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Abstract 

Two possible adaptation options to climate change for Sub-Saharan Africa are analyzed 
under the SRES B2 scenario. The first scenario doubles irrigated areas in Sub-Saharan 
Africa by 2050, compared to the baseline, but keeps total crop area constant. The second 
scenario increases both rainfed and irrigated crop yields by 25 percent for all Sub-Saharan 
African countries. The two adaptation scenarios are analyzed with IMPACT, a partial 
equilibrium agricultural sector model combined with a water simulation model, and with 
GTAP-W, a general equilibrium model including water resources. The methodology 
combines advantages of a partial equilibrium approach, considering detailed water-
agriculture linkages with a general equilibrium approach, which takes into account 
linkages between agriculture and non-agricultural sectors and includes a full treatment of 
factor markets. The efficacy of the two scenarios as adaptation measures to cope with 
climate change is discussed. Due to the low initial irrigated areas in the region, an increase 
in agricultural productivity achieves better outcomes than an expansion of irrigated areas. 
Even though Sub-Saharan Africa is not a key contributor to global food production or 
irrigated food production, both scenarios help lower world food prices, stimulating 
national and international food markets. 
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1 Introduction 

Agriculture is of great importance for most Sub-Saharan African economies, supporting 

between 70 to 80 percent of employment, contributing an average of 30 percent of GDP and 

at least 40 percent of exports (Commission for Africa 2005). However, specific agro-

ecological features, small farm sizes, poor access to services and knowledge and the low 

investment in infrastructure and irrigation schemes have limited agricultural development in 

Sub-Saharan Africa (FAO 2008). 

Rainfed farming dominates agricultural production in Sub-Saharan Africa, covering 

around 97 percent of total crop land, and exposes agricultural production to high seasonal 

rainfall variability. Although irrigation systems have been promoted in the region, the impact 

has not been as expected. Reasons include a lack of demand for irrigated products, poor 

market access, low incentives to agricultural intensification, unfavourable topography, low 

quality soils and inadequate policy environments (FAO 2006a and 2008). Although the cost 

of irrigation projects implemented in developing countries have generally decreased over the 

last four decades and performance of irrigation projects has improved (Inocencio et al. 2007) 

the situation in Sub-Saharan Africa is different. This region has higher costs than other 

regions in terms of simple averages. However, some projects were implemented successfully 

with lower costs compared to other regions. 

Agriculture in Sub-Saharan Africa is characterized by comparably low yields. While 

Asia experienced a rapid increase in food production and yields during the green revolution 

in the late 1970s and early 1980s, in Sub-Saharan Africa per capita food production and 

yields have stagnated. The failure for agriculture to take off in Sub-Saharan Africa has been 

attributed to the dependence on rainfed agriculture; low population densities; lack of 

infrastructure, markets and supporting institutions; agroecological complexities and 

heterogeneity of the region; low use of fertilizers; and degraded soils (World Bank 2007; 

Johnson, Hazell and Gulati 2003). 

In Sub-Saharan Africa, 62 percent of the population live in rural areas and depend 

mainly on agriculture. Rural poverty accounts for 90 percent of the total poverty in the region 

and approximately 80 percent of the poor still depend on agriculture or farm labour for their 

livelihoods (FAO and World Bank 2001). High population growth rates, especially in rural 

areas, increase the challenge of poverty reduction and add pressure on agricultural production 

and natural resources. According to FAO (2006b), the population in Sub-Saharan Africa 

could double by 2050 increasing agricultural consumption by 2.8 percent annually until 2030, 

and by 2.0 percent annually from 2030 to 2050. During the same periods agricultural 
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production is projected to increase by 2.7 and 1.9 percent per year, respectively. As a 

consequence, net food imports are expected to rise. 

The World Development Report 2008 suggests that the key policy challenge in 

agriculture-based economies like Sub-Saharan Africa is to help agriculture play its role as an 

engine of growth and poverty reduction. Development of irrigation and improvements in 

agricultural productivity have proven to be effective in both aspects. Hussain and Hanjra 

(2004) identify three main pathways through which irrigation can impact poverty. Irrigation, 

in the micro-pathway, increases returns to physical, human, and social capital of poor 

households and enables smallholders to achieve higher yields and revenues from crop 

production. The meso-pathway includes new employment opportunities on irrigated farms or 

higher wages on rainfed farms. Lower food prices are also expected since irrigation enables 

farmers to obtain more output per unit of input. In the macro-pathway or growth path, gains 

in agricultural productivity through irrigation can stimulate national and international 

markets, improving economic growth and creating second-generation positive externalities. 

In a similar way, Lipton, Litchfield and Faurès (2003) analyze the conditions under which 

irrigation has positive effects on poverty reduction and classify them into direct and indirect 

effects. 

FAO (2008) suggests that improvements in agricultural productivity can provide a 

pathway out of poverty for rural households in several ways. Improvements in crop and 

livestock yields benefit poor households that own land through greater output and higher 

incomes. Households that do not own land but provide farm labour benefit from higher 

demand for farm labour and wages. Households that do not own land or provide farm labour, 

benefit from greater supply of agricultural products and lower food prices. Improvements in 

agricultural productivity can also benefit non-agricultural rural households and urban 

households through greater demand for food and other products (stimulated by higher 

agricultural incomes and higher net incomes in non-agricultural households). Food 

processing and marketing activities can also be promoted in urban areas. When agricultural 

productivity improves by means of water management, the incremental productivity of 

complementary inputs raises and expands the demand for these inputs, which in turn 

stimulates non-agricultural economic activities. 

However, the effectiveness of irrigation and agricultural productivity reducing 

poverty and promoting economic growth is constrained by the availability of affordable 

complementary inputs, development of human capital, access to markets and expansion of 
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markets to achieve economies of scale, and institutional arrangements that promote farm-

level investments in land and water resources (CA 2007; FAO 2008). 

Sub-Saharan Africa has the potential for expanding irrigation and increasing 

agricultural productivity. The World Bank (2007) points out that the new generation of 

better-designed irrigation projects and the large untapped water resources generate 

opportunities to invest in irrigation in Sub-Saharan Africa. New investments in irrigation 

need complementary investments in roads, extension services and access to markets. The CA 

(2007) suggests that where yields are already high and the exploitable gap is small projected 

growth rates are low; whereas low yields present a large potential for improvements. In Sub-

Saharan Africa observed yields are less than one-third of the maximum attainable yields. The 

potential for productivity enhancement is therefore large, particularly for maize, sorghum, 

and millet. Although water is often the principal constraint for agricultural productivity, 

optimal access to complementary inputs and investment in research and development are also 

necessary. 

Future climate change may present an additional challenge for agriculture in Sub-

Saharan Africa. According to the IPCC (1997), Africa is the most vulnerable region to 

climate change because widespread poverty limits adaptive capacity. The impacts of climate 

change on agriculture could seriously worsen the livelihood conditions for the rural poor and 

increase food insecurity in the region. The World Bank (2007) identifies five main factors 

through which climate change will affect agricultural productivity: changes in temperature, 

precipitation, carbon dioxide fertilization, climate variability, and surface water runoff. 

Increased climate variability and droughts will affect livestock production as well. 

Smallholders and pastoralists in Sub-Saharan Africa will have to gradually adapt and adopt 

technologies that increase the productivity, stability, and resilience of production systems 

(FAO 2008). 

As discussed above, development of irrigation and improvements in agricultural 

productivity are key variables not only for future economic development, poverty reduction 

and food security in Sub-Saharan Africa but also for climate change adaptation. In this sense, 

the aim of our paper is to analyze the economy-wide impacts of expanding irrigation and 

increasing agricultural productivity in Sub-Saharan Africa under the SRES B2 scenario of the 

IPCC. We use a combination of a partial equilibrium model (IMPACT) and a general 

equilibrium model (GTAP-W). The interaction between both models allows us to improve 

calibration and exploit their different capabilities. 
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The IMPACT model (Rosegrant, Cai and Cline 2002) is a partial agricultural 

equilibrium model that allows for the combined analysis of water and food supply and 

demand. Based on a loose coupling with a global hydrological modelling, climate change 

impacts on water and food can be analyzed as well (Zhu, Ringler and Rosegrant 2008). The 

GTAP-W model (Calzadilla, Rehdanz and Tol 2008) is a global computable general 

equilibrium (CGE) model that allows for a rich set of economic feedbacks and for a complete 

assessment of the welfare implications of alternative development pathways. Unlike the 

predecessor GTAP-W (Berrittella et al. 2007), the revised GTAP-W model distinguishes 

between rainfed and irrigated agriculture. 

While partial equilibrium analysis focuses on the sector affected by a policy measure 

assuming that the rest of the economy is not affected, general equilibrium models consider 

other sectors or regions as well to determine economy-wide effects; partial equilibrium 

models tend to have more detail. Studies using general equilibrium approaches are generally 

based on data for a single country or region assuming no interlinkages with the rest of the 

world regarding policy changes and shocks (e.g. Diao and Roe 2003; Gómez, Tirado and 

Rey-Maquieira 2004; Letsoalo et al. 2007). 

