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Abstract 

There is interest in society in general and in the agricultural and forestry sectors 

concerning a land based role in greenhouse gas mitigation reduction. Numerous studies have 

estimated the potential supply schedules at which agriculture and forestry could produce 

greenhouse gas offsets. However such studies vary widely in critical assumptions regarding 

economic market adjustments, allowed scope of mitigation alternatives, and region of focus.  

Here, we examine the effects of using different assumptions on the total emission mitigation 

supply curve from agriculture and forestry in the US. To do this we employ the US based 

Agricultural Sector and Mitigation of Greenhouse Gas Model and find that variations in such 

factors can have profound effects on the results. Differences between commonly employed 

methods shift economic mitigation potentials from –55 to +85 percent. The bias is stronger at 

higher carbon prices due to afforestation and energy crop plantations which reduce supply of 

traditional commodities. Lower carbon prices promote management changes with smaller 

impacts on commodity supply. 
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 Carbon sequestration in agricultural and forest soils as well as in standing trees has received 

substantial attention within the policy, energy, and agriculture and forestry (AF) communities. 

This attention has arisen due to: 

1.  The widely accepted link between greenhouse gas (GHG) emissions and projected 

climate change (Petit et al. 1999). 

2.  The global dialogue over GHG emission reductions including the emergence of emission 

reducing agreements such as the Kyoto Protocol (Bolin 1998, Najam, Huq, and Sokona 

2003). 

3.  Projected high-costs for GHG emission offset production in some sectors of the economy 

(Viguier, Babiker and Reilly, 2003) coupled with projected low costs from some agricul-

tural sources (Richard and Stokes, 2004, Pautsch et al. 2001). 

4. Co-benefits of GHG emission reduction activities with other AF-related societal goals 

like soil conservation, pollution control, improved water quality (Lal et al. 2004) and 

farm income support (Schneider and McCarl, 2003, Schneider and McCarl, 2005), and 

5. Emergence of GHG offset markets (Johnson and Heinen, 2004, Hasselknippe, 2003).  

This interest is beginning to stimulate policy action. In the U.S. bills have been introduced 

into Congress and discussions are being held in both environmental and agricultural agencies 

regarding policy and/or program design. Many factors need to be considered in formulating 

appropriate GHG emission reduction policy and programs. Substantial literature is emerging 

regarding soil science and forest management aspects of and potential for carbon sequestration  

(Lal 1998, Marland et al., 2004, Johnson and Curtis 2001). However, depending on the 

appraisals’ scope and methods, the true competitive potential may be much smaller than 

estimated through the appraisal (McCarl and Schneider 2001). Thus, the political interest may 

often be founded in engineering based estimates of per hectare net GHG emission estimates times 

an estimate of the applicable acreage without regard to the cost of generating such emissions or 

any market implementation issues (Lal 1998, Dendoncker et al. 2004, Neufeldt 2005). In this 



paper we will explore the impact of methodological differences on the magnitude of the GHG 

emission mitigation potential in the AF sectors of the US. 
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Agriculture and Forestry GHG Emission Reduction: Concepts 

Before comparing various methods and assumptions for the estimation of emission 

mitigation potential, let us briefly review the mechanisms through which AF can participate. 

Following the arguments in McCarl and Schneider (1999, 2000), AF may mitigate GHG 

emissions by  

• creating or expanding sinks to enhance terrestrial absorption of atmospheric GHGs 

(carbon sequestration); 

• reducing emissions generated during AF operations; and 

• providing products such as biofuel feedstocks that ultimately substitute for GHG emission 

intensive products and thereby displace emissions. 

Each of these options will be discussed below.  
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Atmospheric CO2 (CO2) buildup is the most prevalent GHG (Schlesinger 2001; North 2001). 

Terrestrial carbon sequestration offers a possible way of reducing atmospheric CO2 

concentrations. CO2 is exchanged continuously between the terrestrial biosphere and the 

atmosphere. Chlorophyllic plants absorb it through photosynthesis and use the contained carbon 

to build organic matter. Thus, carbon directly accumulates as plants grow. At the end of plant life, 

most of the organic carbon is quickly released to the atmosphere through oxidization, microbial 

decomposition and/or combustion. However, some of the carbon enters other terrestrial pools 

(humus, wood products, etc.).  

Scientists estimate that about 80 percent of global carbon is stored in soils or forests (IPCC 2000) 

and that a substantial proportion of the carbon originally contained in soils and forests has been 

released due to past AF activities and deforestation. Collectively, these facts imply that there is 

substantial potential for AF activities to sequester carbon (Lal et al. 1998).  

There are two fundamental physical processes through which carbon sequestration can be 

enhanced: increasing the amount of carbon accumulated in soils or trees and decreasing microbial 

decomposition and combustion (Paustian et al. 2001). Management actions that increase carbon 



inputs to soils and trees include expansion of forested areas, delay of the time of forest harvest, 

increase in forest growth rates through enhanced silvicultural practices, adoption agricultural 

practices that minimize soil disturbance and erosion, increasing retention of crop or logging 

residue, and maximization of water- and nutrient-use efficiency of crop production.  
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The IPCC (1996) estimates that on a global basis, agriculture emits about 50 percent of all 

Methane (CH4), 70 percent of all nitrous oxide (N2O), and 20 percent of all CO2. Methane is 

emitted in AF through enteric fermentation of ruminant animals, anaerobic livestock manure 

decomposition, rice cultivation, and termites. Possible abatement strategies include altering crop 

choice, livestock herd size, livestock feeding and rearing practices, and manure management. 

N2O emissions arise from manure, legumes, and fertilizer use and can be abated by reducing 

livestock herd size and changing crop mixes and fertilization practices. CO2 is emitted from fossil 

fuel usage, oxidization of soil organic matter, deforestation, and biomass decomposition or 

burning. Emissions can be reduced by decreasing fossil fuel use; changing the allocation of land 

among crops, pasture, grass lands, and forests; increasing forest harvest intervals; improving crop 

residue management; and restoring degraded land. Forest management practices that reduce 

emissions include diminished deforestation or logging, protection of forest reserves, and 

improved disturbance management with respect to fire and pest outbreaks. 

The relative magnitude of these emission sources varies substantially across countries, with 

the greatest differences occurring between developing and developed countries. Deforestation and 

land degradation mainly occur in developing countries while developed countries slightly 

increase their forest base (FAO 1997). Developed country agriculture generally uses more 

capital-intensive production systems1, resulting in higher fossil-fuel-based emissions.  
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AF biomass products may replace fossil fuel intensive products such as electrical power and 

liquid fuels. The use of biomass energy mitigates CO2 emissions because most of the carbon 

released at combustion time is recycled carbon. Kline, Hargrove, and Vanderlan (1998), for 

example, estimate that only 5 percent of the carbon emitted through poplar-fed electrical power 

 
1 Aggregate estimates of tractor inventory show developed countries using about three times as many tractors as 
developing countries on an agricultural area that is 40 percent smaller (FAO 1999) 



plants pertains to fossil fuels. The remaining 95 percent pertains to carbon photosynthetically 

absorbed from the atmosphere during biomass growth. Use of pure fossil fuel products, on the 

other hand, increases atmospheric CO2 concentrations by 100 percent of the contained CO2 plus 

emissions related to extraction and processing of these fuels.  
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Forestry products also can be used as substitutes for fossil-fuel-intensive steel and concrete 

in construction (Marland and Schlamadinger 1997, Brown 1999, and Brown et al. 1996 elaborate 

on this point). Finally, there may be gains from substituting cotton and other fibers for petroleum-

based synthetics. 

GHG Emission Mitigation Potential: Appropriate Appraisal Scope 

Emission mitigation efforts may be complimentary (profitable) or competitive (costly) with 

traditional agricultural and forest business. However, in a world where for a long time emissions 

have not imposed a direct cost to businesses, it is safe to assume that the majority of truly 

complimentary options have already been adopted voluntarily and evolved into common business 

strategies while the majority of truly competitive options have been idle. For example, while 

many farmers have employed intensive tillage methods which led to lower soil organic matter 

levels, they have prevented soil organic carbon levels from becoming too low and used humus-

increasing measures such as manure applications or cover crops to reap the benefits of higher soil 

productivities. Consequently, the mitigation options “left to implement” are generally those 

which for economic reasons have not been adopted in the past. This implies that appraisals of 

realistic AF-generated mitigation potentials should incorporate the cost of mitigation. 

Particularly, we believe that an appropriate appraisal should entail four important economic 

matters. These include 

• factors that would cause an AF producer to adopt a strategy, 

• regional scope and market feedbacks 

• competition across alternative strategies, and 

• multi-gas trade-offs. 

A brief discussion of these matters follows below. 

Factors Causing Strategy Adoption by Agricultural and Forestry Producers  28 
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While policymakers and others may desire certain AF GHG offset practices, the farm or 

forest operator ultimately controls the practices employed. Farmers and foresters adopt those 



practices that maximize their well-being. Well-being, however, is complex involving many 

dimensions, such as 
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• practice profitability, 

• risk exposure,  

• time availability of resources required to use the practice,  

• amount of training and/or learning required to employ the practice,  

• willingness to adopt the degree of management required to employ the practice,  

• consistency of the practice with existing machinery,  

• willingness and ability to invest in new machinery required to employ the practice, 

• desire for environmental stewardship coupled with the environmental attributes of 

practice, and  

• necessity to perform in compliance with imposed regulations. 

Some practices currently used by farmers and foresters are desirable from a GHG emission 

mitigation point of view. In such cases, the operator has judged the practice superior to other 

alternatives, even in the absence of adoption incentives. However, in other cases the desired 

practices are not used. To convince farmers to adopt such practices, regulations or incentives are 

needed. The incentives may be a mixture of direct instruments (such as carbon-related payments) 

and indirect instruments (such as sequestration shortfall insurance, investment subsidies, and 

training programs). 

Consider for example the adoption of no-till farming as opposed to conventional moldboard 

plowing. Discussions with farmers (see Bennett 1999) reveal reservations about the adoption of 

no-till due to factors such as 

• potential yield losses due to slower warming of untilled soils during cool spring planting 

seasons;  

• potential yield reductions due to other factors; 

• potential cost increases, particularly for weed and insect control;  

• need to acquire new expensive equipment; 

• critical reliance on the effectiveness of chemical weed control compounds and the need 

for continued efficacy of weed control; 

• learning time to effectively employ the practice; and 

• willingness on behalf of older farmers to switch practices. 



 1 
2 

3 

4 

5 

6 

7 

All of these factors affect the magnitude of the financial incentives required to stimulate 

adoption. A lower bound on the needed incentive could be calculated as the foregone net income 

due to average yield loss (note yield gains are possible) plus the net value of any cost change. In 

developing efficient policies, however, incentives above and beyond lost income may be needed to 

overcome other barriers to adoption. Pautsch et al. (2001), for example, indicate that nominally 

profitable practices may not always result in full adoption. 

