 

what we mean by “infinite ways of restoring constancy conditions” in a relevant example. 

Note that we assume in figure 1 that the housing stock does not change throughout the 

temporary problem. This implies that gross investment  is equal to HI Hδ , or net 

investment is zero. Had we assumed that gross investment in human capital was zero, as 

BSM did, then human capital would grow at the rate δ− . In that case, the solution 

procedure would involve two steps (cf. figure 2): 
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Figure 2. A 2-Step response policy: 

 

 

In the first step, the social planner fixes consumption and gross investment in human 

capital and lets physical capital grow with the released resources. At time T , the physical 

stock ‘catches up’ with the consumption, but the system fails to satisfy the constancy 

condition with respect to human capital. In the second step, physical capital and 

consumption are kept constant, while human capital is set to grow. At time T , all 

constancy conditions are satisfied and hence the temporary problem terminates. Which 

one does imply the shortest time interval? It is not possible to give a precise answer to 

this question without solving the two programs, though intuition may read out that 

.  

1

2

ee TTTT −<− 2

 

The Algebraic Representation 

Suppose that the social planner agrees to restrict undisturbed variables immediately after 

the disturbance. The restriction implies setting up a temporary optimization problem, 

where the only unknowns are capital stock and ‘restoration’ time. The temporary problem 

starts at T  and ends at time +
e T , in which the social planner maximizes 
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where κ  indicates the rate of destruction due to the shock. In the specific example of 

BSM (1995), the maximization problem degenerates because the temporary 

maximization problem reduces to a single capital accumulation function when both C  

and H  are kept constant at their just-before-the-shock values.4 In particular, the 

maximization problem above reduces to 

 

HKCHAKK δδαα −−−= −1&        (16) 

 

Unfortunately, it is not possible to solve algebraically the nonlinear differential equation 

given in equation (16). We run a small experiment for a set of hypothetical parameter 

values.5 Our numerical experiment shows that it approximately takes 12 “years” to 

recover a 50 percent reduction in the capital stock due to a physical shock that hits the 

sector in “year” 80. 

 

 

2.4 Conclusion 
 

In this study, we first showed that AK  models (and frames that reduce to AK  model 

without generating transitional dynamics) have a very special property that they generate 

constant ratios among quantities. This property implies that the time paths of all 

                                                           
4 See Yetkiner (2003) for another application of such temporary problems. It may be also useful to make 
clear that this temporary optimization problem does not fit into the so-called maximin criterion (Rawlsian 
criterion) because consumption (as a parameter) is given to the problem in our case. 
5 The hypothetical values are as follows. 80=eT , 2=θ , 2.0=A , 02.0=ρ , , 1)0( =H 05.0=δ , 

3.0=α , and 5.0=κ . Note that these values imply 428.0)0( =K , , , 

, , C . 

05.0) =0(C 019.0=g

67.4)( =eTH 0.2)( =eTK 26.0)( =eT
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quantities are interdependent in such systems and that they are not tolerant to being put 

off the equilibrium. Next, we elaborate the solution procedure proposed by Barro and 

Sala-i-Martin (1995) for restoring constancy conditions. We show that their solution 

procedure contains flaws. Finally, we indicate the solution procedure in order to restore 

constancy conditions and speculate among the best. The main premise of the solution 

procedure remained to be the argument that all quantities that are not exposed to the 

shock have to be kept constant while the shocked variable is let to grow to its pre-shock 

value. 
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