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Multiplicative Types 

Introduction.  The  purpose  of  this  article  is  to  make  propaganda  for  an  elementary 
number-theoretic concept, which of course is not unknown (it would be fairly impossible 
that anything of such elementary character has been overlooked up to now) but which, to 
the  best  of  my  knowledge,  has  not  yet  received the  systematic  treatment  it  certainly 
deserves; this latter claim will, as I hope, be justified by what follows. After the relevant 
definitions  I shall  go through some natural  problems connected with the concept and 
present  a  number  of  first  results  (of  a  more  or  less  elementary  nature).  No claim of 
originality can be made here, but I can give only a few references  1 . 

1. Definitions.  By the  multiplicative type, or simply type, of a natural number n > 1, I 
mean the unordered sequence of the exponents in the prime decomposition n = paqb...  ; 
we write

t(n)  =  (a, b, …. )

for the type and call a,b,.. the  exponents  of the type. Type (1) means that n is a prime, 
type (r) denotes an r-th power of a prime, squarefree numbers have a type of the form 
(1,...,1), and so on. We can ascribe the type (0) to the number 1. Types will be denoted  T  
or S, the set of all types is T , and for a real number x we write T(x) for the set of all types 
which have occurred up to (and including) x. The sum  a + b + …. of the exponents will  
be called the length of the type, denoted l(T). Evidently, a type of length m is simply a 
partition of m. The number of summands in the partition T (the number of different prime 
factors of any number having type T) will be written  ω(T), conforming to a common 
notation for this number, and may be called the breadth of T. Clearly, l(T) ≥ ω(T) with 
equality exactly for the squarefree types.

2. Identification of types. The most basic problem is, of course, the determination of t(n) 
for a given number n. We have defined t(n) in terms of the prime decomposition. Are 
there other characterizations? One thinks, naturally, of Wilson's theorem, or rather one 
half of it, which is hardly more than the definition of prime number and which we can 
formulate as

t(n) = (1)  if and only if   (n – 1)!  is a unit  mod n ;

(then automatically  (n –  1)!  ≡ – 1 mod n). Are there analogous statements for other 
types? A natural algebraic characterization of t(n) is via the ring-theoretic structure of the 
residue class ring  R = ℤmod n. Namely, by the Chinese remainder theorem,  ω(T) is the 
number of simple R-modules (or of primitive idempotents), and the exponents are the 
composition lengths of the indecomposable summands of the regular R-module or the 
maximal orders of nilpotency occurring in them. Are there procedures for finding out 
these data  without  explicitly  calculating  the prime decomposition?  The type is,  so to 
speak, the formal part of the prime decomposition, whereas the actual primes entering it 
make up the “content”. Note that any explicit  determination of a (nontrivial) idempotent 

2



of R (or even a nontrivial divisor of 0) leads at once (via the Euclidean algorithm) to a 
proper divisor of n, thus amountig to a step in the prime factorization.  

2.1.  Regarding  the  complexity,  we  now  know  that  type  (1)  can  be  identified  in 
polynomial  time (though this  took quite  a  while  to  establish).  It  seems reasonable to 
expect the same for arbitrary types; explicitely, there should exist, for a given type T, a 
polynomial  algorithm which  for  any n  decides  whether  or  not  t(n)  =  T.  Much more 
ambitious, of course, is the determination of t(n). As we just pointed out, this is “half the 
prime factorization”, which no one expects to be possible polynomially. 

3.  Minimal  realizations  and  the  type  graph.  Every  type  occurs  for  the  first  time 
somewhere, and (happily) we can say exactly where: if we write T in the natural order 
(with decreasing exponents),

T  = (a, b, c, …)   with   a ≥ b  ≥ c  ≥….,

then T occurs for the first time at the number 

m(T)  =  2a 3b 5c … ,

which  we  call  the  minimal  realization  of  T.  These  numbers  will  also  be  called  m-
numbers. The  types  can  be  listed  naturally  by  length,  and  within  each  length 
lexicographically.  The following table contains all  types occurring up to 200 together 
with their minimal realizations:

            (7)       (6,1)     …....
           128       192

            (6)        (5,1)     (4,2)    ….
            64          96        144

            (5)        (4,1)     (3,2)     (3,1,1)   (2,2,1) ….  
            32           48        72         120       180

            (4)         (3,1)    (2,2)     (2,1,1)    ….
            16            24        36          60

            (3)         (2,1)    (1,1,1)
             8             12        30

            (2)          (1,1)
             4               6

            (1)
             2
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In this ordering the leftmost type for  each  length r is  (r) , having  m(r)  = 2 r   (we omit 
one pair of brackets in expressions like this one), the rightmost one is  (1 r): =(1,...,1) , 
with  r coefficients 1, and m(1r) = P(r): = p1...pr = product of the first primes (more details 
below;  we denote, here and elsewhere, by pr the primes in their natural ordering).  Note 
that pr is the quotient of  m(1r) and  m(1r-1).  In each line the prime factors of the numbers 
m(T)  are successively replaced with larger ones, and clearly m(r) is the minimal, m(1r) 
the  maximal  value;  but  it  is  not  true  that  these  numbers  increase  monotonically,  for 
example  T = (4,1,1)   and  S = (3,3)  are immediate successors, but  m(T) = 240 and m(S) 
=  216. (This is the first occurrence of this phenomenon). More generally, a type ending 
with  (….a, 1,...,1), with  a > s+1 in the r-th position and having s components 1, has the 
lexicographic successor  (….a–1, s+1) , and for the  m(T)  this means that a product

                                                pr  ...   pr+1 pr+s        is replaced by      pr+1
s+1  ,  

and  clearly  the  difference  can  become arbitrary  large.  A characteristic  feature  of  the 
concept of type can be read off already from this small sample. Whereas the types form a 
natural  scheme with  a  natural  ordering,  their  minimal  realizations  move through this 
scheme along a path,  for  which  of  course several  restrictions  can be formulated,  but 
which essentially  reflects  the irregularity  of the sequence of primes as well  as of the 
prime decompositions. 

3.1. The set T  of types carries various orderings; the one most appropriate for our present 
purposes is an ordering which may be called „arithmetical“ and  which relates it to the set 
of the minimal realizations, as follows. For types  T = (a,b,c …), T´ = (a´,b´,c´...)  having 
the same breadth and written with decreasing exponents let us write

T   ≤    T´   if and only if   a  ≤  a´,  b ≤  b´ , c ≤  c´, …. ;

for  T  and  S   of arbitrary  breadth define  T ≤  S  if  T  ≤  some initial piece of S; this is 
the lexicographic order comprising all lengths. Then  T  ≤ S  if and only if  m(T)  divides 
m(S),  and clearly   l(T)  ≤ l(S)   and   ω(T)  ≤  ω(S)  in  this  case.  Note  that  S is  an 
immediate successor of T in this ordering if and only if  m(S)/m(T)  is a prime. Beware: 
this is not the ordering considered usually in the combinatorial theory, when the types are 
viewed as partitions. The relation between partitions (of the same set) is that of „finer“, 
e.g. (1,1,1) is finer than (2,1), but these types are unrelated arithmetically. In fact the two 
relations can never obtain simultaneously because if  S < T arithmetically, then  l(S) < 
l(T). Note however that if S is finer than T, then also  m(S) > m(T) (but usually m(S) is  
no multiple of m(T)). 

Since the map  T    m(T)  is injective (by uniqueness of prime decomposition), this 
identifies T  with a sub-poset of the natural numbers ordered by divisibility; in fact with a 
sub-lattice, because it is easy to see that the gcd and the lcm of two m-numbers are again 
m-numbers, with obvious definitions of gcd and lcm for types.  The set of m-numbers is 
also closed under multiplication,  m(S) m(T) = m(S,T) for an obvious “superposition” 
(S,T) of types.  We refer to T  equipped with this ordering as the type graph. However, 
this order structure of the type graph  is quite different from that of  ℕ, in spite of being a 
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substructure; for example, is has only one atom, namely (1), and for  m(S)  dividing  m(T) 
the complementary factor is not usually an m-number. 