The remainder of the paper is organized as follows: the next section describes briefly 

the IMPACT and GTAP-W models and the interaction of both models as well as projections 

out to 2050 undertaken for this study. Section 3 focuses on the baseline results and climate 

change impacts. Section 4 lays out two alternative adaptation scenarios and discusses and 

compares results from both models, including outcomes for malnutrition. Section 5 

concentrates on discussion and conclusions. 

 

2 Models and baseline simulations 

2.1. The IMPACT model 

The International Model for Policy Analysis of Agricultural Commodities and Trade 

(IMPACT) was developed at IFPRI at the beginning of the 1990s, upon the realization that 

there was a lack of long-term vision and consensus among policymakers and researchers 

about the actions that are necessary to feed the world in the future, reduce poverty, and 

protect the natural resource base (Rosegrant et al. 2005). The IMPACT model encompasses 

countries and regions and the main agricultural commodities produced in the world. As a 

partial equilibrium model of agricultural demand, production and trade, IMPACT uses a 

system of food supply and demand equations to analyze baseline and alternative scenarios for 

global food demand, supply, trade, income and population. Supply and demand functions 
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incorporate supply and demand elasticities to approximate the underlying production and 

demand functions. World agricultural commodity prices are determined annually at levels 

that clear international markets. Country and regional agricultural sub-models are linked 

through trade. Within each country or regional sub-model, supply, demand, and prices for 

agricultural commodities are determined. 

The original IMPACT model assumed “normal” climate conditions, and therefore the 

impacts of annual climate variability on food production, demand and trade were not 

reflected. The inclusion of a water simulation module (WSM) enables IMPACT to reflect the 

effects on food production and consumption of water demand and availability, their inter-

annual variability, and the competition for water among various economic sectors (Rosegrant, 

Cai and Cline 2002). Within the model, WSM projects water demand for major water use 

sectors and balances water availability and inter- and intra-sector water uses by simulating 

seasonal storage regulation and water allocation at river basin scale. Besides variability, long-

term trends of water availability and uses for different sectors are projected with exogenous 

drivers including population and income growth, changes of irrigated areas, and improvement 

of water use technology such as irrigation efficiency and new water sources (Rosegrant, Cai 

and Cline 2002). 

The spatial representation of global economic regions and natural river basins have 

recently been enhanced. The model now uses 281 “food-producing units” (FPU), which 

represent the spatial intersection of 115 economic regions and 126 river basins. Water 

simulation and crop production are conducted at the FPU level while food demand 

projections and agricultural commodity trade are conducted at the country or economic 

region level. The disaggregation of spatial units improves the model’s capability to represent 

spatial heterogeneity of agricultural economies and, in particular, water resource availability 

and uses. 

Recent progress in climate research has strengthened confidence on human-induced 

global warming (IPCC 2007) with important implications for socioeconomic and agricultural 

systems. To analyze the impacts of global change, especially climate change, on regional and 

global food systems and to formulate appropriate adaptation measures, the IMPACT model 

was extended to include climate change components such as the yield effects of CO2 

fertilization and temperature changes, as well as altered hydrological cycles, and changes in 

(irrigation) water demand and water availability through the development of a separate global 

hydrological model. This semi-distributed global hydrology model parameterizes the 

dominant hydrometeorological processes taking place at the land surface - atmosphere 
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interface at global scope. The model runs at half degree latitude-longitude grid, and global 

half degree climate, soil and land surface cover data are used to determine a number of 

spatially distributed model parameters. The remaining parameters are determined through 

model calibrations with global river discharge database and dataset available elsewhere, using 

genetic algorithms. For river basins where data are not available for detailed calibration, 

regionalized model parameters are applied. The global hydrology model is able to convert 

projections for future climate from GCM models into hydrologic components such as 

evapotranspiration, runoff and soil moisture, which are used in this study (Zhu, Ringler and 

Rosegrant 2008). 

In this analysis, we use the intermediate growth B2 scenario1 from the SRES scenario 

family (IPCC 2000) for the baseline projections out to 2050. The effects of temperature and 

CO2 fertilization on crop yields are based on simulations of the IMAGE model (Bouwman, 

Kram and Klein Goldewijk 2006). Recent research findings show that the stimulation of crop 

yield observed in the global Free Air Carbon Enrichment Facilities (FACE) experiments fell 

well below (about half) the value predicted from chambers (Long et al. 2006). These FACE 

experiments clearly show that much lower CO2 fertilization factors (compared with chamber 

results) should be used in model projections of future yields. Therefore, we apply 50 percent 

of the CO2 fertilization factors from the IMAGE model simulation in IMPACT (Rosegrant, 

Fernandez and Sinha 2008). 

Besides the effects of higher CO2 concentration levels and changes in temperature, 

climate change is likely to affect the volume, and the spatial and temporal distribution of 

rainfall and runoff, which in turn affect the number and distribution of people under water 

stress and the productivity of world agricultural systems. We use climate input from the 

HadCM3 run of the B2 scenario that was statistically downscaled to the 0.5 degree 

latitude/longitude global grid using the pattern scaling method of the Climate Research Unit, 

University of East Anglia (Mitchell et al. 2004). The semi-distributed macroscale hydrology 

module of IMPACT derives effective precipitation, potential and actual evapotranspiration, 

                                                 
1 As described in SRES report (IPCC 2000), the B2 storyline and scenario family describes a world in which the 

emphasis is on local solutions to economic, social, and environmental sustainability. It is a world with a slow, 

but continuously increasing global population and intermediate levels of economic and technological 

development. While the scenario is also oriented toward environmental protection and social equity, it focuses 

on local and regional levels. 
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and runoff at these 0.5 degree pixels and scales them up to each of the 281 FPUs, the spatial 

operational unit of IMPACT. Projections for water requirements, infrastructure capacity 

expansion, and water use efficiency improvement are conducted by IMPACT. These 

projections are combined with the simulated hydrology to estimate water use and 

consumption through water system simulation by IMPACT. 

To explore food security effects, the model projects the percentage and number of 

malnourished preschool children (0-5 years old) in developing countries. A malnourished 

child is a child whose weight-for-age is more than two standard deviations below the weight-

for-age standard set by the U.S. National Center for Health Statistics/World Health 

Organization. The number of malnourished preschool children in developing countries is 

projected as a function of per capita calorie availability, ratio of female to male life 

expectancy at birth, total female enrolment in secondary education as a percentage of the 

female age-group corresponding to national regulations for secondary education, and the 

percentage of population with access to safe water. These variables were found to be key 

determinants of childhood malnutrition in a meta-analysis implemented by Smith and Haddad 

(2000). 

 

2.2. The GTAP-W model 

In order to assess the systemic general equilibrium effects of alternative adaptation strategies 

to climate change in Sub-Saharan Africa, we use a multi-region world CGE model, called 

GTAP-W. The model is a further refinement of the GTAP model2 (Hertel 1997), and is based 

on the version modified by Burniaux and Truong3 (2002) as well as on the previous GTAP-W 

model introduced by Berrittella et al. (2007). 

The revised GTAP-W model is based on the GTAP version 6 database, which 

represents the global economy in 2001. The model has 16 regions and 22 sectors, 7 of which 

                                                 
2 The GTAP model is a standard CGE static model distributed with the GTAP database of the world economy 

(www.gtap.org). For detailed information see Hertel (1997) and the technical references and papers available on 

the GTAP website. 
3 Burniaux and Truong (2002) developed a special variant of the model, called GTAP-E. The model is best 

suited for the analysis of energy markets and environmental policies. There are two main changes in the basic 

structure. First, energy factors are separated from the set of intermediate inputs and inserted in a nested level of 

substitution with capital. This allows for more substitution possibilities. Second, database and model are 

extended to account for CO2 emissions related to energy consumption. 
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are in agriculture.4 However, the most significant change and principal characteristic of 

version 2 of the GTAP-W model is the new production structure, in which the original land 

endowment in the value-added nest has been split into pasture land (grazing land used by 

livestock) and land for rainfed and for irrigated agriculture. The last two types of land differ 

as rainfall is free but irrigation development is costly. As a result, land equipped for irrigation 

is generally more valuable as yields per hectare are higher. To account for this difference, we 

split irrigated agriculture further into the value for land and the value for irrigation. The value 

of irrigation includes the equipment but also the water necessary for agricultural production. 

In the short run irrigation equipment is fixed, and yields in irrigated agriculture depend 

mainly on water availability. The tree diagram in Figure A1 in Annex I represents the new 

production structure. 

Land as a factor of production in national accounts represents “the ground, including 

the soil covering and any associated surface waters, over which ownership rights are 

enforced” (United Nations 1993). To accomplish this, we split for each region and each crop 

the value of land included in the GTAP social accounting matrix into the value of rainfed 

land and the value of irrigated land using its proportionate contribution to total production. 

The value of pasture land is derived from the value of land in the livestock breeding sector. 