Regional scope and market feedbacks 8 
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Economic potential can be appraised at the field, farm, regional, or sector level. Farm-level 

assessments examine the incentives needed to induce participation on individual farms or 

relatively detailed farm type classes (Pautsch et al. 2001, de Cara and Jayet 2000). However, such 

appraisal results are typically based on assumed exogenous and fixed prices and thus may be 

misleading. The following calculation will illustrate why AF GHG mitigation efforts might 

substantially impact market prices for traditional AF commodities. U.S. cropland amounts to 

approximately 325 million acres (132 million hectares). The literature suggests an annual 

maximum potential for agricultural carbon sinks of around one and a half tons of carbon per acre 

of cropland through afforestation (Newell and Stavins 2000). Food will still need to be produced 

so it is inconceivable that more than half of the acreage could convert.  As a result, the total 

annual agricultural-cropland-based contribution to carbon storage may be bounded at about 250 

million metric tons. The annual U.S. provisions if it complied with the Kyoto Protocol would be 

in the neighborhood of 600-700 million metric tons.  If a strong GHG emission mitigation 

program diverted almost half of US cropland, that would imply similar reductions in crop 

production, leading to higher market prices. Higher market prices for traditional AF commodities 

would raise the opportunity cost of mitigation strategies and thus make AF mitigation more 

expensive the more cropland is involved. To account for these complex interactions, a sector-

level approach that simultaneously analyzes mitigation impacts and impacts on the traditional 

agricultural sector is needed. 

Competition Across Alternative Strategies 28 
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The potential of certain AF GHG emission mitigation strategies is not independent of the 

level of other strategies. For example, the more cropland farmers allocate to biofuels, the less 



cropland is available for establishing permanent forests or adopting GHG emission friendly 

tillage practices. Complementary relationships also emerge; farmers may supply corn for ethanol 

processing and at the same time sequester soil carbon through minimum tillage and offset 

emissions by reducing fossil fuel usage. Thus, simultaneous consideration of potential strategies 

rather than independent appraisal would appear to be appropriate. 
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Multiple Gas Trade-offs 6 
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AF enterprises contribute to emissions of multiple GHGs. A crop-livestock farm releases 

CO2 when combusting the fuel necessary to operate field machinery, emits N2O through fertilizer 

applications, releases CH4 through enteric fermentation from ruminant animals or as a manure 

by-product, but possibly augments the soil carbon stock by using reduced tillage. Trade-offs 

between these emissions may occur if, for example, more fertilizer is needed under reduced 

tillage or if usage of growth hormones for animals alters the required acreage to produce feed.  

Multiple gases can be considered using the global warming potential (GWP) concept. The 

GWP compares the radiative force of the various GHGs relative to CO2 over a given time (IPCC 

1996). The one-hundred-year GWP for CO2 equals 1. Higher values for CH4 (23) and N2O (298) 

reflect a greater per ton heat-trapping ability. Thus, multiplying an emission quantity by the GWP 

forms a “carbon equivalent” measure after factoring in an adjustment for the molecular weight of 

carbon in CO2. 

Mitigation Potential: Empirical Findings 

Now we turn our attention to empirical estimates of mitigation potential. Numerous 

appraisals have estimated the GHG emission mitigation potential from agriculture and forestry in 

recent years (Richards and Stokes 2004, McCarl and Schneider 2000). The estimated mitigation 

potentials however differ considerably between appraisals. These differences may partially be 

due to different data but they are also due to different methods related to market design, strategy 

scope, regional scope, and emission reduction incentives. Large methodological differences have 

several negative consequences. First, they lead to different results and thus increase the 

uncertainty of mitigation potentials. Second, they make comparisons across different studies 

difficult. Third, they adversely influence policy decisions who give equal weight to many 

different studies. Here, we want to alleviate some of these drawbacks and facilitate the 

interpretation and comparison of different AF mitigation appraisals.  



We will use the Agricultural Sector and Mitigation of Greenhouse Gas (ASMGHG) model of 

the United States (Schneider 2000). This model features many of the characteristics advocated 

above but does not fully account for the disincentives that are not profit related. Previously, the 

model has been used to compute the competitive economic potential of major AF strategies in the 

US at various incentive levels (McCarl and Schneider 2001). In this study, we will extent the 

analysis and examine how the emission potential changes as different appraisal specifications are 

used related to strategy interactions, interregional trade, and market feedbacks. Because the 

alternative assumptions are examined with the same model, a consistent data set is implied.  
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The Agricultural Sector and Mitigation of Greenhouse Gas Model2 9 
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The ASMGHG model is an expansion of the U.S. Agricultural Sector Model (ASM) (Chang 

et al. 1992, Chen and McCarl 2000). It is a mathematical programming based, price-endogenous 

sector model of the agricultural sector, modified to include GHG emission accounting by 

Schneider (2000). ASMGHG also includes data on forestry production based on the FASOM 

model (Alig, Adams, and McCarl 1998). ASMGHG depicts production, consumption, and 

international trade in 63 U.S. regions for 22 traditional and 3 perennial energy crops, 29 animal 

products, 6 forest products and more than 60 processed agricultural products. Management 

choices include tillage, irrigation, fertilization, manure treatment, and animal feeding alternatives. 

Environmental accounts include levels of net GHG emission for CO2, CH4, and N2O; 

surface, subsurface, and groundwater pollution for nitrogen and phosphorous; and soil erosion. 

ASMGHG simulates the market and trade equilibrium in agricultural markets of the United States 

and major foreign trading partners. Domestic and foreign supply and demand conditions are 

considered, as are regional production conditions and resource endowments. The market 

equilibrium reveals commodity and factor prices, levels of domestic production, export and 

import quantities, GHG emission management strategy adoption, resource usage, and 

environmental impacts. 

Alternative Assumptions 26 
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Appraisals of agriculture and forestry based GHG emission mitigation potentials encompass 

interdisciplinary research involving many natural scientists but also many economists. Market 

 
2 The Appendix provides details on the mathematical structure of ASMGHG and the scope of portrayed AF producer 
choices, regions, mitigation strategies, and other environmental accounts.  



feedbacks tend to be ignored by natural scientists and some economists who use detailed farm 

level models with constant commodity prices. To address alternative market design assumptions, 

we use alternative specifications of ASMGHG's objective function and producer constraints. Four 

cases are distinguished. The first case represents the basic ASMGHG setup, where commodity 

prices are endogenous and crop and livestock producers are able to alter crop and animal choices 

as well as their management. Second, we portray price-exogenous appraisals by modifying 

ASMGHG's objective function. In particular, all downward sloping demand functions are 

converted to infinitely elastic, (horizontal) demand functions. Similarly, all upward-sloping factor 

supply functions are replaced by perfectly elastic (horizontal) supply functions. Moreover, export 

and import quantities are fixed as well.  
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A third market design specification represents appraisals with constant prices, constant crop 

shares, constant livestock numbers, and constant trade volumes. This type of appraisal is 

frequently called budgeting. It resembles GIS based geographic appraisals, where economic 

potentials are computed as so-called cost landscapes. To implement this market design, we 

modified the ASMGHG's objective function as in case two. In addition, we imposed regional 

crop area and livestock constraints, which forced the total crop area and the animal population to 

stay at the level of the base solution. Thus, possible producer adaptations were limited to 

management changes involving tillage, fertilization, irrigation, livestock manure treatment, and 

feed diet changes. Fourth, we setup a market design case, where prices are endogenous as in case 

one but crop acres and livestock numbers are fixed as in case three. This design represents 

appraisals where market price adjustments are considered but only one or few crops are included 

in the model. 

Another important difference between existing appraisals of mitigation potentials concerns 

the scope of considered strategies. Frequently, only one or a subset of all strategies is assessed 

(Faaij et al. 1998, de Cara, Houzé, and Jayet 2005). One reason may be that researchers or whole 

research teams are sometimes exclusively devoted to particular options, i.e. certain energy crop 

options, agricultural tillage systems, forest management alternatives, or non-CO2 opportunities. 

Such appraisals neglect competitive or complimentary effects with other strategies. To address 

this issue, we design five alternative scenarios were we only permit particular strategies to be 

eligible for a combined tax/subsidy policy. First we made all greenhouse gas accounts eligible 

(see Appendix for a list). In turn we specified scenarios where the policy affects only a) fossil 



fuel emissions and biofuel offsets, b) sequestration from afforestation, c) sequestration from soil 

carbon changes through either tillage or land-use changes, and d) N2O and CH4 emissions.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Existing appraisals reveal also a large variation in regional scope. Some studies portray only 

a relatively small region in the first place (Neufeldt 2005). Others consider several countries or 

the whole globe but their estimates are simple summations of many independent country or sub-

country appraisals (Makundi and Sathaye 2003). Very few studies appraise multinational or 

global potentials with individual regions assessed simultaneously (Reilly et al. 1999). The first 

two approaches are likely to overstate mitigation potentials due to emission leakage. Emission 

intensive activities are exported out of the small appraisal regions. To emulate the effects of 

different regional scopes, we consider 10 major regions in US (see Appendix). For each of the 10 

regions, we construct models that reflect policy being active only in one macro-region at a time. 

As basic setup, we impose the carbon price simultaneously on all regions in ASMGHG.  

Finally, different mitigation incentives are implemented by specifying 32 different carbon 

price levels ranging from $0 to $500 per metric ton of carbon equivalent (mtce). These carbon 

prices are imposed on different greenhouse gas accounts depending on the chosen assumption 

about the strategy and region scope. For N2O and CH4 emissions when eligible, the carbon price 

was inflated by the 100-year global warming factor of those gases relative to CO2 divided by the 

conversion rate from carbon to CO2 (3.667). The use of several carbon prices is a common 

approach in the literature to address the uncertainty of future carbon prices and to trace out an 

emission reduction supply curve. In the context of this study, we employ a wide range of carbon 

prices also to find out whether the impacts of regionality, strategy, and market assumptions differ 

across different incentive levels. 

Combining 32 carbon price levels, 4 market and producer adjustment designs, 5 strategy 

scope options, and 11 regional specifications yields 7040 potential ASMGHG runs that would 

require about half a year of computing time on a standard computer. To make our analysis less 

computer time demanding, we solve ASMGHG only for a subset of the above combinations. 