3.2.  In order to determine the order of a type T as a vertex in the type graph, write (in 
unique fashion) 

T = (a(1)r(1),..., a(s)r(s)), where  ar stands for a,...,a (r-times) and  a(1) > a(2) > ... a(s)  ≥ 1; 

in this notation  ω(T) =   ∑ r(i)  and   l(T) =  ∑ r(i)a(i) . The number s = s(T) may be 
viewed as the number of „steps“ in the type T; if T is viewed as a partition of l(T), s is the 
number of  different  summands.  The immediate  successors  of  T are now obtained by 
replacing each step ar  with (a+1, ar-1), and by addding 1 at the end; so there are  s+1 
immediate  successors,  and  one  sees  in  the  same  way  there  there  are  s  immediate 
predecessors, so the order of the vertex T is  2s +1.    

3.3. The above description of single types suggests to visualize the type T as the graph of 
a decreasing step function, defined on the interval  [0,  ω(T)]  and having steps at  r(1), 
r(1) + r(2), and so on; then l(T) is the area under its graph. Reflecting this graph at the 
axis  x = y , one gets a new type Top with invariants

l(Top) = l(T), s(Top ) = s(T),  ω(Top)  = a(1)

and explicit description 

Top  = ((r(1)+..+r(s))a(s), .... , r(1)a(1)-a(2)).

Clearly,   (Top)op   =  T. It follows immediately from the geometric description of the map 
T    Top  that, if  S < T  are immediate successors, then so are  Sop  and  Top ; thus this map 
is an automorphism of the type graph. Viewed combinatorially, the partition Top  is known 
as  the  conjugate  of  T;  but  note  that  conjugation  does  not  respect  the  combinatorial 
ordering.  I  wonder  whether  the  map  T   Top  can  be  given  a  meaningful  arithmetic 
interpretation. 

From the description of T as decreasing step function we also read off the expression of 
m(T) as a product of numbers P(r), namely 

m(T) = P(r(s))a(s) P(r(s-1))a(s-1)-a(s)... P(r(1))a(1)-a(2). 

It is easy to see that m(T) is uniquely such a product; conversely, every such product is an 
m-number. Thus the numbers P(r) serve as „prime elements“ for the m-numbers. 

3.4.  The set  T   is the union of the sets  T  (n) , and the numbers  m(T) are exactly the 
arguments where the step function  t(x): = cardinality of  T (x)  increases (by one unit). 
The  T (n)  are no lattices (differing in this respect from the lattices of divisors of a fixed 
number,  which  are  even  boolean),  since  they  contain  the  infimum  (gcd),  but  not  in 
general the supremum (lcm) of two elements. Here is a procedure  for determining   the 
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maximal  m(T)´s (maximal with respect to divisibility) occurring in  T (n)  and thereby the 
whole poset: for a fixed breadth r (bounded from above by  r(n): =  largest  r  such that 
P(r)  ≤ n) find the largest   a  such that  (a,1r-1)  belongs to  T  (n);  this  is  the smallest 
maximal element of breadth r. If  (a1,...,as,1,...,1)   is any maximal element of T (n), then 
(a1,...,as,2,...,1) cannot   belong to T (n); so one must try out how many factors ps, ps-1,..one 
has to remove in order to be able to add one more factor p s+1,  respecting the growth 
condition. This depends on the growth of the prime number sequence at this point (and on 
n, of course).  Here  is the list of maximal types in T (1000), sorted according to breadth, 
together with their minimal realizations:

(9)    (8,1)    (6,2)    (5,3)   (6,1,1,)   (4,2,1)   (2,2,2)    (3,1,1,1) ;
                     512    768      576      864       960        720       900          840

inspection of this list reveals how the procedure just described works. 

3.5.  Since types which are comparable in the arithmetical ordering have their minimal 
realizations differing by at least a factor of 2, we see that T  is maximal in  T (n)  if and 
only if   n/2  <  m(T)  ≤  n; so the „upper half“ (in terms of the m-numbers) of  T (n) 
consists entirely of maximals, the upper half of the lower half  of  the maximals in T (n/2) 
and so on. Denoting the set of maximals in  T  (n) by  Tmax(n), having order  tmax(n), we 
obtain 

t(n) =  tmax(n) +  tmax(n/2) + tmax(n/4) ...
                            