In the next step, we split the value of irrigated land into the value of land and the 

value of irrigation using the ratio of irrigated yield to rainfed yield. These ratios are based on 

IMPACT data. The numbers indicate how relatively more valuable irrigated agriculture is 

compared to rainfed agriculture. The magnitude of additional yield differs not only with 

respect to the region but also to the crop. On average, producing rice using irrigation is 

relatively more productive than using irrigation for growing oil seeds, for example. 

The procedure we described above to introduce the four new endowments (pasture 

land, rainfed land, irrigated land and irrigation) allows us to avoid problems related to model 

calibration. In fact, since the original database is only split and not altered, the original 

regions’ social accounting matrices are balanced and can be used by the GTAP-W model to 

assign values to the share parameters of the mathematical equations. For detailed information 

about the social accounting matrix representation of the GTAP database see McDonald, 

Robinson and Thierfelder (2005). 

                                                 
4 See table A1 in Annex I for the regional, sectoral and factoral aggregation used in GTAP-W. 
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As in all CGE models, the GTAP-W model makes use of the Walrasian perfect 

competition paradigm to simulate adjustment processes. Industries are modelled through a 

representative firm, which maximizes profits in perfectly competitive markets. The 

production functions are specified via a series of nested constant elasticity of substitution 

functions (CES) (Figure A1). Domestic and foreign inputs are not perfect substitutes, 

according to the so-called ‘‘Armington assumption’’, which accounts for product 

heterogeneity. 

A representative consumer in each region receives income, defined as the service 

value of national primary factors (natural resources, pasture land, rainfed land, irrigated land, 

irrigation, labour and capital). Capital and labour are perfectly mobile domestically, but 

immobile internationally. Pasture land, rainfed land, irrigated land, irrigation and natural 

resources are imperfectly mobile. National income is allocated between aggregate household 

consumption, public consumption and savings. Expenditure shares are generally fixed, which 

amounts to saying that the top level utility function has a Cobb–Douglas specification. 

Private consumption is split in a series of alternative composite Armington aggregates. The 

functional specification used at this level is the constant difference in elasticities (CDE) form: 

a non-homothetic function, which is used to account for possible differences in income 

elasticities for the various consumption goods. A money metric measure of economic 

welfare, the equivalent variation, can be computed from the model output. 

In the original GTAP-E model, land is combined with natural resources, labour and 

the capital-energy composite in a value-added nest. In our modelling framework, we 

incorporate the possibility of substitution between land and irrigation in irrigated agricultural 

production by using a nested constant elasticity of substitution function (Figure A1). The 

procedure how the elasticity of factor substitution between land and irrigation (σLW) was 

obtained is explained in more detail in Calzadilla, Rehdanz and Tol (2008). Next, the 

irrigated land-water composite is combined with pasture land, rainfed land, natural resources, 

labour and the capital-energy composite in a value-added nest through a CES structure. 

In the benchmark equilibrium, water used for irrigation is supposed to be identical to 

the volume of water used for irrigated agriculture in the IMPACT model. An initial sector 

and region specific shadow price for irrigation water can be obtained by combining the social 

accounting matrix information about payments to factors and the volume of water used in 

irrigation from IMPACT. 
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The distinction between rainfed and irrigated agriculture within the production 

structure of the GTAP-W model allows us to study expected physical constraints on water 

supply due to, for example, climate change. In fact, changes in rainfall patterns can be 

exogenously modelled in GTAP-W by changes in the productivity of rainfed and irrigated 

land. In the same way, water excess or shortages in irrigated agriculture can be modelled by 

exogenous changes to the initial irrigation water endowment. 

 

2.3. Baseline simulations 

The IMPACT baseline simulation out to 2050 incorporates moderate climate change impacts 

based on the SRES B2 scenario. Results are compared to an alternative no climate change 

simulation assuming normal climate conditions. The GTAP-W model uses these outputs from 

IMPACT to calibrate a hypothetical general equilibrium in 2050 for each of these two 

simulations. 

To obtain a 2050 benchmark equilibrium dataset for the GTAP-W model we use the 

methodology described by Dixon and Rimmer (2002). This methodology allows us to find a 

hypothetical general equilibrium state in the future imposing forecasted values for some key 

economic variables in the initial calibration dataset. In this way, we impose forecasted 

changes in regional endowments (labour, capital, natural resources, rainfed land, irrigated 

land and irrigation), in regional factor-specific and multi-factor productivity and in regional 

population. We use estimates of regional labour productivity, labour stock and capital stock 

from the G-Cubed model (McKibbin and Wilcoxen 1998). Changes in the allocation of 

rainfed and irrigated land within a region as well as irrigation and agricultural land 

productivity are implemented according to the values obtained from IMPACT. Finally, we 

use the medium-variant population estimates for 2050 from the Population Division of the 

United Nations (United Nations 2004). 

The interaction of both models allows for improved calibration and enhanced insights 

into policy impacts. In fact, the information supplied by the IMPACT model (demand and 

supply of water, demand and supply of food, rainfed and irrigated production and rainfed and 

irrigated area) provides the GTAP-W model with detailed information for a robust calibration 

of a new dataset and allows to run climate change scenarios. The links between IMPACT and 

GTAP-W are shown in Annex II. 
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3 Baseline simulation results 

Compared to the 2000 baseline data (Table 1), the IMPACT model projects growth in both 

crop harvested area as well as crop productivity for 2050 under normal climate conditions (no 

climate change simulation) (Table 2). The world’s crop harvested area is expected to increase 

by about 3 percent between 2000 and 2050. This is equivalent to a total crop harvested area 

of 1.35 billion hectares in 2050, 36 percent of which is projected to be under irrigation. In 

Sub-Saharan Africa, for the same period, irrigated area is projected to grow more than twice 

as fast as rainfed area (79 percent compared to 34 percent). However the proportion of 

irrigated area to total area in 2050 is only one percent higher compared to 2000 (4.5 and 3.4 

percent, respectively). 

Table 1 and 2 about here 

Impacts of future climate change on food production, demand and trade are reflected 

in the 2050 (SRES B2) baseline simulation. Table 3 reports the percentage change in crop 

harvested area and production by region and by crop for Sub-Saharan Africa as well as 

changes in regional GDP and welfare between the 2050 no climate change simulation and the 

2050 (SRES B2) baseline simulation. According to the analysis, world’s crop harvested area 

and food production decrease by 0.30 and 2.66 percent, respectively. The picture is similar 

for irrigated production; both area and production are projected to be lower, by 1.55 and 3.99 

percent, respectively. Global rainfed production decreases by 1.65 percent, despite an 

increase in rainfed area by about 0.38 percent. Regional impacts of climate change on 

rainfed, irrigated and total crop production vary widely. In Sub-Saharan Africa, both rainfed 

and irrigated harvested areas decrease when climate change is considered (by 0.59 and 3.51 

percent, respectively). Rainfed production, on the other hand, increases by 0.70 percent while 

irrigated production drops sharply by 15.30 percent. As a result, total crop harvested area and 

production in Sub-Saharan Africa decreases by 0.72 percent and 1.55 percent, respectively. 

Most of the decline in production can be attributed to wheat (24.11 percent) and sugar cane 

(10.58 percent). Other crops in Sub-Saharan Africa do in fact better because of climate 

change and particularly CO2 fertilization. 

Table 3 about here 

The last three columns in Table 3 show the impact of climate change on regional GDP 

and welfare. At the global level, GDP is expected to decrease with climate change by USD 87 

billion, equivalent to 0.09 percent of global GDP. At the regional level, only Australia and 

New Zealand experience a positive GDP impact under climate change: GDP is expected to 

increase by USD 1,074 million. Projected declines in GDP are particularly high for the 
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United States, South Asia, and South America (USD 19,768 million; USD 17,271 million; 

and USD 10,697 million, respectively). In relative terms, declines are largest for South Asia, 

the former Soviet Union, and Eastern Europe (0.64, 0.58 and 0.38 percent, respectively). For 

Sub-Saharan Africa, losses in GDP due to climate change are estimated at USD 3,333 

million, equivalent to 0.20 percent of regional GDP. These losses in GDP are used to evaluate 

the efficacy of the two adaptation scenarios to cope with climate change. Alternatively, when 

yield effects of CO2 fertilization are not considered, GDP losses in Sub-Saharan Africa are 

estimated to be slightly higher (USD 4,455 million). 

Like global GDP, global welfare is expected to decline with climate change (USD 87 

billion). However, welfare losses due to declines in agricultural productivity and crop 

harvested area are not general, in some regions welfare increases as their relative competitive 

position improves with respect to other regions. This is the case of South America, Australia 

and New Zealand, Sub-Saharan Africa, and Canada. Projected welfare losses are considerable 

for South Asia, the USA and Western Europe. The USD 2 billion welfare increase in Sub-

Saharan Africa is explained as follows. First of all, only some crops in Sub-Saharan Africa 

are badly hit by climate change. Secondly, crops in other parts of the world are hit too – and 

relatively harder than those in Sub-Saharan Africa. The result is an increase in food price and 

exports. This improves welfare (as measured by the Hicksian Equivalent Variation) but it also 

increases malnutrition. 