Particularly, we investigate the following combinations of assumptions: 

• Regionally independent appraisals with simultaneous strategy implementation and 

full producer and market price adjustments,  

• Regionally independent appraisals with individual strategy implementation and full 

producer and market price adjustments,  



• National appraisals with simultaneous strategy implementation for all four producer 

and market adjustment options,  
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• National appraisals with independent strategy implementation and full producer and 

price adjustment, 

• National appraisals with independent strategy implementation, full producer adjust-

ment but constant market prices 

• National appraisals with simultaneous strategy implementation and ignorance of all 

costs, and 

• National appraisals with independent strategy implementation and ignorance of all 

costs. 
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To empirically illustrate the effect of different GHG mitigation appraisal specifications, we 

focus on the national estimates of total mitigation potential in the US. Our first exercise is to 

distinguish economic and technical potentials. This is shown in Figure 1. There are two technical 

potentials estimates represented by vertical lines. These estimates are obtained by changing 

ASMGHG’s objective function from welfare maximization to a pure maximization of GHG 

mitigation. Mitigation costs and carbon prices do not enter the model and therefore do not affect 

the computed potential. The competitive economic potential is far less than the technical 

potential. Even at a relatively high carbon price of $100/mtce, it amounts only to about 50 percent 

of the simultaneous technical potential. The competitive potential is also substantially lower than 

the geographic potential, where price effects and strategy interactions have been ignored. The 

highest overstatement is given however by the sum of independent technical potentials. The 

overstatement results from a combination of cost negligence and permission to use land several 

times for options which are mutually exclusive in reality. 

The impact of different market and producer adjustment specifications is illustrated in Table 

1 and Figure 2. The line labeled "endogenous acres and prices" represents our reference 

mitigation function where the fully endogenous ASMGHG version is used to compute the 

economic potential of AF in the US. This reference function takes into account agricultural 

market adjustments as well as full adaptations for crop and livestock producers. All three 

alternative specifications show substantial deviations from the reference function. Particularly, 

the assumption of constant prices leads to large overstatements of the economic potential. 



Restricted adaptation on the other hand underestimates the economic potential. Moreover, 

deviations are generally larger at higher mitigation incentive levels.  
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The direction and magnitude of the estimated deviations can be understood by reviewing the 

nature of the multi strategy equilibrium as discussed in McCarl and Schneider 2001. Therein we 

found that at small incentive levels strategies are pursued which are close to existing cropping 

practices and land allocations, i.e. adoption of reduced or zero tillage, and which exhibit 

relatively small GHG emission mitigation rates. At higher incentives, strategies are pursued that 

yield higher rates of GHG emission mitigation but generally involve a strong deviation from 

traditional production practices. Namely afforestation and perennial energy crop plantations 

displace traditional crops and reduce the possible area for tillage based soil carbon sequestration. 

Further, at lower incentive levels, all market specifications give similar results because market 

adjustments are relatively minor. At higher incentive levels, the assumption of constant 

commodity prices understates the rising opportunity cost for the diversion of traditional cropland 

to energy crop plantation or forests. In other words, the more traditional cropland shrinks, the 

more increase prices and revenues for traditional commodities lowering incentives for further 

cropland conversions.  

The assumption of constant crop acreage leads to the opposite effect because deviations from 

the current crop mix are prohibited and, more importantly, energy plantation and afforestation 

options are excluded. A combination of constant prices and restricted adaptation (case labeled: 

"constant prices and acres") introduces both a positive and a negative bias. While in our analysis 

the two opposite bias cancel at an incentive level of about $100 per mtce, one should be aware 

that this effect is purely spurious should not be used to recommend the underlying simple 

appraisal method. 

Next, we examine the impact of different appraisal scopes regarding mitigation strategy and 

regions (Figure 3). As before, we use the fully endogenous ASMGHG with all regions and all 

strategies as reference function. This function is labeled "comb. regions, comb. strategies" and is 

computed based on 32 ASMGHG solutions for 32 different mitigation incentives. The second 

line "indv. regions, comb. strategies" uses information from 320 ASMGHG solutions 

representing specifications of 32 incentive levels and 10 regional models. Basically, at each 

incentive level, ASMGHG is solved 10 times, each time imposing the mitigation policy in a 

different US macro region. The national economic potential is then computed as sum of the 10 

independently obtained regional economic potentials. Figure 3 shows that this method 



substantially overstates the reference potential. Differences reflect the interregional emission 

leakage within the US, which occurs especially at higher carbon prices because high mitigation 

incentives promote afforestation and energy crop plantations. For example, at a carbon price of 

$100 per mtce, the sum of independently computed regional potentials exceeds the simultaneous 

potential by about one third. At carbon prices below $50 per mtce, the difference is smaller 

(Table 1).  
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The third line in Figure 3 ("comb. regions, indv. strategies ") uses information from 96 

ASMGHG solutions representing specifications of 32 incentive levels and 4 independent strategy 

appraisals as described in the previous section. The bias from summing independently obtained 

strategy potentials versus appraising all strategies simultaneously reaches considerable 

overstatements at high carbon prices. Overstatements result primarily from the ignored resource 

competition between different AF mitigation strategies. Simply speaking, land diverted to 

perennial energy grasses cannot be used for afforestation. This obvious fact is violated by 

summing independent strategy potentials. However, the sum of independent strategy potentials 

can also understate the joint mitigation potential if two strategies are complementary rather than 

competitive. For example, the adoption of zero tillage does not only sequester soil carbon but 

may also result in less fossil fuel use because the energy intensive plowing operation is cut out. 

Thus, zero tillage may result in higher economic potentials under appraisals that consider both 

fossil fuel reductions and soil carbon sequestration. Similarly, reduced nitrogen fertilization 

reduces both embodied carbon emissions and N2O emissions on the field. More generally, 

complementary GHG mitigation strategies in AF relate to crop management changes. The 

underestimation from ignoring complementary relationships is however minor in comparison to 

the overestimation from ignoring competitive relationships. For carbon prices at or below $50 per 

mtce, mitigation is primarily due to management changes but the economic potentials between 

joint and independent appraisals are fairly close.  

Finally, the line labeled "indv. regions, indv. strategies" represents the sum of independent 

regional and independent mitigation strategy appraisals and uses information from 1280 

ASMGHG solutions (32 carbon prices times 10 macro regions times 4 strategy classes). The 

resulting economic potential bias is highest especially for high carbon prices with high strategy 

competition and high leakage potential. 
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Agriculture and forestry can mitigate a substantial quantity of greenhouse gases through 

source emission reductions, biofuel offsets, and carbon sequestration via growing trees, land use 

change, or tillage change. Numerous studies have tried to quantify the emission abatement 

potentials of these options. Wide differences have been revealed between technical and economic 

potential estimates with the latter being substantially lower. This study shows that estimates of 

economic potentials may also differ greatly among themselves depending on the scope of the 

associated appraisal. Assumptions about producer adaptations, market adjustments, strategy 

competition, multi-GHG trade-offs, and the regional scope of the appraisal can considerably 

affect the magnitude of the estimated economic potential. 

Our findings can be summarized into a set of major points. First, when comparing economic 

potential estimates from different studies, one should carefully examine the underlying 

assumptions particularly in terms of market price response, regionality and scope of allowed 

mitigation alternatives. The few assessments cited in this study already illustrate diversity in such 

factors within appraisal methods.  

Second, market feedbacks are important whenever GHG mitigation strategies notably alter 

commodity supply. This is the case for perennial energy plantations and afforestation. It is also 

true for crops that are primarily produced as input for biorefineries. Tillage changes, on the other 

hand, have a very small impact on commodity supply. Thus, market feedbacks are important 

when examining relatively strict GHG policies because perennial energy plantations and 

afforestation need relatively large incentives to become attractive to AF producers. Small GHG 

mitigation incentives, i.e. below $50 per mtce, favor reduced tillage options and are not likely to 

affect commodity prices a lot. The omission of market price adjustments overstates the economic 

potential of strategies, which reduce traditional commodity supply. Alternatively, if a mitigation 

strategy would increase traditional commodity supply, then omission of market price adjustments 

could also understate the economic potential. Perhaps a long-lasting adoption of zero tillage 

might lead to increased yields after a decade because enhanced soil organic matter increases a 

soil’s productivity and fertility. Current data, however, do not support strong positive yield 

impacts from reduced tillage. 

Third, economic potential estimates strongly depend on the degree to which the appraisal 

allows for AF producer adaptation. As shown by McCarl and Schneider (2001), the economic 

potential of carbon offsets from perennial energy crops is much higher when competing strategies 



such as carbon sequestration are prohibited rather than simultaneously allowed. This study shows 

that the bias from limited adaptation for the total economic potential across AF strategies can be 

positive or negative. A negative bias, i.e. an understatement of the total economic potential occurs 

because fewer options reduce the adaptability and flexibility of AF producers and thus virtually 

increase the cost of mitigation. However, if the total economic potential is appraised as the sum 

of different individual strategy assessments, it can lead to a large positive bias. This 

overstatement is due to neglected strategy competition resulting in multiple allocations of the 

same land to different strategies, which in reality are mutually exclusive. Thus, when examining 

the strategy scope of an appraisal, one should not only verify the number of included strategies 

but also check whether different strategies were assessed jointly or independently. 
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Fourth, many appraisals differ in regional scope. Limited regional representation in 

appraisals with endogenous prices and trade volumes leads to an overstatement of the economic 

potential because emission intensive production can be exported causing emission leakage. 

Regional appraisals may be appropriate if the represented mitigation policy is indeed 

implemented at regional level and emission leakage is a real consequence. On the other hand, if 

sub-national appraisals were used to assess a national policy, the estimated economic emission 

mitigation potentials will be truly overstated. This issue is particularly relevant for ASMGHG. 

While our economic potentials for the AF sectors in the US are derived from a nationwide policy 

implementation, other countries were left unregulated3. A unilateral mitigation policy in the US 

is, however, almost opposite to current political realities.  