Incidentally, this offers another strategy for the determination of Tmax(n): simply calculate, 
once and for all, a sufficiently large list of all m-numbers and check which of them lie 
between  n/2 and n. Note the embedding of  Tmax(n/2)  into T max(n), mapping the type T = 
(a1,...,as) to the type (2,T) = (a1+1,...,as). Evidently  Tmax(n)  is a maximal set of pairwise 
incomparable elements of  T (n) (an „antichain“), and the (arithmetical) order relation  can 
obtain  only  between the different „layers“   Tmax(n),  Tmax(n/2), ... . I would like to see a 
meaningful arithmetic interpretation of Dilworth´ theorem, which says in our case that if 
one partitions  T  (n) into disjoint chains, then  tmax(n) is the minimal number of chains 
needed.  The  reader  will  find  it  instructive  to  rearrange   T(200)  following  the  above 
principle.  Here is a short list of values of   tmax(n):

n                    10    100   200   1000   2000  10.000  100.000
tmax(n)            2       4       5        8         12       17          24   .

The function  tmax(n) is still  monotonically increasing. If n is even, nothing can be lost 
when passing to n+1, because the smallest m-number in  Tmax(n) is at least n/2 + 1, which 
is still larger than (n+1)/2. If n is odd, and  (n+1)/2 is an m-number, then n+1 is also one, 
so the loss is compensated. The function increases by 1 if n+1 is an m-number (so n must 
be odd), but (n+1)/2 is not. 
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3.6.  The only element in  Tmax(n) of breadth 1 is (a), where a is the largest power of 2 
smaller than n, i.e.  a = [log2 n] . It is also   the element having  maximal length;  the 
lengths in  Tmax(n)  move downwards as the breadth increases.  Sorting  the elements  of 
Tmax(n)  according to breadth I found in all examples I have checked that this sequence 
first increases, then decreases monotonically; for  n = 1000  the sequence is 1,3,3,1, for n 
= 10.000 it is 1,4,6,5,1, and for n = 100.000 one obtains 1,3,7,6,6,1.  This is reminiscent  
of many sequences of combinatorial origin 2 , but I have no general proof for it. 

3.7. A basic question is to characterize the sets  T(n)  in the type graph; clearly it suffices 
to characterize the sets Tmax(n). Now a purely type-theoretical characterization is too much 
to ask for; for example, because the concept of type may be applied to the ideals of an 
arbitrary Dedekind domain. The link between T and the natural numbers is the function 
„minimal realization“; using it, we can now show that a set M = {T1,...,Tr} is a  Tmax(n)  if 
and only if it is a maximal set of types satisfying

(*)     m(Ti)/m(Tj)  <  2     for all i,j. 

Proof. Suppose  M = Tmax(n); we may assume  m(T1) ≤ ....  ≤ m(Tr)  as well as  n/2 + 1 = 
m(T1)   and n  = m(Tr)  (recall  that  m-numbers  are  always  even).  It  is  clear  from the 
previous discussion that the elements of M satisfy the inequality. If T is any type which 
can be added to M such that  (*)  still holds, then m(Tr)/m(T) < 2, whence m(T) > n/2, 
further  m(T)/m(T1) < 2, whence  m(T) < n + 2  and therefore  m(T)  ≤ n. But then T 
belongs to  Tmax(n) as seen previously. Conversely, fo any maximal set M satisfying  (*) 
and ordered as above, set  n = m(Tr). Then m(Ti) > n/2  and clearly m(Ti)  ≤ n, all i, so M 
is contained in Tmax(n); by maximality, these sets must coincide.  

As the reader will have noted, the function  n    Tmax(n)  is not injective. If M is as above 
then M = Tmax(n)  exactly if   n/2 < m(T1)  and at least  m(Tr), but smaller than the next m-
number, which is at most  2m(T1) = m(2,T1). E.g. for  m = 1000 (see the table given 
above), the m-number following 960  is  m(10) = 1024, so  Tmax is constant on the interval 
[960, 1023]. 