Figure 1 shows for the 2050 (SRES B2) baseline simulation a global map of irrigated 

harvested area as a share of total crop area by country. Approximately 63 percent of the 

world’s irrigated harvested area in 2050 is in Asia, which accounts for about 22 percent of the 

world’s total crop harvested area. By contrast, irrigated agriculture in Sub-Saharan Africa is 

small, only 4.4 percent of the total crop harvested area is expected to be irrigated by 2050. 

Most of the countries in Sub-Saharan Africa are expected to continue to use irrigation on less 

than 5 percent of crop land. Madagascar and Swaziland are exceptions expected to be 

irrigating 67 percent and 60 percent of their total crop area, respectively. The numbers for 

Somalia and South Africa are much lower (34 and 24 percent, respectively). The most 

populous country in the region, Nigeria, accounts for about 23 percent of the region’s crop 

harvested area. However, around 97 percent of Nigeria’s production is rainfed. 

Figure 1 about here 
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Agricultural crop productivity is commonly measured by the amount of output per 

unit of area, such as yield in kilograms per hectare.5 Table 4 presents average yields by crop 

type for the 2050 (SRES B2) baseline simulation. Displayed are global average levels as well 

as minimum and maximum levels for rainfed and irrigated harvested area according to the 16 

regions defined in Table A1. In addition, average yield levels for Sub-Saharan Africa as well 

as information on the minimum and maximum yields in individual countries are provided. 

Clearly the performance of Sub-Saharan Africa is poor when compared to the regional and 

global averages. Compared with other regions, the average agricultural productivity in Sub-

Saharan Africa is the lowest or is close to the minimum for all crops; except for irrigated rice, 

wheat, and sugar cane with levels close to the global average. Agricultural productivity 

within the Sub-Saharan Africa region varies widely. Some countries are highly productive on 

very small areas, for example, Tanzania regarding sugar cane, and South Africa on most 

agricultural crops. Most countries, however, fare poorly on large rainfed areas with low crop 

harvested yields. 

Table 4 about here 

Table 5 presents for the 2050 (SRES B2) baseline crop harvested area and production 

in Sub-Saharan Africa by crop. Only 4.4 percent of the total crop harvested area is expected 

to be under irrigation by 2050 while irrigated production is expected to account for 12.1 

percent of the total agricultural production in the region. The two major irrigated crops are 

rice and sugar cane. Irrigated rice is expected to account for more than one-fourth of the total 

rice harvested area and to contribute to almost half of total rice production. For irrigated 

sugar cane the picture is similar. Almost one-fourth of the total crop area is projected to be 

under irrigation and around 38.6 percent of the total crop production is expected to be 

irrigated. Most of the total crop area under irrigation is devoted to the production of cereal 

grains, rice, and vegetables, fruits and nuts. However, with the exception of rice the share of 

irrigated harvested area to total crop harvested area is projected to be less than 5.1 percent. 

Similarly, almost 80 percent of the total rainfed harvested area in Sub-Saharan Africa is 

                                                 
5 FAO (2001) subdivides the agricultural productivity measures into partial and total measures. Partial measures 

are the amount of output per unit of a particular input (e.g. yield and labour productivity). Total measures 

consider the total factor productivity, which is the ratio of an index of agricultural output to an index of 

agricultural inputs. 
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projected to be used for the production of cereals; roots and tubers; and vegetables, 

groundnuts and fruits. 

Table 5 about here 

 

4 Adaptation strategies to climate change 

We evaluate the effects on production and income of two possible adaptation strategies to 

climate change in Sub-Saharan Africa. Both adaptation scenarios are implemented based on 

the 2050 (SRES B2) baseline. The first adaptation scenario assumes an expansion in the 

capacity of irrigated agriculture and doubles the irrigated area in Sub-Saharan Africa. The 

second adaptation scenario considers improvements in productivity for both rainfed and 

irrigated agriculture; increasing rainfed and irrigated yields in Sub-Saharan Africa by 25 

percent through investments in agricultural research and development, and enhanced farm 

management practices. 

According to the first adaptation scenario, irrigated areas in Sub-Saharan Africa are 

assumed to double by 2050, as compared to the 2050 (SRES B2) baseline, while total crop 

land does not change. Around 11 million hectares are thus transferred from rainfed 

agriculture to irrigated agriculture, increasing to near 9 percent the share of irrigated over 

total crop area in the region. In GTAP-W, the initial irrigated land and irrigation endowments 

are doubled; the rainfed land endowment is reduced accordingly. In IMPACT, for each FPU 

and each crop, irrigated area growth is doubled for the region. Rainfed area is reduced by an 

equal amount to keep total crop area constant. Other growth assumptions remain unchanged. 

In the second adaptation scenario, agricultural crop productivity for both rainfed and 

irrigated crops in Sub-Saharan Africa are increased by 25 percent compared to the 2050 

(SRES B2) baseline. In GTAP-W, the primary factor productivity of rainfed land, irrigated 

land and irrigation are increased by 25 percent. In IMPACT, crop yield growth rates are 

increased to reach values 25 percent above baseline values. 

For both adaptation scenarios, investment or cost implications are not incorporated 

into the modelling frameworks and the additional irrigation water used does not violate any 

sustainability constraints. 

 

4.1. Adaptation scenario 1: Expansion of irrigated agriculture 

In the original GTAP model, land is specific to the agricultural sector but not to individual 

crops, which compete for land. In the GTAP-W model this proposition also holds. Rainfed 

land, irrigated land and irrigation are sector-specific, but individual crops compete for them. 
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Pasture land is only used by a single sector, livestock. Therefore, when the capacity of 

irrigated agriculture is increased by transferring land from rainfed agriculture to irrigated 

agriculture, the additional land in irrigated agriculture is not allocated uniformly. Irrigated 

wheat production uses a higher proportion of the new land and irrigation than other crops 

(Table 6), which is mostly driven by a strong regional consumption of locally produced 

wheat. Similarly, the reduction in rainfed land is not proportional among crops. While the use 

of rainfed land decreases for most crops between 0.04 to 0.53 percent, the use of rainfed land 

for wheat production increases by 1.35 percent. The combined effect is an increase in total 

wheat production by 2.12 percent, which is consistent with an increase in irrigated and 

rainfed production by 102.24 and 0.49 percent, respectively. The change in production of oil 

seeds shows a similar picture, irrigated and rainfed production increases by 100.12 and 0.03 

percent, respectively. For the rest of the crops irrigated production increases and rainfed 

production decreases, resulting in an increase in total crop production. The only exception is 

the sector “other agricultural products”, for which total production decreases by 0.05 percent. 

Table 6 about here 

The expansion of irrigated areas in the region from a very small base helps farmers to 

achieve higher yields per hectare. This is followed by an increase in total crop production and 

a drop in agricultural commodity prices. The last two columns in Table 6 show a reduction in 

domestic and global market prices for all crops (an exception is the increase in the domestic 

price of other agricultural products). 

As a general equilibrium model, GTAP-W accounts for impacts in non-agricultural 

sectors as well. Changes in total crop production have a mixed effect on non-agricultural 

sectors; domestic and world prices of non-agricultural sectors increase under this alternative 

scenario. An exception is the food products sector, where price declines because its 

production is promoted by a higher supply and lower price of crops. 

Factor market prices change according to the new factor composition. The increase in 

the supply of irrigated land and irrigation pushes down their market prices, while prices for 

rainfed land, as it gets scarcer, experience a relative increase. Market prices for the rest of the 

primary factors increase as the economy expands (Table 6). Regional welfare increases only 

by around USD 119 million. This adaptation scenario leads to a small increase in GDP in 

Sub-Saharan Africa (0.007 percent, equivalent to USD 113 million), which is insufficient to 

compensate for the regional GDP losses expected under climate change (USD 3,333 million) 

(Table 10). 
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Results from the IMPACT model are shown in Table 7. The expansion of irrigated 

areas in Sub-Saharan Africa increases cereal production in the region by 5 percent, and meat 

production by 1 percent. No change can be seen for root and tuber production. The results are 

not readily comparable to those obtained by the GTAP-W due to the differences in 

aggregation. Contrary to the IMPACT results, meat production in GTAP-W decreases 

slightly, by 0.06 percent. 

Table 7 about here 

For all cereals, real commodity prices by 2050 under the baseline are expected to be 

higher than prices in 2000. This is a result of increased resource scarcity, for both land and 

water, as well as the impact from climate change and biofuel development, and increased 

population and income growth driving food demand diversification with demand shifting 

towards meat, egg and milk products that require grain as feedstock. Climate change leads to 

higher mean temperatures and generally raises crop water requirements but at the same time 

the availability of water for crop growth may decrease in certain regions. Higher temperature 

during the growing season in low-latitude regions, where such temperature-induced yield loss 

cannot be compensated fully by the fertilization effects of higher CO2 levels, will adversely 

affect food production. 