Finally, we need to address the issue of methodological feasibility and limitations. Currently, 

there is no “one does it all model” that can appropriately appraise the true economic greenhouse 

gas emission mitigation potential from the AF sectors. The ASMGHG model used here is no 

exception. Limitations include the absence of detailed AF production possibilities in foreign 

countries, the absence of non-agricultural sectors of the economy, and the coarse regional and 

technological resolution of AF production possibilities in the US relative to detailed regional farm 

level models, which integrate often millions of observed farm data points. Limitations arise 

because of computational and data deficiencies. On one hand, current computers are not able to 

simulate globally active mitigation policies with a high regional and technological resolution. On 

the other hand, data deficiencies and intellectual property rights practically restrict the 

opportunity for building a “one does it all” model. However, while an integrated single model 

 
3 This assumptions is relaxed in Lee et al.  



may be infeasible for some time to come, an appropriately linked suit of different appraisals may 

be an efficient second best solution. For example, several regional farm level appraisals could 

provide regional abatement functions accounting for profit and non-profit aspects as well as 

heterogeneous soil, climate, and management conditions. These aggregated farm level response 

functions could be integrated in agricultural sector models such as ASMGHG. In turn, ASMGHG 

or similar models could estimate and provide sector level response functions for global, multi-

sector general computable equilibrium and/or Earth system models. The findings of this paper 

demonstrate that such an approach would be by far better than a simple adding up of regionally 

independent appraisals of individual mitigation strategies. 
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Table 1 Impact of Alternative ASMGHG Appraisal Assumptions on GHG Mitigation 

Potential from US Agriculture and Forestry 
 

Appraisal Assumptions 
Prices Endog. Const. Endog. Endog. Endog. Const. Endog. Const. 
Regions Simult. Indep. Indep. Simult. Indep. Simult. Simult. Simult. 
Strategies Simul. Indep. Simult. Indep. Indep. Simul. Simult. Simult. 
Adaptation Full Full Full Full Full Mangmt. Mangmt. Full 

Carbon Potential Bias Relative to Competitive Economic Potential (C-Econ Column) 
Tax C-Econ Geogr I-Regs I-Strats I-RgStr Budget Fx-Acr Fx-Price

$/mtce mmtce % % % % % % % 
5 27 -26.9 6.5 -0.2 -4.2 -2.1 -19.8 -17.2 

10 50 -10.9 13.4 -4.1 3.4 16.4 -9.0 -2.8 
15 71 -22.8 1.0 -4.8 -13.2 -2.6 -22.8 1.0 
20 80 -9.7 22.0 -4.6 7.1 3.2 -12.7 0.7 
25 95 -15.1 17.5 0.0 9.7 4.0 -18.8 -4.6 
30 103 -7.8 22.5 3.2 15.5 9.6 -18.4 4.0 
35 115 -6.2 21.8 6.3 17.4 13.1 -19.8 13.4 
40 125 -3.2 22.8 5.2 16.7 15.2 -23.2 17.8 
45 137 7.4 29.8 6.2 25.6 13.9 -26.7 34.5 
50 171 -2.3 20.4 -0.2 25.1 10.2 -37.5 21.4 
60 204 10.2 21.9 13.1 28.1 13.8 -41.7 39.3 
70 240 14.8 20.5 27.4 31.7 4.2 -44.5 41.0 
80 259 30.0 20.6 28.0 39.9 -0.1 -44.4 49.3 
90 273 49.7 28.8 38.7 46.9 -1.4 -44.0 56.2 

100 284 62.9 36.4 42.3 49.0 -1.7 -44.1 64.1 
125 335 72.2 33.8 44.0 42.0 -12.0 -48.9 57.2 
150 359 76.1 31.0 39.4 46.3 -15.5 -49.5 51.7 
175 381 75.4 31.2 42.5 55.4 -17.7 -51.3 48.7 
200 399 73.0 34.0 41.7 60.8 -20.5 -53.1 44.7 
225 405 80.8 35.9 47.9 66.0 -21.1 -53.0 46.2 
250 409 84.6 36.7 48.6 66.5 -21.6 -52.8 47.0 
275 413 85.5 36.9 48.9 66.1 -22.3 -52.9 46.4 
300 418 85.5 37.0 48.4 66.0 -23.1 -52.9 45.2 
325 423 85.7 37.2 48.0 66.2 -23.9 -53.1 44.0 
350 428 85.3 40.0 47.5 67.5 -24.7 -53.3 42.9 
375 431 84.8 41.5 47.2 70.5 -25.2 -53.2 41.9 
400 435 83.4 44.3 46.8 69.4 -25.9 -53.4 40.6 
425 442 81.3 48.7 45.5 67.9 -26.8 -53.7 39.9 
450 449 78.5 50.6 43.7 68.2 -27.9 -54.3 38.1 
475 457 75.3 53.4 42.4 67.8 -28.9 -54.6 35.8 
500 460 74.5 56.8 42.2 67.1 -29.3 -54.3 35.0 
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Figure 1 Economic impacts on potential on greenhouse gas emission mitigation 

potential from the AF in the US 
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Figure 2 Market scope impacts on the national economic potential for greenhouse gas 

emission mitigation in the US through AF. 
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Figure 3 Impact of different region and strategy scope on greenhouse gas emission 

mitigation potential from the AF in the US.  
 



Appendix 

Appendix 1 Details on the Mathematical Structure of ASMGHG 
This section documents the essential structure of the U.S. agricultural sector and mitiga-

tion of greenhouse gas (ASMGHG) model. Here, we focus on the general model structure, which 
is not affected by data updates or model expansion toward greater detail. Data and a GAMS 
version of a regionally aggregated ASMGHG version are available on the Internet. The 
aggregated model can be used to examine and verify the model structure and data and to 
qualitatively replicate the results presented in this article. In representing ASMGHG’s 
mathematical structure, we will use summation notation because it corresponds very closely to 
the ASMGHG computer code. 

ASMGHG is designed to emulate U.S. agricultural decision-making along with the 
impacts of agricultural decisions on agricultural markets, the environment, and international 
trade. To accomplish this objective, ASMGHG portrays the following key components: natural 
and human resource endowments, agricultural factor (input) markets, primary and processed 
commodity (output) markets, available agricultural technologies, and agricultural policies. 
Because of data requirements and computing feasibilities, sector models cannot provide the same 
level of detail as do farm level or regional models.  Therefore, ASMGHG depicts only 
representative crop and livestock enterprises in 63 aggregated U.S. production regions rather than 
individual farms characteristics. International markets and trade relationships are portrayed in 28 
international regions. 

Agricultural technologies in the U.S. are represented through Leontief production func-
tions specifying fixed quantities of multiple inputs and multiple outputs. Producers can choose 
among several alternative production technologies. Specifically, alternative crop production 
functions arise from combinations of 3 tillage alternatives (conventional tillage, conservation 
tillage, and zero tillage), 2 irrigation alternatives (irrigation, dryland), 4 alternative conservation 
measures (none, contour plowing, strip cropping, terracing), and 3 nitrogen fertilization 
alternatives (current levels, a 15 percent reduction, and a 30 percent reduction) specific to each 
U.S. region, land, and crop type4. Alternative livestock production functions reflect different 
production intensities, various manure treatment schemes, alternative diets, and pasture 
management for 11 animal production categories and 63 U.S. regions. Processing functions 
identify first or higher level processing opportunities carried out by producers.  

ASMGHG is setup as mathematical programming model and contains more than 20,000 
individual variables and more than 5,000 individual equations. These equations and variables are 
not entered individually but as indexed blocks. All agricultural production activities are specified 
as endogenous variables and denoted here by capital letters. In particular, the variable block 
CROP denotes crop management variables, LUTR = land use transformation, LIVE = livestock 
raising, PROC = processing, and INPS = production factor (input) supply variables. Additional 
variable blocks reflect the dissemination of agricultural products with DOMD = U.S. domestic 
demand, TRAD = U.S. interregional and international trade, FRXS = foreign region excess 
supply, FRXD = foreign region excess demand, EMIT = Emissions, and SEQU = Emission 
reduction or sequestration variables. WELF denotes total agricultural welfare from both U.S. and 

                                                 
4 We use representative crop production budgets for 63 U.S. regions, 20 crops (cotton, corn, soybeans, 4 wheat types, 
sorghum, rice, barley, oats, silage, hay, sugar cane, sugar beets, potatoes, tomatoes, oranges, grapefruits), 6 land 
classes (low erodible cropland, medium erodible cropland, highly erodible cropland, other cropland, pasture, and 
forest) 



foreign agricultural markets. With the exception of WELF, all variables are restricted be 
nonnegative. 

ASMGHG consists of an objective function, which maximizes total agricultural welfare 
(WELF) and a set of constraining equations, which define a convex feasibility region for all 
variables. Feasible variable levels for all depicted agricultural activities range from zero to an 
upper bound, which is determined by resource limits, supply and demand balances, trade 
balances, and crop rotation constraints5. Solving ASMGHG involves the task of finding the 
“optimal” level for all endogenous variables subject to compliance with all constraining 
equations. By means of ASMGHG’s objective function, optimal levels of all endogenous 
variables are those levels which maximize agricultural sector based welfare, which is computed 
as the sum of total consumers surplus, producers surplus, and governmental net payments to the 
agricultural sector minus the total cost of production, transportation, and processing. Basic 
economic theory demonstrates that maximization of the sum of consumers' plus producers' 
surplus yields the competitive market equilibrium as reviewed by McCarl and Spreen (1980). 
Thus, the optimal variable levels can be interpreted as equilibrium levels for agricultural 
activities under given economic, political, and technological conditions.  

To facilitate understanding of the ASMGHG structure, we will start with the description 
of the set of constraining equations and subsequently explain the objective function. Small letters 
represent matrix coefficients and right hand side values. Demand and supply functions are 
denoted in italic small letters. Equations, variables, variable coefficients, and right hand sight 
variables may have subscripts indicating indices with index c denoting the set of crops, f = 
production factors with exogenous prices (subset of index w), g = greenhouse gas accounts, h = 
processing alternatives, i = livestock management alternatives, j = crop management alternatives, 
k = animal production type, l = land transformation alternatives, m = international region (subset 
of index r), n = natural or human resource types (subset of index w), r = all regions, s = soil 
classes (subset of index n), t = years, u = U.S. region (subset of index r), w = all production 
factors, and y = primary and processed agricultural commodities. A list of individual set elements 
is available on the Internet or from the authors.  

Supply and demand balance equations for agricultural commodities form an important 
constraint set in ASMGHG, which link agricultural activities to output markets. Specifically, the 
total amount of commodities disseminated in a U.S. region through domestic consumption 
(DOMD), processing (PROC), and exports (TRAD6) cannot exceed the total amount of 
commodities supplied through crop production (CROP), livestock raising (LIVE), or imports 
(TRAD). Equation block (1) shows the set of commodity supply and demand balance equations 
employed in ASMGHG. Note that equation block (1) is indexed over U.S. regions and 
commodities. Thus, the total number of individual equations equals the product of 63 U.S. 
regions times the 54 primary agricultural commodities.  

(1)      
( ) ( )

( )

CROP LIVE
u,c,s, j,y u,c,s, j u,k,i,y u,k,i r,u,y

c,s, j k,i r

PROC
u,y u,h,y u,h u,r,y

h r

a CROP a LIVE TRAD

DOMD a PROC TRAD 0

− ⋅ − ⋅ −

+ + ⋅ +

∑ ∑ ∑

∑ ∑ ≤

                                                

   for all u and y 

 
5 Crop rotation constraints force the maximum attainable level of an agricultural activity such as wheat production to 
be equal or below a certain fraction of physically available cropland.  
6 While the first index of the USSH and TRAD variables denotes the exporting region or country, the second denotes 
the importing region or country. 