The „philosophy“ of the concept of  the Tmax(n) now comes within sight. If one orders the 
types „naturally“, i.e. combinatorially, then the sequence of m-numbers is erratic; if one 
orders the m-numbers naturally, then the type sequence becomes erratic. The sets Tmax(n) 
seem to  offer  a  „middle  road“,  since  they  contain  maximal  elements  in  both  senses. 
Simple  as  it  appears,  this  basic  set-up  of  types  and  m-numbers  may  well  contain 
arithmetically interesting information. 

4. Problems concerning the sequence of types (or m-numbers): Asymptotics. The first 
question   is to ask for some asymptotic formula for the order  t(n). Here is one for the 
order  t r(n)  of  T r (n)  = types of breadth r occurring up to n. A type T occurs in  T (n)  if 
and only if  m(T) ≤ n; taking logarithms we see that  T = (a1,...,ar) occurs if and only if 
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a1log 2 + a2log 3 +  … + arlog pr   ≤   log n.

In other words,  tr(n) is the number of lattice points in the r-dimensional simplex 

V =  {(x1,...,xr) | x1  ≥  x2  ≥ …  ≥ xr  and  x1 log 2 + x2 log 3 + … + xr log pr  ≤   log n},

minus the points on the boundary. The volume of  V is 

vol V =  (r!  log 2  (log 2 + log 3)....(log 2 + log 3 + … + log pr ) -1 (log n)r  =: c(r) (log n)r, 

and by a well-known argument we obtain 

 t r(n)  =  c(r) (log n)r  +  O((log n)r-1) ,

note that the boundary points are absorbed by the error term. Summing over r, this would 
give a formula for  t(n) which, however, is uninformative because the error term for the 
maximal r is dominates the remaining terms. But we do obtain a meaningful expression if 
we ask for the number of types of breadth  at most r (that is, we include the boundary 
points) and then let r = r(n) = maximal breadth which can occur. What is still missing 
here is a decent asymptotic for  r(n), which evidently is a very slowly growing function of 
n. The well known results of Cebyshev give only an asymptotic for the product P(r) itself. 

4.1. Another strategy for obtaining an upper bound for t(n) is as follows. Denote by p(n) 
the number of partitions of n and suppose we have a function f(r) such that 

f(r) ≥ p(1) + ... + p(r – 1). 

Then, if  t(n) > f(r),  T  (n)  must contain a type of length r, which implies n   ≥ 2r. By 
contraposition, if  n < 2r , then  t(n) ≤ f(r). Taking  r = [log2 n] + 1, we obtain   t(n) ≤ 
f([log2 n] + 1). Here is a heuristic and sketchy procedure for obtaining a suitable function 
f : using Rademacher´s asymptotic formula 3

p(n)   ~    exp (K√ n) / cn    

with explicitely given constants K and c, one can evaluate the sum  p(1) + ... + p(r–1) 
with the aid of the Euler summation formula, and with some coarse estimates one arrives 
at an asymptotic inequality 

t(n)  ≤ A exp( K √ log2 n] )  (A a constant),

which (if true) would suffice to show that  t(n) grows asympotically slowlier than any 
positive power of n. 

4.2.  Gaps.  Inspection of (the beginning of) the sequence of the m-numbers indicates a 
considerable irregularity; for example, there are (comparatively) large gaps between the 
successive m-numbers  m(5,5) = 7776, m(13) = 8192 and  m(6,3,1) = 8640, but  m(10,2) 
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= 9214  and  m(3,1,1,1,1) = 9240. Yet one may ask whether the gaps become longer and 
longer, at least for special families of types. One has to show that if m(T) – m(S) remains  
bounded, then T and S belong to a finite set of types. To illustrate the kind of problems 
arising here, let us first consider types of the form  T = (a,b),  S = (c,d)  (a ≥ b, c ≥ d). 
Suppose  a > c > d > b.   Then

m(T) – m(S) =  2a3b – 2c3d  =  2c3b (2a–c – 3d–b) .

If this expression remains bounded for some sequence of types S,T, then first  c and  b 
must be bounded, hence also d, hence d–b, hence  a–c, finally a, so that there are only 
finitely many possibilities for S and T; the argument for other constellations of  a,b,c,d is 
similar. Going to another extreme, consider  S = (1r) and T = (s), producing

m(S) – m(T) = 2(p2...pr – 2s-1).