Similar to grain prices, in the 2050 (SRES B2) baseline, meat prices are expected to 

increase (Table 7). Livestock prices are expected to increase as a result of higher animal feed 

prices and rapidly growing meat demand. Even though Sub-Saharan Africa is not a key 

contributor to global food production or irrigated food production, both climate change 

adaptation scenarios focusing on the region are projected to reduce world food prices. Under 

this scenario, world food prices declines between 0.8 to 1.6 percent for rice, potato as well as 

for sweet potato and yams. Reductions in world market prices for both cereals and meat are 

more pronounced in IMPACT than in GTAP-W. 

 

4.2. Adaptation scenario 2: Improvements in agricultural productivity 

Improvements in agricultural productivity in both rainfed and irrigated agriculture enable 

farmers to obtain higher levels of output per unit of input. Table 8 shows an increase in total 

crop production but the magnitude differs by crop type. The sector “other agricultural 

products” is the sector with the highest increase in production (25 percent), followed by oil 

seeds, wheat, and vegetables, fruits and nuts (17, 16 and 11 percent, respectively). Rainfed 

and irrigated production increase for all crops; with the exception of rainfed sugar cane. 

Table 8 about here 
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Higher levels of agricultural productivity result in a decline in production costs and 

consequently in a decline in market prices. Table 8 shows, for all crop types, a decrease in 

domestic and world market prices. A 25 percent increase in agricultural productivity leads to 

a reduction of around 10 to 13 percent in domestic market prices; only sugar cane 

experiences a smaller decline at 8 percent. World market prices, in turn, decline by 3 to 4 

percent. 

Total production in non-agricultural sectors is also affected under this scenario. 

Reductions in total production are more pronounced for energy intensive industries, other 

industry and services, as well as gas (4.8, 4.1 and 3.7 percent, respectively). The food 

products sector is affected positively and its production increases by 1.4 percent. Domestic 

and world market prices increase for all non-agricultural sectors except for food products. 

An increase in agricultural productivity reduces the demand (at constant effective 

prices) for rainfed land, irrigated land and irrigation. Therefore, market prices for these three 

factors decrease (12.4, 41.7 and 39.9 percent, respectively). Changes in market prices for the 

rest of the factors are positive. Returns to unskilled labour increase more than returns to 

skilled labour (3.0 and 2.4 percent, respectively) (Table 8). Regional welfare in Sub-Saharan 

Africa increases by USD 15,435 million. This adaptation scenario promotes GDP growth by 

1.5 percent (USD 25,720 million), which more than offsets the initial reduction of 0.2 percent 

in GDP due to climate change as projected under the SRES B2 scenario (USD 3,333 million) 

(Table 10). 

Higher rainfed and irrigated crop yields in IMPACT results in higher food production, 

which lowers international food prices, making food more affordable for the poor. Table 9 

shows an increase in cereal production by around 20 percent; meat production increases by 4 

percent. As expected world market prices for all cereals and meat products decrease much 

more under this second adaptation scenario. Prices decline between 15 to 31 percent 

particularly for those crops that are of primary importance for Sub-Saharan Africa: roots and 

tubers, maize, sorghum, millet, and other coarse grains. As in the former adaptation scenario, 

reduction in world market prices are more pronounced in IMPACT than in GTAP-W. 

Tables 9 and 10 about here 

 

4.3. Outcomes for malnutrition 

Figure 2 shows the number of malnourished children for the Sub-Saharan Africa region for 

2000 and projected to 2050. Under the SRES B2 baseline, the number of malnourished 

children is projected at 32 million in 2050 compared to about 30 million in 2000. This large 
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number of malnourished children is unacceptably high. However, the share of malnourished 

children is projected to decline from 28 to 20 percent over the 50-year period. 

Under the doubling irrigated area scenario, the number of malnourished children 

declines by only 0.3 million children. The scenario on increased rainfed and irrigated crop 

productivity, on the other hand, results in a decline in the number of malnourished children of 

1.6 million children, which is close to the no climate change baseline. Thus, improving crop 

yields in both rainfed and irrigated areas is a strategy that would almost completely offset for 

the impact of climate change on child malnutrition. 

Figure 2 about here 

 

5 Discussion and conclusions 

This paper presents a combined analysis using both a global partial equilibrium agricultural 

sector model (IMPACT) and a global computable general equilibrium model (GTAP-W) for 

alternative adaptation strategies to climate change in Sub-Saharan Africa. Special emphasis is 

placed on the interaction of both models, which allows for improved calibration and 

enhanced policy insights. 

The methodology combines advantages of both types of models. IMPACT considers 

detailed water-agriculture linkages and provides the data underlying GTAP-W. While 

IMPACT can provide results for 281 Food Producing Units on water and food supply the 

model cannot examine impacts on non-agricultural sectors. GTAP-W distinguishes between 

rainfed and irrigated agriculture and implements water as a factor of production in the 

production process for irrigated agriculture. The GTAP-W model considers water quantity 

and prices but ignores non-market benefits or costs of water use. For instance, the model is 

unable to predict the direct ecological impact of excessive pumping that reduces groundwater 

and affects the flow of streams but increases the market-based benefits from water use. As in 

all CGE models, GTAP-W takes into account the linkages between agricultural and non-

agricultural sectors as well as a full treatment of factor markets. 

Two adaptation scenarios to climate change in Sub-Saharan Africa are analyzed. 

These scenarios are contrasted with the IMPACT 2050 baseline simulation, which 

incorporates the SRES B2 scenario and a further scenario assuming no climate change. 

Model outputs, including demand and supply of water, demand and supply of food, rainfed 

and irrigated production and rainfed and irrigated area are then used in GTAP-W to calibrate 

a hypothetical general equilibrium in 2050 for both simulations. The main results of the four 

scenarios are summarised in Table 10. 
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Without specific adaptation, climate change would have a negative impact on 

agriculture in Sub-Saharan Africa. Total food production would fall by 1.6%, with heavy 

losses in sugar cane (-10.6%) and wheat (-24.1%). The number of hungry children would 

increase by almost 2 million. 

The first adaptation scenario doubles irrigated areas in Sub-Saharan Africa, compared 

to the 2050 (SRES B2) baseline, but keeps total crop area constant in both models. The 

second adaptation scenario increases both rainfed and irrigated crop yields by 25 percent for 

all countries in Sub-Saharan Africa. 

Because of the relatively low share of irrigated areas in total agricultural areas in Sub-

Saharan Africa, an increase in agricultural productivity achieves much larger benefits for the 

region than a doubling of irrigated areas. Because agriculture in Sub-Saharan Africa is far 

below its potential, substantial productivity gains are technically feasible. Differences 

between adaptation scenarios are more pronounced in GTAP-W than in IMPACT. Both 

adaptation scenarios increase total crop production but the magnitude differs according to 

crop type. 

An increase in irrigated areas and agricultural productivity leads to a decrease in the 

production cost of agricultural products and consequently to a reduction in market prices. 

Even though Sub-Saharan Africa is not a key contributor to global food production or 

irrigated food production, both adaptation scenarios help lower world food prices. Both 

GTAP-W and IMPACT show more pronounced reductions in domestic and world market 

prices under the scenario simulating enhanced crop productivity. 

Lower food prices make food more affordable for the poor. As a result, the number of 

malnourished children in Sub-Saharan Africa is projected to decline by 0.3 million children 

by 2050 under the doubled irrigated area scenario and by 1.6 million children under the 

increased agricultural productivity scenario. The reduction in the number of malnourished 

children under enhanced crop productivity almost equals the increase in the projected number 

of malnourished children under the climate change baseline compared to a simulation without 

climate change. 

Changes in total production in non-agricultural sectors have a mixed pattern; however 

all of them show an increase in domestic and world prices. An exception is the food products 

sector, where price declines because its production is promoted by a higher supply and lower 

price of agricultural products. 

Because the first adaptation scenario transfers land from rainfed to irrigated 

agriculture, market prices for rainfed land increase while market prices for irrigation and 
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irrigated land decrease. In the second adaptation scenario market prices for rainfed land, 

irrigated land and irrigation decline. In both adaptation scenarios, market prices for the rest of 

the primary factors increase. The increase in the market price for unskilled labour is higher 

than for skilled labour under the second scenario. 

Both adaptation scenarios enable farmers to achieve higher yields and revenues from 

crop production. The increase in regional welfare in the first scenario is modest (USD 119 

million), however in the second scenario reaches USD 15,434 million. 

The efficacy of the two scenarios as adaptation measures to cope with climate change 

is measured by changes in regional GDP. An increase in agricultural productivity widely 

exceeds the GDP losses due to climate change; GDP increases by USD 25,720 million 

compared to the initial reduction in GDP of USD 3,333 million. The opposite happens for an 

increase in irrigated area; the GDP increase does not offset GDP losses due to climate change 

(GDP increases only by USD 113 million). While these results are promising regarding the 

potential to develop investment programs to counteract the adverse impacts of climate 

change, the scenario implemented here, SRES B2, is on the conservative side of the range of 

climate change scenarios. 