As shown in equation block (1), agricultural commodities can be supplied in each U.S. 
region through crop production activities (if cropping activity  with 

yield a ), livestock production activities (if activity variable  with yield 

), shipments from other U.S. regions (from U.S. region to u if TR ), or 
foreign imports (from foreign region m to U.S. region u if ). On the demand side, 
commodities can be used as an input for livestock production (if activity variable LI  

and with usage rate ), processed (if activity variable PR  with usage rate 

), directly sold in U.S. region u’s market (if DOMD ), shipped to other U.S. 
regions (if ), or exported to foreign markets (if ).  

u,c,s, jCROP 0>

u,LIVE

u

m,u,yAD 0>

u,hOC 0>

u,y 0>

u,m,yTRAD 0>

CROP
u,c,s, j,y >

,ya 0>

y 0<

TRA

0

0

0≤

k,i 0>

ADLIVE
u,k,i

PROC
u,h,a

u,u,y 0>

u,k,iVE
TR

0>
LIVE
u,k,i,ya <

u,y 0>u,D

The coefficients a , , and a  are unrestricted in sign. While negative signs 
indicate that commodity y is an input for an activity, positive signs indicate outputs. The 
magnitudes of these coefficients along with their sign identify either input requirements or output 
yields per unit of activity. The structure of equation block (1) allows for production of multiple 
products and for multi level processing, where outputs of the first process become inputs to the 
next process. All activities in (1) can vary on a regional basis. 

CROP
u,c,s, j,y

LIVE
u,k,i,ya PROC

u,h,y

Supply and demand relationships are also specified for agricultural production factors linking 
agricultural activities to production factor markets. As shown in equation block (2), total use of 
production factors by cropping (CROP), livestock (LIVE), land use change (LUTR), and 
processing (PROC) activities must be matched by total supply of these factors (INPS) in each 
region.  

(2)  c,  for all u and w 

CROP LUTR
u,w u,c,s, j,w u,c,s, j u,l,w u,l

s, j l

LIVE PROC
u,k,i,w u,k,i u,h,w u,h

k,i h

INPS a CROP a LUTR

a LIVE a PROC

− ⋅ − ⋅

− ⋅ − ⋅

∑ ∑

∑ ∑

The most fundamental physical constraints on agricultural production arise from the use 
of scarce and immobile resources. Particularly, the use of agricultural land, family labor, 
irrigation water, and grazing units is limited by given regional endowments of these private or 
public resources. In ASMGHG, all agricultural activity variables (CROP, LUTR, LIVE, and 
PROC) have associated with them resource use coefficients ( a , a , a , a ), 
which give the quantity of resources needed for producing one unit of that variable. For example, 
most crop production activity variables have a land use coefficient equaling 1. However, land use 
coefficients are greater than 1 for some wheat production strategies, where wheat is preceded by 
fallow. Land use coefficients were also inflated by set aside requirements when analyzing 
previous features of the farm bill. 

CROP
u,c,s, j,n

LUTR
u,l,n

LIVE
u,k,i,n

PROC
u,h,n

The mathematical representation of natural resource constraints in ASMGHG is straight-
forward and displayed in equation block (3). These equations simply force the total use of natural 
or human resources to be at or below given regional resource endowments u,nb . Note that the 

natural and human resource index n is a subset of the production factor index w. Thus, all  
resource supplies also fall into constraint set (2). The number of individual equations in (3) is 
given by the product of 63 U.S. regions times the number of relevant natural resources per region. 

u,nINPS

(3)  for all u and n u,n u,nINPS b≤



In ASMGHG, trade activities ( TR , TR , TR , TR ) by 
international region of destination or origin are balanced through trade equations as shown in 
equation blocks (4) and (5). The equations in block (4) force a foreign region's excess demand for 
an agricultural commodity ( ) to not exceed the sum of all import activities into that 
particular region from other international regions ( ) and from the U.S. ( TR ). 
Similarly, the equations in block (5) force the sum of all commodity exports from a certain 
international region into other international regions ( ) and the U.S. ( ) to 
not exceed the region's excess supply activity ( FR ). 

u,m,yAD

m,yRXD

m,m,yAD

TRA
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m,u,yAD

m,m,yD

m,m,yAD

m,m,yAD

F
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m,u,yADTR

(4)   for all m and y m,u,y m,m,y m,y
u m

TRAD TRAD FRXD 0− − +∑ ∑ ≤

(5)  u.m,y m,m,y m,y
u m

TRAD TRAD FRXS 0+ −∑ ∑ ≤

0=

                                                

 for all m and y 

The number of individual equations in blocks (4) and (5) equals the product of the number of 
traded commodities times the number of international regions per commodity. Because of data 
limitations only 8 major agricultural commodities are constraint through international trade 
balance equations. More details can be found in Chen (1999) and in Chen and McCarl (2000). 
A fifth set of constraints addresses aggregation related aspects of farmers' decision process. These 
constraints force producers’ cropping activities j  to fall within a convex combination of 
historically observed choices  [equation (6)]. Based on decomposition and economic duality 
theory (McCarl 1982, Onal and McCarl 1991), it is assumed that observed historical crop mixes 
represent rational choices subject to weekly farm resource constraints, crop rotation 
considerations, perceived risk, and a variety of natural conditions. In (6), the  coefficients 
contain the observed crop mix levels for the past 30 years. are positive, endogenous 
variables indexed by historical year and region, whose level will be determined during the 
optimization process.  

u,c,s,CROP

u,c,th

CMIX
u,c,th

u,tCMIX

(6)  for all u and c  ( )CMIX
u,c,t u,t u,c,s, j

t s, j
h CMIX CROP− ⋅ +∑ ∑

The utilization of (6) has several important implications. First, many diverse constraints faced by 
agricultural producers are implicitly integrated. Second, crop choice constraints impose an 
implicit cost for deviating from historical crop rotations. Note that the sum of the CMIX variables 
over time is not forced to add to unity. Therefore, only relative crop shares are restricted, 
allowing the total crop acreage to expand or contract. Third, crop choice constraints prevent 
extreme specialization by adding a substantial number of constraints in each region and 
mimicking what has occurred in those regions. A common problem to large linear programming 
(LP) models is that the number of activity variables by far exceeds the number of constraint 
equations. Because an optimal LP solution will always occur at an extreme point7 of the convex 
feasibility region, the number of non-zero activity variables cannot exceed the number of 
constraints. Fourth, crop choice constraints are a consistent way of representing a large entity of 
small farms by one aggregate system (Dantzig and Wolfe 1961, Onal and McCarl 1989). 

 
7 Suppose we have a convex set. A point in this set is said to be an extreme point if it can not be represent as a 
convex combination of any two other points in this set.  



Crop mix constraints are not applied to crops, which under certain policy scenarios are expected 
to expand far beyond the upper bound of historical relative shares. Particularly, if 

CMIX CMIX
u,c,s, j u,c,s, j u,c,t u,c,tts, j c,s, j c

E LAND LAND Max h h
  

>  
  

∑ ∑ ∑ 
 , then these crops should not be part 

of the crop mix equations. In ASMGHG, the biofuel crops of switchgrass, poplar and willow fall 
into this category. 
The mix of livestock production is constraint in a similar way as crop production [equation (7)]. 
Particularly, the amount of regionally produced livestock commodities is constraint to fall in a 
convex combination of historically observed livestock product mixes ( ).  are 
positive, endogenous variables indexed by historical year and region, whose level will be 
determined during the optimization process. 

LMIX
u,y,th u,tLMIX

(7) ( ) ( )LMIX LIVE
u,y,t u,t u,k,i,y u,k,i

t k,i
h LMIX a LIVE− ⋅ + ⋅∑ ∑ 0=  for all u and y 

Agricultural land owners do not only have a choice between different crops and different 
crop management strategies, they can also abandon traditional crop production altogether in favor 
of establishing pasture or forest. Equivalently, some existing pasture or forest owners may decide 
to convert suitable land fractions into cropland. In ASMGHG, land use conversions are portrayed 
by a set of endogenous variables LUTR. As shown in (8), certain land conversion can be 
restricted to a maximum transfer , whose magnitude was determined by GIS data on land 
suitability. If l = 0, then constraint (8) is not enforced. In such a case, land use transformations 
would only be constraint through constraint set (3). 

u,ld

u,d

(8) 
u ,l

u,l u,l d 0
LUTR d

≥
≤  for all u and l 

The assessment of environmental impacts from agricultural production as well as political 
opportunities to mitigate negative impacts is a major application area for ASMGHG. To facilitate 
this task, ASMGHG includes environmental impact accounting equations as shown in (9) and 
(10). For each land management (  and l ), livestock ( L ), or processing 

( ) activity, environmental impact coefficients ( , , , ) contain the 
absolute or relative magnitude of those impacts per unit of activity. Negative values of 
greenhouse gas account coefficients, for example, indicate emission reductions. A detailed 
description of environmental impact categories and their data sources is available in Schneider 
(2000). 
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(10) 
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While the structure of equation blocks (9) and (10) can be used to account for many different 
environmental impacts, special focus was placed in ASMGHG on greenhouse gases. GHG 
emissions and emission reductions are accounted for all major sources, sinks and offsets from 
agricultural activities, for which data were available or could be simulated. Generally, ASMGHG 
considers: 

• Direct carbon emissions from fossil fuel use (diesel, gasoline, natural gas, heating oil, LP 
gas) in tillage, harvesting, or irrigation water pumping as well as altered soil organic matter 
(cultivation of forested lands or grasslands), 

• Indirect carbon emissions from fertilizer and pesticide manufacturing, 
• Carbon savings from increases in soil organic matter (reduced tillage intensity and 

conversion of arable land to grassland) and from tree planting, 
• Carbon offsets from biofuel production (ethanol and power plant feedstock via production 

of switchgrass, poplar, and willow), 
• N2O emissions from fertilizer usage and livestock manure, 
• CH4 emissions from enteric fermentation, livestock manure, and rice cultivation, 
• CH4 savings from changes in manure and grazing management changes, and  
• CH4 and N2O emission changes from biomass power plants. 

All equations described so far have defined the convex feasibility region for the set of 
agricultural activities. Let us now turn to the objective function. The purpose of this single 
equation is to determine the optimal level of all endogenous variables within the convex 
feasibility region. Applying the McCarl and Spreen (1980) technique, we use a price-endogenous, 
welfare based objective function. This equation is shown in (11)8.  