If this expression remains bounded for infinitely many S,T, then there must be a value, 
say c,  such that infinitely often p2...pr – 2s-1 = c;  we can view s-1 as a function f(r) of r. 
Now if p is a prime divisor c, then for large r p  divides the product on the left-hand side 
(c ist odd), which leads to a contradiction; hence c =  ±1. For c = 1, the equation p2...pr – 
2f(r) = 1 implies that – 1 is congruent to some power of 2 modulo the primes  p2  ,..., pr  , 
which is not the case for   p4 = 7. For  c = – 1, we obtain  that f(r) must be divisible by the 
order of  2 mod pi , which is 12 for  p6 = 13; but  26 – 1 = 63, and hence  9  divides  2f(r)  – 
1, which therefore is not squarefree.  Note the curious logical structure of the argument. 
Starting with the assumption, that a certain equation has infinitely many solutions, we 
have concluded that there can only finitely many (in fact, the only cases are  3 – 2 = 1 and 
3×5 – 16 =   – 1).       

In the general case,  write   T = (a(1),...,a(n)),  S = (b(1),...,b(m)), assuming n ≥ m . Then 
(writing min(i) for min(a(i), b(i))

          m(T) – m(S) = 

 p1
min(1)...pm

min(m) (p1
a(1)-min(1)...pm

a(m)-min(m)  pm+1
a(m+1)...pn

a(n)  –   p1
b(1)-min(1)...pm

b(m)-min(m) ) .

If this is to be bounded, then m is bounded (since all a(i), b(j) are > 0, and the expression 
in brackets cannot vanish), and so are the min´s; but there seems to be no easy argument 
disposing of the factor in brackets, except in special cases as above. At least there should 
be some (more or less) elementary argument constructing arbitrary long gaps in some 
explicit way, as in the case of prime numbers. Here is a nonconstructive  one: if this were 
false, then there would be an absolute upper bound for the gaps, and this would imply that 
the order  t(n) of T(n) would grow at least proportionally with n, which is absurd. 

4.3. In contrast, the relative length of the gaps is easily bounded by „Bertrands postulate 
for types“: given n, put  r = [log2n] + 1, then  n < 2r, so  (r)  does  not occur in  T (n), but 
2r ≤  2n, so there always occurs a new type between n and 2n. One can also use the fact 
that twice an m-number is again one. It is amusing to compare this trivial argument with 
the proof of Bertrands original postulate for primes which is quite tricky.
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5. Problems concerning the numbers having a fixed type: Asymptotics. The most 
natural problem of this kind is the determination of the counting function

πT(x) : =  number of natural n ≤ x  with  t(n) = T

for a given type T and real argument x. Note the obvious equation 

n   =      Σ πT(n) ,

where the sum can be thought of as extending over all T; clearly only those T contribute 
for which m(T) ≤ n. The equation is a sort of closure relation for the functions  πT.

For  T = (1)  we obtain the usual prime number function, π(1) = π,  and what  I would like 
to see is a generalization of the prime number theorem to arbitrary types. In fact, it should 
be possible to derive such a theorem from the prime number theorem. For example, it is 
plain that for T = (r)

πT(x) = π(x1/r) .

For T = (1,1) we  argue as follows: the sum

π(x/2) + π(x/3) + … + π(x/pm),  with pm = maximal prime  ≤ x/2

counts the products  pipj   ≤ x with different factors twice (for every prime p ≠ 2 counted 
by π(x/2) we have 2p in our set of numbers, and so on) and the p² ≤  x once; therefore,

 πT(n) = 1/2 (Σ π(n/p)  –   π(n1/2) ,

the sum extending over the primes p ≤ n/2. We would like to compare  πT(n) with  π(n) 
and argue heuristically, substituting   x/log x  for   π(x)  and neglecting the error term. A 
small calculation gives