Several caveats apply to the above results. First, in our analysis increase in irrigated 

areas and improvements in agricultural productivity are not accompanied by changes in 

prices. We do not consider any cost or investment associated to irrigation expansion and 

improvements in agricultural productivity. Therefore, our results might overestimate the 

benefits of both adaptation scenarios. Second, we implicitly assume, for the expansion of 

irrigated agriculture, availability and accessibility to water resources. We assume a 

sustainable use of water resources. Third, we do not achieve a complete integration of both 

models. Future work will be focused on further integration and accounting possible feedbacks 

from GTAP-W to IMPACT. 
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Figure 1. 2050 SRES B2 baseline simulation: Irrigated harvested area as a share of total 

crop harvested area 
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Figure 2. Number of malnourished children (<5 yrs) in Sub-Saharan Africa, 2000 

baseline data and projected 2050 baseline simulations and alternative adaptation 

scenarios (million children) 

Source: IFPRI IMPACT simulations. 
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Table 1. 2000 Baseline data: Crop harvested area and production by region and for Sub-Saharan Africa 

  Rainfed Agriculture Irrigated Agriculture Total Share of irrigated 
Description Area Production Area Production Area Production agriculture in total: 

  (thousand ha) (thousand mt) (thousand ha) (thousand mt) (thousand ha) (thousand mt) Area (%) Production (%) 
Regions                 
United States 38,471 211,724 69,470 442,531 107,942 654,255 64.4 67.6 
Canada 27,267 65,253 717 6,065 27,984 71,318 2.6 8.5 
Western Europe 59,557 462,403 10,164 146,814 69,721 609,217 14.6 24.1 
Japan and South Korea 1,553 23,080 4,909 71,056 6,462 94,136 76.0 75.5 
Australia and New Zealand 21,500 67,641 2,387 27,656 23,886 95,297 10.0 29.0 
Eastern Europe 38,269 187,731 6,091 40,638 44,360 228,369 13.7 17.8 
Former Soviet Union 86,697 235,550 18,443 75,798 105,139 311,347 17.5 24.3 
Middle East 30,553 135,872 21,940 119,626 52,493 255,498 41.8 46.8 
Central America 13,030 111,665 8,794 89,698 21,824 201,364 40.3 44.5 
South America 80,676 650,313 10,138 184,445 90,814 834,758 11.2 22.1 
South Asia 143,427 492,718 120,707 563,161 264,134 1,055,879 45.7 53.3 
Southeast Asia 69,413 331,755 27,464 191,890 96,876 523,645 28.3 36.6 
China 66,715 617,460 124,731 909,561 191,446 1,527,021 65.2 59.6 
North Africa 15,714 51,163 7,492 78,944 23,206 130,107 32.3 60.7 
Sub-Saharan Africa 175,375 440,800 6,243 43,398 181,618 484,199 3.4 9.0 
Rest of the World 3,813 47,467 1,094 23,931 4,906 71,398 22.3 33.5 
Total 872,029 4,132,597 440,782 3,015,211 1,312,811 7,147,808 33.6 42.2 
              
Sub-Saharan African crops             
1 Rice 6,015 6,117 965 1,606 6,979 7,723 13.8 20.8 
2 Wheat 2,043 3,288 422 1,340 2,465 4,628 17.1 28.9 
3 Cereal grains 65,723 65,912 2,394 3,286 68,117 69,197 3.5 4.7 
4 Vegetable, fruits, nuts 31,570 224,570 1,111 9,846 32,681 234,415 3.4 4.2 
5 Oil seeds 9,969 8,804 551 554 10,520 9,358 5.2 5.9 
6 Sugar cane, sugar beet 822 35,280 309 25,614 1,131 60,894 27.3 42.1 
7 Other agricultural products 59,235 96,830 490 1,153 59,725 97,983 0.8 1.2 
Total 175,375 440,800 6,243 43,398 181,618 484,199 3.4 9.0 

Note: 2000 data are three-year averages for 1999-2001. 
Source: IMPACT, 2000 baseline data (April 2008). 
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Table 2. 2050 no climate change simulation: Crop harvested area and production by region and for Sub-Saharan Africa 

  Rainfed Agriculture Irrigated Agriculture Total Share of irrigated 
Description Area Production Area Production Area Production agriculture in total: 

  (thousand ha) (thousand mt) (thousand ha) (thousand mt) (thousand ha) (thousand mt) Area (%) Production (%) 
Regions                 
United States 34,549 363,602 71,736 877,262 106,285 1,240,864 67.5 70.7 
Canada 21,827 97,335 620 9,640 22,447 106,975 2.8 9.0 
Western Europe 39,852 452,311 8,310 188,656 48,162 640,967 17.3 29.4 
Japan and South Korea 1,107 27,348 3,770 72,337 4,876 99,685 77.3 72.6 
Australia and New Zealand 20,143 109,878 2,281 49,614 22,424 159,492 10.2 31.1 
Eastern Europe 29,491 232,568 4,983 70,048 34,474 302,616 14.5 23.1 
Former Soviet Union 81,142 413,531 18,703 144,623 99,845 558,154 18.7 25.9 
Middle East 31,498 212,401 24,624 280,975 56,122 493,376 43.9 56.9 
Central America 13,501 259,872 10,425 221,510 23,926 481,382 43.6 46.0 
South America 101,888 2,232,862 13,842 675,526 115,729 2,908,388 12.0 23.2 
South Asia 101,386 646,745 152,776 1,293,716 254,161 1,940,461 60.1 66.7 
Southeast Asia 77,618 602,683 27,764 451,772 105,382 1,054,454 26.3 42.8 
China 61,100 813,928 120,562 1,191,019 181,662 2,004,948 66.4 59.4 
North Africa 16,849 114,127 8,426 159,367 25,274 273,494 33.3 58.3 
Sub-Saharan Africa 235,169 1,074,930 11,194 175,561 246,363 1,250,491 4.5 14.0 
Rest of the World 4,439 117,191 1,428 78,063 5,867 195,254 24.3 40.0 
Total 871,559 7,771,313 481,443 5,939,688 1,353,002 13,711,001 35.6 43.3 
              
Sub-Saharan African crops             
1 Rice 6,068 11,829 2,362 9,893 8,430 21,722 28.0 45.5 
2 Wheat 2,885 12,576 574 3,589 3,458 16,165 16.6 22.2 
3 Cereal grains 83,488 180,022 3,505 12,972 86,994 192,994 4.0 6.7 
4 Vegetable, fruits, nuts 40,634 535,837 2,213 40,862 42,846 576,700 5.2 7.1 
5 Oil seeds 13,456 15,782 655 1,115 14,110 16,897 4.6 6.6 
6 Sugar cane, sugar beet 1,661 117,818 727 101,199 2,388 219,016 30.4 46.2 
7 Other agricultural products 86,978 201,066 1,159 5,930 88,136 206,997 1.3 2.9 
Total 235,169 1,074,930 11,194 175,561 246,363 1,250,491 4.5 14.0 

Source: IMPACT, 2050 simulation without climate change (April 2008). 
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Table 3. Impact of climate change in 2050: Percentage change in crop harvested area and production by region and for Sub-Saharan 

Africa as well as change in regional GDP 

  Rainfed Agriculture Irrigated Agriculture Total Change in GDP* Change in Welfare* 
Description Area Production Area Production Area Production Percentage Million USD Million USD 

Regions                   
United States 1.56 -1.68 -3.26 -7.18 -1.70 -5.57 -0.07 -19,768 -17,076 
Canada 2.02 -2.99 3.32 7.67 2.05 -2.03 -0.05 -992 1,737 
Western Europe 1.21 -0.18 1.64 0.10 1.28 -0.10 -0.01 -1,942 -12,612 
Japan and South Korea -0.74 0.26 0.02 1.20 -0.15 0.94 0.00 -582 -2,190 
Australia and New Zealand 2.24 3.16 2.64 1.05 2.28 2.51 0.09 1,074 5,784 
Eastern Europe 1.20 -1.73 2.18 -1.21 1.34 -1.61 -0.38 -5,201 -9,537 
Former Soviet Union 1.55 -4.16 0.51 2.97 1.36 -2.31 -0.58 -8,734 -12,039 
Middle East 0.44 -3.85 -9.02 -9.76 -3.71 -7.22 -0.23 -6,724 -8,853 
Central America 0.98 -8.59 -0.01 -3.13 0.55 -6.08 -0.21 -5,133 -914 
South America 0.22 -3.43 -2.42 -8.42 -0.10 -4.59 -0.21 -10,697 6,055 
South Asia 0.20 1.71 1.47 -2.06 0.96 -0.80 -0.64 -17,271 -24,573 
Southeast Asia 0.19 -0.28 -0.70 -1.94 -0.04 -0.99 -0.12 -4,073 -9,644 
China 0.37 -0.38 -3.61 -1.65 -2.27 -1.14 -0.01 -677 -2,710 
North Africa 0.66 -3.42 -2.87 -1.78 -0.52 -2.47 -0.14 -1,146 -108 
Sub-Saharan Africa -0.59 0.70 -3.51 -15.30 -0.72 -1.55 -0.20 -3,333 1,786 
Rest of the World 0.60 -2.85 -2.87 -4.86 -0.25 -3.65 -0.22 -1,716 -2,111 
Total 0.38 -1.65 -1.55 -3.99 -0.30 -2.66 -0.09 -86,914 -87,004 
                