The left hand side of equation (11) contains the unrestricted total agricultural welfare 
variable (WELF), which is to be maximized. The right hand side of equation (11) contains 
several major terms, which will be explained in more detail below. The first term 

 adds the sum of the areas underneath the inverse U.S. domestic 

demand curves over all crops, livestock products, and processed commodities. ASMGHG can 
employ four types of demand specifications: a) downward sloping demand curves, b) horizontal 
or totally elastic demand implying constant prices, c) vertical demand implying fixed demand 
quantities, and d) zero demand. Downward sloping demand curves are specified as constant 

( ) ( )u,y
u,y y

DOMD d
 

⋅
  

∑ ∫ DOMD
u,yp 

                                                 
8 In displaying the objective function, several modifications have been made to ease readability: a) the integration 
terms are not shown explicitly, b) farm program terms are omitted, and c) artificial variables for detecting 
infeasibilities are omitted. A complete representation of the objective function is available on the Internet or from the 
authors. 



elasticity function9. To prevent integrals underneath a constant elasticity function and thus 
consumers’ surplus reach infinity, we use truncated demand curves. A truncated demand curves 
is horizontal between zero and a small quantity ( DOMD ) and downward sloping for quantities 

above . In particular, the truncated inverse demand curve for commodity y and region 
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The second right hand side term ( u,nINPS−  subtracts the areas under-

neath the endogenously priced input supply curves for hired labor, water, land, and animal 
grazing units. Supply curves for these inputs are specified as upward sloping constant elasticity 

functions with  = 
u ,n

 . Note that the  supply variables 

are constraint by physical limits in equation block (3). Thus, when the physical limit is reached, 
the inverse supply curve becomes effectively vertical. 
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account for the areas underneath the foreign inverse excess demand curves minus the areas 
                                                 
9 The GAMS version of ASMGHG contains a nonlinear and a stepwise linear representation of constant elasticity 
supply and demand functions both of which can be used. 



underneath the foreign inverse excess supply curves. Together these two terms define the total 
trade based Marshallian consumer plus producer surplus economic of foreign regions.  

Finally, the terms  and ( )INPS
u,f u,f

u,f
p INPS− ⋅∑ ( )TRAD

r,r ,y r,r ,y
r,r ,y

p TRAD⋅∑  subtract the costs of 

exogenously priced production inputs and the costs for domestic and international transportation, 
respectively. 



Appendix 2 Agricultural management alternatives in ASMGHG 

Decision parameter Available options in ASMGHG 
Crop choice (index c) Cotton, Corn, Soybeans, Winter wheat, Durum wheat, Hard 

red winter wheat, Hard red and other spring wheat, Sorghum, 
Rice, Barley, Oats, Silage, Hay, Sugar Cane, Sugar Beets, 
Potatoes, Tomatoes, Oranges, Grapefruit 
Switchgrass, Willow, Hybrid poplar 

Irrigation alternatives10 No irrigation 
Full irrigation 

Tillage system 
alternativesError! Bookmark 

not defined. 

Conventional tillage (<15% plant cover) 
Reduced tillage (15-30% plant cover) 
Zero tillage (>30% plant cover) 

Fertilization 
alternativesError! Bookmark 

not defined. 

Observed nitrogen fertilizer rates  
Nitrogen fertilizer reduction corresponding to 15% stress 
Nitrogen fertilizer reduction corresponding to 30% stress 

Animal production 
choice 

Dairy, cow-calf, feedlot beef cattle, heifer calves, steer calves, 
heifer yearlings, steer yearlings, feeder pigs, pig finishing, hog 
farrowing, sheep, turkeys, broilers, egg layers, and horses 

Feed mixing choice 1158 specific processes based on 329 general processes 
differentiated by 10 US regions  

Livestock production 
alternatives 

Four different intensities (feedlot beef), two different 
intensities (hog operations), liquid manure treatment option 
(dairy and hog operations), BST treatment option (dairy) 

 

                                                 
10 Irrigation, tillage, and fertilization alternatives are contained in index j 



Appendix 3 Spatial Scope of ASMGHG 

Region 
class 

Class Elements Associated ASMGHG 
Features 

Non-US 
world 
regions11 

Canada, East Mexico, West Mexico, Caribbean, 
Argentina, Brazil, Eastern South America, Western 
South America, Scandinavia, European Islands, 
Northern Central Europe, Southwest Europe, 
France, East Mediterranean, Eastern Europe, 
Adriatic, former Soviet Union, Red Sea, Persian 
Gulf, North Africa, West Africa, South Africa, East 
Africa, Sudan, West Asia, China, Pakistan, India, 
Bangladesh, Myanmar, Korea, South East Asia, 
South Korea, Japan, Taiwan, Thailand, Vietnam, 
Philippines, Indonesia, Australia 

Excess demand and 
supply function 
parameter for 8 major 
crop commodities; 
transportation cost 
data; Computation of 
trade equilibrium 

US US Demand function 
parameters for crop, 
livestock, and 
processed commodities 

US macro 
regions 
(10) 

Northeast, Lake States, Corn belt, Northern Plains, 
Appalachia, Southeast, Delta States, Southern 
Plains, Mountain States, Pacific States 

Feed mixing and other 
process data; labor 
endowment data;  

US minor 
regions 
(63) 

Alabama, Arizona, Arkansas, N-California, S-
California, Colorado, Connecticut, Delaware, 
Florida, Georgia, Idaho, N-Illinois, S-Illinois, N-
Indiana, S-Indiana, W-Iowa, Central Iowa, NE-
Iowa, S-Iowa, Kansas, Kentucky, Louisiana, Maine, 
Maryland, Massachusetts, Michigan, Minnesota, 
Mississippi, Missouri, Montana, Nebraska, Nevada, 
New Hampshire, New Jersey, New Mexico, New 
York, North Carolina, North Dakota, NW-Ohio, S-
Ohio, NE-Ohio, Oklahoma, Oregon, Pennsylvania, 
Rhode island, South Carolina, South Dakota, 
Tennessee, TX-High Plains, TX-Rolling Plains, TX-
Central Blackland, TX-East, TX-Edwards Plateau, 
TX-Coastal Belt, TX-South, TX Transpecos, Utah, 
Vermont, Virginia, Washington, West Virginia, 
Wisconsin, Wyoming 

Crop and livestock 
production data and 
activities, land type 
and water resource 
data 

Land 
types (6) 

Agricultural Land: Land with wetness limitation, 
Low erodible land (Erodibility Index (EI) < 8), 
Medium erodible land (8 < EI < 20), Highly erodible 
land (EI < 20); Pasture; Forest  

Land endowments; 
Cost, yield, and 
emission data 
adjustment 

 

                                                 
11 The international regional resolution differs across the 8 traded crops. For livestock and processed crop 
commodities one rest of the world region is used. 



Appendix 4 Environmental Accounts in ASMGHG 

Account type Account elements 
Greenhouse gas emission 
accounts affected by 
energy tax policy (index 
g) 

Carbon emissions from on-farm fossil fuel use for agricultural 
machinery (fuelc), carbon emissions from irrigation (irrgc), 
carbon emissions from grain drying (drygc), carbon emissions 
from fertilizer manufacture (fertc), carbon emissions from 
pesticide manufacture (pestc), greenhouse gas emission offsets 
from bioenergy 

Greenhouse gas emission 
accounts not affected by 
energy tax policy 

Soil carbon changes, carbon sequestration from afforestation, 
methane emission from rice cultivation, nitrous oxide 
emissions from nitrogen applications, methane emissions from 
ruminant animals, methane emissions from livestock manure, 
nitrous oxide emissions from livestock manure, methane 
emission savings from livestock manure digestion 

Other environmental 
accounts not affected by 
energy tax policy 

Soil erosion through wind and water, nitrogen and 
phosphorous losses from surface runoff, subsurface flow, 
percolation, immobilization, and other processes 

 



Research Unit Sustainability and Global Change, Hamburg University and Centre for Marine and 
Atmospheric Science  
 
Working Papers  
 
Schneider, U.A. and Bruce A. McCarl, (2005), Appraising Agricultural Greenhouse Gas 
Mitigation Potentials: Effects of Alternative Assumptions, FNU-81, Hamburg University and 
Centre for Marine and Atmospheric Science, Hamburg. download 
Zandersen, M., M. Termansen, and F.S. Jensen, (2005), Valuing new forest sites over time: the 
case of afforestation and recreation in Denmark, FNU-80, Hamburg University and Centre for 
Marine and Atmospheric Science, Hamburg. download 
Guillerminet, M.-L. and R.S.J. Tol (2005), Decision making under catastrophic risk and 
learning: the case of the possible collapse of the West Antarctic Ice Sheet, FNU-79, Hamburg 
University and Centre for Marine and Atmospheric Science, Hamburg. download 
Nicholls, R.J., R.S.J. Tol and A.T. Vafeidis (2005), Global estimates of the impact of a collapse 
of the West Antarctic Ice Sheet: An application of FUND, FNU-78, Hamburg University and 
Centre for Marine and Atmospheric Science, Hamburg. download 
Lonsdale, K., T.E. Downing, R.J. Nicholls, D. Parker, A.T. Vafeidis, R. Dawson and J.W. Hall 
(2005), Plausible responses to the threat of rapid sea-level rise for the Thames Estuary, FNU-77, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download 
Poumadère, M., C. Mays, G. Pfeifle with A.T. Vafeidis (2005), Worst Case Scenario and 
Stakeholder Group Decision: A 5-6 Meter Sea Level Rise in the Rhone Delta, France, FNU-76, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download 
Olsthoorn, A.A., P.E. van der Werff, L.M. Bouwer and D. Huitema (2005), Neo-Atlantis: Dutch 
Responses to Five Meter Sea Level Rise, FNU-75, Hamburg University and Centre for Marine 
and Atmospheric Science, Hamburg. download 
Toth, F.L. and E. Hizsnyik (2005), Managing the inconceivable: Participatory assessments of 
impacts and responses to extreme climate change, FNU-74, Hamburg University and Centre for 
Marine and Atmospheric Science, Hamburg. download 
Kasperson, R.E. M.T. Bohn and R. Goble (2005), Assessing the risks of a future rapid large sea 
level rise: A review, FNU-73, Hamburg University and Centre for Marine and Atmospheric 
Science, Hamburg.  
Schleupner, C. (2005), Evaluation of coastal squeeze and beach reduction and its consequences 
for the Caribbean island Martinique, FNU-72, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download  
Schleupner, C. (2005), Spatial Analysis As Tool for Sensitivity Assessment of Sea Level Rise 
Impacts on Martinique, FNU-71, Hamburg University and Centre for Marine and Atmospheric 
Science, Hamburg. download  
Sesabo, J.K. and R.S.J. Tol (2005), Factor affecting Income Strategies among households in 
Tanzanian Coastal Villages: Implication for Development-Conservation Initiatives, FNU-70, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download  