Σ  (n/p) /log(n/p)  =  n/log n  Σ  1/p  1/(1 – log p/log n ) ,

the summation  still  being the same; as is  well  known, the sum on the right  tends to 
infinity at least like log log n. This indicates that the quotient  πT(x)/π(x)  tends to infinity, 
which conforms to the intuition: as the sequence of primes ≤ x becomes thinner, there 
are  more possibilities to combine two of them to a product still   ≤ x  than there are 
members of that sequence. In fact, a first count shows  πT (100) =   31,  πT(200)  = 55, 
whereas  π(100) = 25,   π(200) = 45. Applying the same kind of reasoning to the type T = 
(2,1), we obtain a factor 

Σ  1/p²  1/(1 – log n/log p² ) ,
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sum over p  ≤ (n/2)1/2 , which remains bounded, and expect this type to produce less 
realizations  than the prime type (1);  indeed  π(2,1)(100) = 14,  π(2,1) (200) = 24.  There 
should be a decent way to  express the growth of the counting function  πT  for given  T 
in terms of the exponents of T.  In particular I would like to know which types have 
asymptotically more realizations than the prime type.  And are there any different types 
having the same asymptotic growth of their counting functions?                        

5.1. Successive occurrences.  A second natural question is: given T,  can it happen that 
t(n)  =  t(n+1)  =  T?  (This  seems  the  only  aspect  of  types  which  has  received  some 
attention.) Clearly not, if   T = (a1,...,ar)  and  gcd(a1,...,ar)  = d  > 1, for in that case the 
numbers having type T are a subset of the set of d-th powers (not to mention T = (1)).  
Things change drastically if the gcd is one; the type  (1,1)  has 16 successive occurrences 
up to 200, and  (2,1)  still 5 (the first being 44, 45, the last 171,172); no other types have 
any in this interval. If such repetitions are possible, what is the maximal length b such 
that  t(n) = t(n+1) = ... t(n+b –  1)  = T? The type T = (1,1) has four triple repetitions up to 
200 (the first beginning with 33, the last with 141),  but  T = (2,1) has none. However, T 
= (1,1)  cannot  have  quadruple  repetions,  in  fact  no  four  successive  numbers  can  be 
squarefree,  because  one  is  divisible  by  four.   The  argument  is  easily  generalized  to 
arbitrary types: if a is the maximal exponent occurring in T, then no  2a+1  successive 
numbers can have type T. This upper bound is not optimal, e.g. no 6 successive numbers 
can have type (2,1), because one of them would be divisible by 6, so would have to be 
either 12 or 18, which does not work. In fact, no type (a,b) can occur 6 times in a row: if n 
is the one divisible by 6, we must have  n = 2a3b or  = 3a2b , and I leave it to the reader to 
figure out that this is impossible (use the fact that no two even numbers n and n+2 can 
have the same 2-exponent).  Doubtless this  type of argument  can be carried further.  I 
would very much like to know whether arbitrary long repetitions can be realized with 
suitable types. If not, then there would exist an absolute constant C such that among C 
successive natural numbers there occur at  least  two different types, and of course we 
would like to know this constant. The longest chains I know of (and which I owe to a 
computer search by H.Bachmann)  are a quintuple repetition of the type (2,1,1), starting 
with 204323 and a septuple repetition of the type (2,1,1,1), starting with 440738966073.  

 
5.2. If repetitions are possible, can there be infinitely many? The answer is no if all a i are 
≥ 3  and the abc-conjecture holds. Namely, the conjecture predicts that for every  ε > 0 
there is a constant  c(ε)  such that 

n + 1  ≤  c(ε) rad(n(n + 1))1+ ε  ;

but if  t(n) = t(n+1) = T, the hypothesis on the exponents of the prime decomposition 
implies 

rad(n)  ≤  n1/3 ,

likewise for n+1, and clearly  rad(n(n+1)) = rad(n)rad(n+1), so we obtain the inequality

n +1  ≤  c(ε)(n2/3 √1 + 1/n ) 1+ ε   ,
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which can hold only finitely often if  ε  is small.  