Sub-Saharan African crops               
1 Rice -1.95 0.88 -2.50 5.44 -2.10 2.96      
2 Wheat 2.14 -24.86 -7.86 -21.47 0.48 -24.11      
3 Cereal grains 0.63 1.26 -1.24 -1.63 0.55 1.07      
4 Vegetable, fruits, nuts -0.34 1.14 -1.53 -1.93 -0.41 0.92      
5 Oil seeds -1.16 0.33 -0.67 1.68 -1.14 0.42      
6 Sugar cane, sugar beet 1.27 2.11 -23.85 -25.35 -6.37 -10.58      
7 Other agricultural products -1.81 -0.19 -2.95 0.16 -1.83 -0.18      
Total -0.59 0.70 -3.51 -15.30 -0.72 -1.55       

Source: IMPACT, 2050 (SRES B2) baseline simulation and simulation without climate change. 
* Data from GTAP-W. 
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Table 4. 2050 baseline simulation: Crop yields (kilograms per hectare) 

Agricultural products Global Regional crop yield* Crop yield in Sub-Saharan Africa 
  average Minimum Maximum Average Minimum Maximum 
Rice             

Rainfed 2,446 1,965 6,787 2,006 685 6,184 
Irrigated 4,251 3,444 8,977 4,530 1,074 11,461 

Wheat          
Rainfed 3,781 1,745 6,906 3,207 753 9,225 
Irrigated 5,183 3,311 9,123 5,330 934 10,442 

Cereal grains          
Rainfed 3,868 1,435 9,656 2,170 550 4,958 
Irrigated 9,087 3,686 13,906 3,686 1,567 8,062 

Vegetables, fruits, nuts          
Rainfed 15,356 10,940 35,855 13,384 2,920 27,451 
Irrigated 24,650 18,390 57,046 18,390 2,506 37,986 

Oil seeds          
Rainfed 2,080 901 2,926 1,191 432 1,875 
Irrigated 3,865 1,743 4,616 1,743 713 3,464 

Sugar cane, sugar beet          
Rainfed 99,303 34,494 129,276 71,501 9,113 203,921 
Irrigated 129,646 50,363 187,128 136,497 36,924 232,523 

Other agricultural products          
Rainfed 4,669 2,022 26,371 2,482 287 16,602 
Irrigated 9,484 2,640 81,150 8,912 1,138 11,579 

* Regional average according to the 16 regions defined in Table A1. 

Note: Crop yields are computed as a weighted average by area. 

Source: IMPACT, 2050 (SRES B2) baseline simulation. 
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Table 5. 2050 baseline simulation: Crop harvested area and production in Sub-Saharan Africa 

  Rainfed Agriculture Irrigated Agriculture Total Share of irrigated 
Agricultural products Area Production Area Production Area Production agriculture in total: 

(according to GTAP-W) (thousand ha) (thousand mt) (thousand ha) (thousand mt) (thousand ha) (thousand mt) Area (%) Production (%) 
1 Rice 5,950 11,933 2,303 10,432 8,253 22,364 27.9 46.6 
2 Wheat 2,946 9,450 529 2,818 3,475 12,268 15.2 23.0 
3 Cereal grains 84,012 182,298 3,462 12,761 87,474 195,058 4.0 6.5 
4 Vegetable, fruits, nuts 40,493 541,953 2,179 40,072 42,673 582,025 5.1 6.9 
5 Oil seeds 13,300 15,834 650 1,134 13,950 16,968 4.7 6.7 
6 Sugar cane, sugar beet 1,683 120,306 553 75,545 2,236 195,851 24.8 38.6 
7 Other agricultural products 85,400 200,684 1,125 5,939 86,525 206,623 1.3 2.9 
Total 233,784 1,082,457 10,801 148,701 244,585 1,231,158 4.4 12.1 

Source: IMPACT, 2050 (SRES B2) baseline simulation. 
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Table 6. Adaptation scenario 1: Percentage change in the demand for endowments, total production and market price in Sub-Saharan 

Africa (outputs from GTAP-W, percentage change with respect to the 2050 baseline simulation) 

  Change in demand for endowments (%) Change in production (%) Change in Change in 
    Irrigated Rainfed Pasture Unskilled Skilled   Natural      market world market 
GTAP-W sectors Irrigation land land land labour labour Capital Resources Irrigated Rainfed Total price (%) price (%) 
 1 Rice 99.57 99.60 -0.18   -0.17 -0.17 -0.17   99.59 -2.57 0.16 -1.12 -0.06 
 2 Wheat 102.63 102.66 1.35  1.73 1.73 1.73   102.24 0.49 2.12 -1.17 -0.05 
 3 Cereal grains 99.85 99.87 -0.04  0.00 0.00 0.00   99.87 -0.47 0.05 -0.14 -0.02 
 4 Vegetable, fruits, nuts 99.94 99.96 0.00  0.06 0.05 0.05   98.06 0.00 0.09 -0.10 -0.01 
 5 Oil seeds 100.14 100.17 0.11  0.18 0.18 0.18   100.12 0.03 0.24 -0.18 -0.02 
 6 Sugar cane, sugar beet 98.87 98.89 -0.53  -0.61 -0.61 -0.61   98.88 -7.32 0.17 -1.87 -0.17 
 7 Other agricultural products 99.76 99.78 -0.09  -0.05 -0.05 -0.06   99.78 -0.17 -0.05 0.01 -0.01 
 8 Animals    0 0.02 0.02 0.02     0.00 0.07 0.01 
 9 Meat     -0.06 -0.06 -0.06     -0.06 0.05 0.00 
10 Food products     0.11 0.11 0.11     0.11 -0.17 -0.01 
11 Forestry     0.00 0.00 0.00 0.00   0.00 0.02 0.00 
12 Fishing     0.04 0.04 0.04 0.00   0.02 0.12 0.01 
13 Coal     -0.01 -0.01 -0.01 0.00   -0.01 0.01 0.00 
14 Oil     -0.02 -0.02 -0.02 0.00   -0.02 0.01 0.00 
15 Gas     -0.04 -0.04 -0.04 0.00   -0.03 0.01 0.00 
16 Oil products     -0.01 -0.01 0.01     0.01 0.01 0.00 
17 Electricity     -0.01 -0.01 -0.01     -0.01 0.02 0.00 
18 Water     0.01 0.01 0.01     0.01 0.02 0.00 
19 Energy intensive industries     -0.03 -0.03 -0.03 0.00   -0.03 0.01 0.00 
20 Other industry and services     -0.02 -0.02 -0.02     -0.02 0.01 0.00 
21 Market services     0.00 0.00 0.00     0.00 0.01 0.00 
22 Non-market services         0.00 0.00 0.00       0.00 0.01 0.00 
Change in market price (%) -90.57 -90.63 0.19 0.09 0.02 0.02 0.02 0.08      
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Table 7. Adaptation scenario 1: Regional production and world market prices for 

cereals and meats, 2000 baseline data and 2050 baseline simulations (outputs from 

IMPACT) 

Description 2000 2050 Percentage 

  Baseline data Baseline Scenario 1 change* 

Cereal production (mmt):         
North America and Europe 779 1,188 1,196 0.67 
Central West Asia and North Africa 116 240 233 -2.80 
East and South Asia and Pacific 745 1,010 1,009 -0.06 
Latin America and the Caribbean 133 262 263 0.57 
Sub-Saharan Africa 78 211 222 5.34 
         
Root and tuber production (mmt):        
North America and Europe 171 198 198 0.36 
Central West Asia and North Africa 21 48 46 -2.56 
East and South Asia and Pacific 281 371 371 -0.05 
Latin America and the Caribbean 51 107 108 1.17 
Sub-Saharan Africa 164 379 379 0.00 
         
Meat production (mmt):        
North America and Europe 93 122 122 0.04 
Central West Asia and North Africa 11 33 33 0.90 
East and South Asia and Pacific 88 202 203 0.56 
Latin America and the Caribbean 30 82 83 1.13 
Sub-Saharan Africa 6 15 16 1.05 
          
World market prices (USD/mmt):         
Rice 186 299 296 -0.80 
Wheat 109 205 209 1.76 
Maize 91 180 181 0.46 
Other grains 68 108 108 0.08 
Millet 255 310 312 0.62 
Sorghum 93 169 172 1.72 
Potato 213 210 206 -1.62 
Sweet potato and yams 470 405 398 -1.53 
Cassava 65 58 59 0.99 
Beef 1,917 2,521 2,548 1.06 
Pork 906 1,226 1,236 0.86 
Sheep and Goat 2,705 2,782 2,780 -0.09 