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/alternativeagghgpotentials.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Workingpaper80.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waiscbawp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waisglobalwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waislondonwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waiscamarguewp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waishollandwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/waisstakeswp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Evaluation of coastal squeeze and beach reduction.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Spatial Analysis as Tool for Sensitivity Assessment.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/workingpaper70.pdf


Fisher, B.S., G. Jakeman, H.M. Pant, M. Schwoon. and R.S.J. Tol (2005), CHIMP: A Simple 
Population Model for Use in Integrated Assessment of Global Environmental Change, FNU-69, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download 
Rehdanz, K. and R.S.J. Tol (2005), A No Cap But Trade Proposal for Greenhouse Gas Emission 
Reduction Targets for Brazil, China and India, FNU-68, Hamburg University and Centre for 
Marine and Atmospheric Science, Hamburg. download 
Zhou, Y. and R.S.J. Tol (2005), Water Use in China’s Domestic, Industrial and Agricultural 
Sectors: An Empirical Analysis, FNU-67, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download 
Rehdanz, K. (2005), Determinants of residential space heating demand in Germany, FNU-66, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download 
Ronneberger, K., R.S.J. Tol and U.A. Schneider (2005), KLUM: A simple model of global 
agricultural land use as a coupling tool of economy and vegetation, FNU-65, Hamburg 
University and Centre for Marine and Atmospheric Science, Hamburg. download 
Tol, R.S.J. (2005), The Benefits of Greenhouse Gas Emission Reduction: An Application of 
FUND, FNU-64, Hamburg University and Centre for Marine and Atmospheric Science, 
Hamburg. download 
Röckmann, C., M.A. St.John, F.W. Köster, F.W. and R.S.J. Tol (2005), Testing the implications 
of a marine reserve on the population dynamics of Eastern Baltic cod under varying 
environmental conditions, FNU-63, Hamburg University and Centre for Marine and Atmospheric 
Science, Hamburg. download 
Letsoalo, A., J. Blignaut, T. de Wet, M. de Wit, S. Hess, R.S.J. Tol and J. van Heerden (2005), 
Triple Dividends of Water Consumption Charges in South Africa, FNU-62, Hamburg University 
and Centre for Marine and Atmospheric Science, Hamburg. download 
Zandersen, M., Termansen, M., Jensen, F.S. (2005), Benefit Transfer over Time of Ecosystem 
Values: the Case of Forest Recreation, FNU-61, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download 
Rehdanz, K., Tol, R.S.J. and Wetzel, P. (2005), Ocean Carbon Sinks and International Climate 
Policy, FNU-60, Hamburg University and Centre for Marine and Atmospheric Science, 
Hamburg. download 
Schwoon, M. (2005), Simulating The Adoption of Fuel Cell Vehicles, FNU-59, Hamburg 
University and Centre for Marine and Atmospheric Science, Hamburg. download 
Bigano, A., J.M. Hamilton and R.S.J. Tol (2005), The Impact of Climate Change on Domestic 
and International Tourism: A Simulation Study, FNU-58, Hamburg University and Centre for 
Marine and Atmospheric Science, Hamburg. download 
Bosello, F., R. Roson and R.S.J. Tol (2004), Economy-wide estimates of the implications of 
climate change: Human health, FNU-57, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download 
Hamilton, J.M. and M.A. Lau (2004), The role of climate information in tourist destination 
choice decision-making, FNU-56, Hamburg University and Centre for Marine and Atmospheric 
Science, Hamburg. download  

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/populationwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU68.pdf
http://www.uni-hamburg.de/Wiss/FB/WD_ZhouFNU67.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU66.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/KLUM_WP.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/benefitsofclimatepolicywp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/WP_FNU63_Rockmann.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/tripledividend.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Working paper FNU61.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU-60.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/WP-FNU-59schwoon_adoption_fcv.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/htm12wp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/cgehealthwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/climinfo.pdf


Bigano, A., J.M. Hamilton and R.S.J. Tol (2004), The impact of climate on holiday destination 
choice, FNU-55, Hamburg University and Centre for Marine and Atmospheric Science, 
Hamburg. download  
Bigano, A., J.M. Hamilton, M. Lau, R.S.J. Tol and Y. Zhou (2004), A global database of 
domestic and international tourist numbers at national and subnational level, FNU-54, Hamburg 
University and Centre for Marine and Atmospheric Science, Hamburg. download  
Susandi, A. and R.S.J. Tol(2004), Impact of international emission reduction on energy and 
forestry sector of Indonesia, FNU-53, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download  

Hamilton, J.M. and R.S.J. Tol (2004), The Impact of Climate Change on Tourism and 
Recreation, FNU-52, Hamburg University and Centre for Marine and Atmospheric Science, 
Hamburg. download  

Schneider, U.A. (2004), Land Use Decision Modelling with Soil Status Dependent Emission 
Rates, FNU-51, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. 
download  

Link, P.M., U.A. Schneider and Tol, R.S.J. (2004), Economic impacts of changes in fish 
population dynamics: the role of the fishermen’s harvesting strategies, FNU-50, Centre for 
Marine and Climate Research, Hamburg University, Hamburg. download  

Berritella, M., A. Bigano, R. Roson and R.S.J. Tol (2004), A General Equilibrium Analysis of 
Climate Change Impacts on Tourism, FNU-49, Hamburg University and Centre for Marine and 
Atmospheric Science, Hamburg. download  

Tol, R.S.J. (2004), The Double Trade-Off between Adaptation and Mitigation for Sea Level Rise: 
An Application of FUND, FNU-48, Hamburg University and Centre for Marine and Atmospheric 
Science, Hamburg. download  

Erdil, Erkan and Yetkiner, I. Hakan (2004), A Panel Data Approach for Income-Health 
Causality,FNU-47, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Tol, R.S.J. (2004), Multi-Gas Emission Reduction for Climate Change Policy: An Application of 
FUND, FNU-46, Hamburg University and Centre for Marine and Atmospheric Science, 
Hamburg. download  

Tol, R.S.J. (2004), Exchange Rates and Climate Change: An Application of FUND, FNU-45, 
Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. download  

Gaitan, B., Tol, R.S.J, and Yetkiner, I. Hakan (2004), The Hotelling’s Rule Revisited in a 
Dynamic General Equilibrium Model, FNU-44, Centre for Marine and Climate Research, 
Hamburg University, Hamburg. download  

Rehdanz, K. and Tol, R.S.J (2004), On Multi-Period Allocation of Tradable Emission Permits, 
FNU-43, Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/wtotourism2wp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/tourismdata.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/indonesia.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/tourlitrev.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/dyncarbrates.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/link-Dateien/Link Working Paper FNU-50.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/cgetourismwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/slradaptmitigatewp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/yetkiner/papers/FNU47.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/fundmultigaswp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/pppmerwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/GTY.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU43.pdf


Link, P.M. and Tol, R.S.J. (2004), Possible Economic Impacts of a Shutdown of the 
Thermohaline Circulation: An Application of FUND, FNU-42, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Zhou, Y. and Tol, R.S.J. (2004), Evaluating the costs of desalination and water transport, FNU-
41, revised, Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Lau, M. (2004), Küstenzonenmanagement in der Volksrepublik China und Anpassungsstrategien 
an den Meeresspiegelanstieg, FNU-40, Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Rehdanz, K. and Maddison, D. (2004), The Amenity Value of Climate to German Households, 
FNU-39 revised, Centre for Marine and Climate Research, Hamburg University, Hamburg. 
download  

Bosello, F., Lazzarin, M., Roson, R. and Tol, R.S.J. (2004), Economy-wide Estimates of the 
Implications of Climate Change: Sea Level Rise, FNU-38, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Schwoon, M. and Tol, R.S.J. (2004), Optimal CO2-abatement with socio-economic inertia and 
induced technological change, FNU-37,Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Hamilton, J.M., Maddison, D.J. and Tol, R.S.J. (2004), The Effects of Climate Change on 
International Tourism, FNU-36, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Hansen, O. and R.S.J. Tol (2003), A Refined Inglehart Index of Materialism and Postmaterialism, 
FNU-35, Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Heinzow, T. and Tol, R.S.J. (2003), Prediction of Crop Yields across four Climate Zones in 
Germany: An Artificial Neural Network Approach, FNU-34, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Tol, R.S.J. (2003), Adaptation and Mitigation: Trade-offs in Substance and Methods, FNU-33, 
Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Tol, R.S.J. (2003), The Marginal Costs of Carbon Dioxide Emissions, Department of the 
Environment, Food and Rural Affairs, London. download  

Tol, R.S.J. and T. Heinzow (2003), Estimates of the External and Sustainability Costs of Climate 
Change, FNU-32, Centre for Marine and Climate Research, Hamburg University, Hamburg. 
download  

Hamilton, J.M., Maddison, D.J. and Tol, R.S.J. (2003), Climate change and international tourism: 
a simulation study, FNU-31, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Link, P.M. and R.S.J. Tol (2003), Economic impacts of changes in population dynamics of fish 
on the fisheries in the Barents Sea, Research Unit Sustainability and Global Change FNU-30, 
Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/link-Dateien/Link Working Paper FNU-42.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/DesalinationFNU41_revised.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/lau-Dateien/AMK LAU.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU39_revised.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/sealevelwp.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/WP-FNU-37schwoon_tol.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/htm11.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/inglehart.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Working-Paper34.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/essen.pdf
http://www.defra.gov.uk/environment/climatechange/carbonseminar/index.htm
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/greensense.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/tourism_simstudy.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/link-Dateien/Link Working Paper FNU-30.pdf


Tol, R.S.J., T.E. Downing, O.J. Kuik and J.B. Smith (2003), Distributional Aspects of Climate 
Change Impacts, OECD Working Paper ENV/EPOC/GSP(2003)14/FINAL, Organisation for 
Economic Cooperation and Development, Paris. download  

Link, P.M. (2003), Auswirkungen populationsdynamischer Veränderungen in Fischbeständen auf 
die Fischereiwirtschaft in der Barentssee, Research Unit Sustainability and Global Change FNU-
29, Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Lau, M. (2003), Integrated Coastal Zone Management in the People’s Republic of China – An 
Assessment of Structural Impacts on Decision-making Processes, Research Unit Sustainability 
and Global Change FNU-28 (revised), Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Lau, M. (2003), Coastal Zone Management in the People’s Republic of China – A Unique 
Approach?, Research Unit Sustainability and Global Change FNU-27, Centre for Marine and 
Climate Research, Hamburg University, Hamburg. China Environment Series, Issue 6, pp. 120-
124;  download 
Roson, R. and R.S.J. Tol (2003), An Integrated Assessment Model of Economy-Energy-Climate – 
The Model Wiagem: A Comment, Research Unit Sustainability and Global Change FNU-26, Centre 
for Marine and Climate Research, Hamburg University, Hamburg. download  