Poultry 1,196 1,661 1,684 1.39 
* Percentage change with respect to the 2050 (SRES B2) baseline simulation. 
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Table 8. Adaptation scenario 2: Percentage change in the demand for endowments, total production and market price in Sub-Saharan 

Africa (outputs from GTAP-W, percentage change with respect to the 2050 baseline simulation) 

  Change in demand for endowments (%) Change in production (%) Change in Change in 
    Irrigated Rainfed Pasture Unskilled Skilled   Natural      market world market 
GTAP-W sectors Irrigation land land land labour labour Capital Resources Irrigated Rainfed Total price (%) price (%) 
 1 Rice -5.10 -5.24 -12.21   -3.00 -2.85 -2.88   18.50 1.58 2.03 -13.51 -2.82 
 2 Wheat 6.06 5.89 -1.90  11.31 11.48 11.38  32.42 15.40 16.13 -10.14 -2.56 
 3 Cereal grains -4.98 -5.13 -12.12  -2.87 -2.73 -2.77  18.63 2.21 2.29 -13.60 -3.32 
 4 Vegetable, fruits, nuts 1.99 1.83 -5.66  6.04 6.21 6.15  27.34 10.88 10.95 -12.77 -2.60 
 5 Oil seeds 6.44 6.27 -1.55  11.80 11.97 11.92  32.90 16.82 16.93 -12.90 -2.91 
 6 Sugar cane, sugar beet -5.13 -5.28 -12.25  -3.06 -2.91 -2.96  18.45 -0.10 1.21 -7.52 -2.81 
 7 Other agricultural products 12.55 12.37 4.09  19.79 19.97 19.92  40.52 25.22 25.24 -11.58 -4.15 
 8 Animals     0 0.36 0.51 0.45     0.06 3.65 0.78 
 9 Meat      -3.29 -2.59 -2.70     -2.96 2.86 0.17 
10 Food products      1.00 1.73 1.61     1.38 -1.72 -0.99 
11 Forestry      -0.06 0.06 0.03 0.00    0.02 2.49 0.67 
12 Fishing      1.28 1.41 1.36 0.01    0.51 5.51 0.76 
13 Coal      -1.74 -1.62 -1.61 -0.01    -1.25 0.99 0.43 
14 Oil      -2.86 -2.73 -2.75 -0.01    -2.35 0.67 0.36 
15 Gas      -5.02 -4.64 -4.47 -0.01    -3.70 0.84 0.33 
16 Oil products      -2.00 -1.21 0.47     0.41 1.13 0.32 
17 Electricity      -2.50 -1.71 -1.51     -1.47 2.09 0.22 
18 Water      -0.52 0.29 0.28     0.14 2.12 0.15 
19 Energy intensive industries      -5.57 -4.85 -4.81 0.00    -4.81 1.93 0.14 
20 Other industry and services      -4.50 -3.73 -3.81     -4.14 1.43 0.09 
21 Market services      -0.83 0.07 0.07     -0.30 2.09 0.12 
22 Non-market services      0.04 0.85 0.79      0.57 1.68 0.12 
Change in market price (%) -39.86 -41.70 -12.44 4.58 3.03 2.38 2.49 1.83      
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Table 9. Adaptation scenario 2: Regional production and world market prices for 

cereals and meat in 2050 baseline simulations (outputs from IMPACT) 

Description 2050 Percentage 

  Baseline Scenario 2 change* 

Cereal production (mmt):       

North America and Europe 1,188 1,156 -2.73 

Central West Asia and North Africa 240 227 -5.41 

East and South Asia and Pacific 1,010 987 -2.29 

Latin America and the Caribbean 262 254 -3.05 

Sub-Saharan Africa 211 254 20.29 

        

Root and tuber production (mmt):       

North America and Europe 198 196 -0.88 

Central West Asia and North Africa 48 47 -1.21 

East and South Asia and Pacific 371 361 -2.91 

Latin America and the Caribbean 107 101 -4.99 

Sub-Saharan Africa 379 441 16.27 

        

Meat production (mmt):       

North America and Europe 122 123 0.90 

Central West Asia and North Africa 33 33 0.91 

East and South Asia and Pacific 202 205 1.31 

Latin America and the Caribbean 82 84 2.38 

Sub-Saharan Africa 15 16 4.30 

        

World market prices (USD/mmt):       

Rice 299 279 -6.58 

Wheat 205 190 -7.50 

Maize 180 153 -15.05 

Other grains 108 85 -21.46 

Millet 310 228 -26.41 

Sorghum 169 130 -23.07 

Potato 210 190 -9.37 

Sweet potato and yams 405 286 -29.39 

Cassava 58 40 -30.75 

Beef 2,521 2,507 -0.54 

Pork 1,226 1,213 -1.04 

Sheep and Goat 2,782 2,752 -1.09 

Poultry 1,661 1,642 -1.18 
* Percentage change with respect to the 2050 (SRES B2) baseline simulation. 
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Table 10. Summary of the impact of climate change and adaptation on Sub-Saharan 

Africa 

  2050 2050* 2050** 2050** 

Description 
No climate 

change 
SRES B2 
baseline 

Double 
irrigated area 

Increase 
crop yield 

        
Total Production (thousand mt) 1,250,491 -1.5% 0.1% 18.0% 

Rainfed production (thousand mt) 1,074,930 0.7% -0.6% 17.9% 
Irrigated production (thousand mt) 175,561 -15.3% 99.5% 23.4% 

        
Total Area (thousand ha) 246,363 -0.7% 0.0% 0.0% 

Rainfed area (thousand ha) 235,169 -0.6% -4.8% 0.0% 
Irrigated area (thousand ha) 11,194 -3.5% 100.0% 0.0% 

        
Change in welfare (USD million) -- 1,786 119 15,435 
        
Change in GDP (USD million) -- -3,333 113 25,720 
Change in GDP (percentage) -- -0.2% 0.0% 1.5% 
        
Malnutrition (million children) 30.2 32.0 31.7 30.4 

* Percentage change with respect to the 2050 no climate change simulation. 

** Percentage change with respect to the 2050 (SRES B2) baseline simulation. 
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Annex I:  

Table A1. Aggregations in GTAP-W 

 

A. Regional Aggregation B. Sectoral Aggregation 

1. USA - United States 1. Rice - Rice 

2. CAN - Canada 2. Wheat - Wheat 

3. WEU - Western Europe 3. CerCrops - Cereal grains (maize, millet, 

4. JPK - Japan and South Korea      sorghum and other grains) 

5. ANZ - Australia and New Zealand 4. VegFruits - Vegetable, fruits, nuts 

6. EEU - Eastern Europe 5. OilSeeds - Oil seeds  

7. FSU - Former Soviet Union 6. Sug_Can - Sugar cane, sugar beet  

8. MDE - Middle East 7. Oth_Agr - Other agricultural products  

9. CAM - Central America 8. Animals - Animals  

10. SAM - South America 9. Meat - Meat  

11. SAS - South Asia 10. Food_Prod - Food products  

12. SEA - Southeast Asia 11. Forestry - Forestry  

13. CHI - China 12. Fishing - Fishing  

14. NAF - North Africa 13. Coal - Coal  

15. SSA - Sub-Saharan Africa 14. Oil - Oil  

16. ROW - Rest of the World 15. Gas - Gas  

 16. Oil_Pcts - Oil products  

C. Endowments 17. Electricity - Electricity  

Wtr - Irrigation 18. Water - Water  

Lnd - Irrigated land 19. En_Int_Ind - Energy intensive industries  

RfLand - Rainfed land 20. Oth_Ind - Other industry and services  

PsLand - Pasture land 21. Mserv - Market services  

Lab - Labour 22. NMServ - Non-market services 

Capital - Capital  

NatlRes - Natural resources  
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Figure A1. Nested tree structure for industrial production process in GTAP-W 

(truncated) 

Note: The original land endowment has been split into pasture land, rainfed land, irrigated land and irrigation 

(bold letters). 
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Annex II: Model linkages between IMPACT and GTAP-W  

 

Food model 

Water model 

IMPACT-WATER 
Model 

Economic model 
with 

Water resources 

GTAP-W 
Model 

Agronomic 
GAEZ 

WATBAL 

- Precipitation 
- Temperature 

- Demand and supply of water 
- Demand and supply of food 
- Rainfed and irrigated area 
- Rainfed and irrigated production 
- Food prices 
- Trade 

- Basin runoff 
- PET 
- Precipitation 

- Maximum 
   potential yield 
- Area 

- GDP 
- Population 

- Population 
- Labour stock 
- Capital stock 
- Labour productivity 

- GDP, savings, investment … 
- Quantities and prices … 
- CO2 emissions 

Food model 
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IMPACT-WATER 
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