Yetkiner, I.H. (2003), Is There An Indispensable Role For Government During Recovery From 
An Earthquake? A Theoretical Elaboration, Research Unit Sustainability and Global Change 
FNU-25, Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Yetkiner, I.H. (2003), A Short Note On The Solution Procedure of Barro And Sala-i-Martin for 
Restoring Constancy Conditions, Research Unit Sustainability and Global Change FNU-24, 
Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Schneider, U.A. and B.A. McCarl (2003), Measuring Abatement Potentials When Multiple 
Change is Present: The Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry, 
Research Unit Sustainability and Global Change FNU-23, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Zhou, Y. and R.S.J. Tol (2003), The Implications of Desalination for Water Resources in China: 
An Economic Perspective, Research Unit Sustainability and Global Change FNU-22, Centre for 
Marine and Climate Research, Hamburg University, Hamburg. download  

Yetkiner, I.H., de Vaal, A., and van Zon, A. (2003), The Cyclical Advancement of Drastic 
Technologies, Research Unit Sustainability and Global Change FNU-21, Centre for Marine and 
Climate Research, Hamburg University, Hamburg. download  

Rehdanz, K. and Maddison, D. (2003), Climate and Happiness, Research Unit Sustainability and 
Global Change FNU-20, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Tol, R.S.J., (2003), The Marginal Costs of Carbon Dioxide Emissions: An Assessment of the 
Uncertainties, Research Unit Sustainability and Global Change FNU-19, Centre for Marine and 
Climate Research, Hamburg University, Hamburg. download  

Lee, H.C., B.A. McCarl, U.A. Schneider, and C.C. Chen (2003), Leakage and Comparative 
Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation, 

http://www.oecd.org/dataoecd/7/14/2483223.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/link-Dateien/Link Working Paper FNU-29.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/lau-Dateien/OCM LAUr FNU.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/lau-Dateien/China Env Series LAU.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/kemfertcomment.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/yetkiner/papers/QuakePaper.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/yetkiner/papers/BSMPaper.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/papers/ASMGHG_FNU23.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/DesalinationFNU22.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/yetkiner/papers/GPT.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/FNU20.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/margcostunc.pdf


Research Unit Sustainability and Global Change FNU-18, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Schneider, U.A. and B.A. McCarl (2003), Implications of a Carbon Based Energy Tax for U.S. 
Agriculture, Research Unit Sustainability and Global Change FNU-17, Centre for Marine and 
Climate Research, Hamburg University, Hamburg. download  

Tol, R.S.J. (2002), Climate, Development and Malaria: An Application of FUND, Research Unit 
Sustainability and Global Change FNU-16, Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Susandi, A. and R.S.J. Tol (2002), The Impact of International Climate Policy on Indonesia’, 
Report No 341, Max Planck Institute of Meteorology, Hamburg.   

Hamilton, J.M. (2002), Climate and the Destination Choice of German Tourists, Research Unit 
Sustainability and Global Change FNU-15 revised (2003), Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Tol, R.S.J. (2002), Technology Protocols for Climate Change: An Application of FUND, 
Research Unit Sustainability and Global Change FNU-14, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Rehdanz, K (2002), Hedonic Pricing of Climate Change Impacts to Households in Great Britain, 
Research Unit Sustainability and Global Change FNU-13, Centre for Marine and Climate 
Research, Hamburg University, Hamburg. download  

Tol, R.S.J. (2002), Emission Abatement Versus Development As Strategies To Reduce 
Vulnerability To Climate Change: An Application Of FUND, Research Unit Sustainability and 
Global Change FNU-12 (revised), Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Rehdanz, K. and Tol, R.S.J. (2002), On National and International Trade in Greenhouse Gas 
Emission Permits, Research Unit Sustainability and Global Change FNU-11 (revised), Centre for 
Marine and Climate Research, Hamburg University, Hamburg. download 

Fankhauser, S. and Tol, R.S.J. (2001), On Climate Change and Growth, Research Unit 
Sustainability and Global Change FNU-10 (revised), Centre for Marine and Climate Research, 
Hamburg University, Hamburg. download  

Tol, R.S.J.and Verheyen, R. (2001), Liability and Compensation for Climate Change Damages – 
A Legal and Economic Assessment, Research Unit Sustainability and Global Change FNU-9, 
Centre for Marine and Climate Research, Hamburg University, Hamburg. download  

Yohe, G. and R.S.J. Tol (2001), Indicators for Social and Economic Coping Capacity – Moving 
Toward a Working Definition of Adaptive Capacity, Research Unit Sustainability and Global 
Change FNU-8, Centre for Marine and Climate Research, Hamburg University, Hamburg. 
download  

Kemfert, C., W. Lise and R.S.J. Tol (2001), Games of Climate Change with International Trade, 
Research Unit Sustainability and Global Change FNU-7, Centre for Marine and Climate Research, 
Hamburg University, Hamburg. download  

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/papers/agemleak_FNU18.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/papers/engtaxag_FNU17.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/healthfund.pdf
http://www.mpimet.mpg.de/
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/climtour.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/bat.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/hedonic.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/develop.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/tradeperm.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/growth.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/liability.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/adapcap.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/trade13.pdf


Tol, R.S.J., W. Lise, B. Morel and B.C.C. van der Zwaan (2001), Technology Development and 
Diffusion and Incentives to Abate Greenhouse Gas Emissions, Research Unit Sustainability and 
Global Change FNU-6, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Kemfert, C. and R.S.J. Tol (2001), Equity, International Trade and Climate Policy, Research 
Unit Sustainability and Global Change FNU-5, Centre for Marine and Climate Research, 
Hamburg University, Hamburg. download  
Lise, W., R.S.J. Tol and B.C.C. van der Zwaan (2001), Negotiating Climate Change as a Social 
Situation, Nota di Lavoro 44.01, Fondazione Eni Enrico Mattei, Milan. download  
Tol, R.S.J., Downing T.E., Fankhauser S., Richels R.G. and Smith J.B. (2001), Progress in 
Estimating the Marginal Costs of Greenhouse Gas Emissions, Research Unit Sustainability and 
Global Change FNU-4, Centre for Marine and Climate Research, Hamburg University, 
Hamburg. download  

Tol, R.S.J. (2000), How Large is the Uncertainty about Climate Change?, Research Unit 
Sustainability and Global Change FNU-3, Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download  

Tol, R.S.J., S. Fankhauser, R.G. Richels and J.B. Smith (2000), How Much Damage Will Climate 
Change Do? Recent Estimates, Research Unit Sustainability and Global Change FNU-2, Centre 
for Marine and Climate Research, Hamburg University, Hamburg. download  

Lise, W. and R.S.J. Tol (2000), Impact of Climate on Tourism Demand, Research Unit 
Sustainability and Global Change FNU-1, Centre for Marine and Climate Research, Hamburg 
University, Hamburg. download Revised (2001): Nota di Lavoro 48.01, Fondazione Eni Enrico 
Mattei, Milan. download  

Kemfert, C. and R.S.J. Tol (2000), The Liberalisation of the German Electricity Market – 
Modelling and Oligopolistic Structure by a Computational Game Theoretic Modelling Tool, 
Oldenburg Working Paper V-208-00. download  

Tol, R.S.J. and T.E. Downing (2000), The Marginal Costs of Climate Changing Emissions, 
Institute for Environmental Studies D00/08, Vrije Universiteit, Amsterdam. download  

Tol, R.S.J., W. Lise and B.C.C. van der Zwaan (2000), Technology Diffusion and the Stability of 
Climate Coalitions, Nota di Lavoro 20.00, Fondazione Eni Enrico Mattei, Milan. download  

Tol, R.S.J. (1999), Equitable Cost-Benefit Analysis of Climate Change, Nota di Lavoro 41.99, 
Fondazione Eni Enrico Mattei, Milan. download  

Tol, R.S.J., N.M. van der Grijp, A.A. Olsthoorn and P.E. van der Werff (1999), Adapting to 
Climate Change: A Case Study on Riverine Floods in the Netherlands, Institute for 
Environmental Studies D99/10, Vrije Universiteit, Amsterdam. download  

Darwin, R.F. and R.S.J. Tol (1998), Estimates of the Economic Impacts of Sea Level Rise, 
Institute for Environmental Studies D98/11, Vrije Universiteit, Amsterdam. download  
 

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/endocoal5.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/EQUITYtrade.pdf
http://www.feem.it/web/activ/wp/abs01/48-01.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/jatmpol2.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/maxuncertain1.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/worldecon1.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/Tourismpaper.PDF
http://www.feem.it/web/activ/wp/abs01/44-01.pdf
http://www.uni-oldenburg.de/~kemfert/V20800.pdf
http://www.vu.nl/ivm/pdf/climatecosts.pdf
http://www.feem.it/web/activ/wp/abs00/20-00.pdf
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/equity2.PDF
http://www.vu.nl/english/o_o/instituten/IVM/pdf/working5.pdf
http://www.survas.mdx.ac.uk/publica2.htm

	Appraising Agricultural Greenhouse Gas Mitigation Potentials: Effects of Alternative Assumptions
	Abstract
	Appraising Agricultural Greenhouse Gas Mitigation Potentials: Effects of Alternative Assumptions
	Agriculture and Forestry GHG Emission Reduction: Concepts
	Carbon Sequestration
	Emission Reductions
	Product Substitution

	GHG Emission Mitigation Potential: Appropriate Appraisal Scope
	Factors Causing Strategy Adoption by Agricultural and Forestry Producers
	Regional scope and market feedbacks
	Competition Across Alternative Strategies
	Multiple Gas Trade-offs

	Mitigation Potential: Empirical Findings
	The Agricultural Sector and Mitigation of Greenhouse Gas Model
	Alternative Assumptions
	Measuring the Magnitude and Bias of Alternative Appraisals

	Concluding Remarks
	References
	Table 1 Impact of Alternative ASMGHG Appraisal Assumptions on GHG Mitigation Potential from US Agriculture and Forestry
	Figure 1 Economic impacts on potential on greenhouse gas emission mitigation potential from the AF in the US
	Figure 2 Market scope impacts on the national economic potential for greenhouse gas emission mitigation in the US through AF.
	Figure 3 Impact of different region and strategy scope on greenhouse gas emission mitigation potential from the AF in the US.
	Appendix 1 Details on the Mathematical Structure of ASMGHG
	Equation (1)
	Equation (2)
	Equation (3)
	Equation (4)
	Equation (5)
	Equation (6)
	Equation (7)
	Equation (8)
	Equation (9)
	Equation (10)
	Equation (11)

	Appendix 2 Agricultural management alternatives in ASMGHG
	Appendix 3 Spatial Scope of ASMGHG
	Appendix 4 Environmental Accounts in ASMGHG
	FNU Working Papers