5.3.  Let us  concentrate  on T = (1,1)  and ask if  there are  infinitely  many repetitions, 
explicitely equations 

p1p2  =  q1q2 + 1

with primes   p1   ≠  p2  ,  q1  ≠  q2  . Evidently one of the primes must be 2, so let us 
assume  p1  =  2 ; we sharpen the question further by assuming  q1 = 3, so we ask if there 
are infinitely many equations  2p  =  3q + 1  with prime numbers  p  and  q. One sees that  
q must  be  ≡ 3 mod 4 and p  ≡ 2 mod 3,  and testing the first  q,  one finds that  q = 
7,11,19,31,47, 59,67,71,79,87 all work (the majority of primes ≡ 3 mod 4 less than 100), 
so prospectives seem to be bright. Another question of this type occurs (as is well known) 
in connection with Artin´s conjecture on primitive roots: if  p  is a prime ≡ 3 mod 4 such 
that q = 2p + 1 is again a prime, then  – 2 is a primitive root mod q. Both questions can be 
viewed as special cases of the following: let  a, m,  b, n   be natural numbers and  f  the  
bijection of residue classes

a + mℤ        b + nℤ,  x          b + n((x – a)/m) ,

transferring the parameter. If  gcd(b,n) = 1, then we know by Dirichlet´s theorem that f(x) 
is a prime infinitely often. If in addition gcd(a,m) = 1, it  makes sense to ask whether 
infinitely often  f(prime) is prime  4  . This would be, so to speak, „Dirichlet´s theorem 
squared“ and certainly  would require (if  true) entirely different  methods.  Note that  it 
includes the problem of twin primes, which is the case of  1 + 2ℤ       3 + 2ℤ.

5.4. More questions. Somewhat more generally we may ask for the minimal distance of 
numbers having a type T, and whether this minimal distance occurs infinitely often; note 
that this too includes the problem of twin primes. Further: for which types T does exist a 
natural number b such that t(n) = t(n+b) = T infinitely often? If for some T no such b 
exists, then for every C > 0 one can have

t(n) =  t(m)  =  T and   |m – n|  <  C

only finitely often, in other words, the gaps between the T-numbers tend to infinity. One 
might suspect this behaviour not only for numbers of the same type, but also if the types 
are different, but satisfy suitable conditions. Numbers having a type with all  exponents 
>1 have been called „powerful“, and it has been conjectured that there can be no three 
successive  such  numbers.  That  there  do  exist  infinitely  many  successive  pairs  is 
confirmed by the fact that the Pell equation 

x²   –  d y²  =  1,

with  d  natural  and  powerful,  but  not  a  square,  has  infinitely  many  solutions.  The 
argument given in 5.2. (using the abc-conjecture) also works if n and n+1 have different 
types, as long as the condition on the exponents is satisfied, explicitly: if S and T are 
types having all their exponents > 2, and if the abc-conjecture is true, then it can happen 
only finitely often that t(n) = S, t(n+1) = T.  So one has to expect that the types of the 
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solutions of such Pell equations become larger and larger. In this context one also thinks 
of the (proven) Catalan conjecture, which in the language of types can be formulated 
thus: the equation  9 – 8 = 1 shows the only case in which two natural numbers, each 
having a type with all exponents divisible by a number > 1, differ by 1.   

5.5. Another question which can be transferred from the prime type to arbitrary types is 
what might be called the Euler-Goldbach-Hilbert-Waring question: given T, does there 
exist a constant k such that every sufficiently large natural number is a sum of at most k 
numbers having type T, or, somewhat weaker, having types in a prescribed set of types? 
For the prime type, the well known result of Vinogradov gives a positive answer with k = 
4. The Hilbert-Waring theorem settles the weaker version, with the set of types being the 
one of all l-th powers (for fixed exponent l). Testing T = (1,1) with k = 2, I have found no 
gap after 80 up to 150 (but clearly this does not justify any conjectures). 

5.6.  After so many unanswered questions, let us conclude this section by proving what 
might appear difficult at first sight, namely Dirichlet´s theorem for arbitrary types. Let 
gcd(a,m) = 1 and assume that the congruence

a   ≡   x1
a(1)... xr

a(r) mod m 

is  solvable.  Then  there  are  infinitely  many  numbers    n  ≡ a  mod  m   with  t(n)  = 
(a(1),...,a(r)): simply choose arbitrary primes  pi  ≡ xi  mod m and build up n accordingly. 
Note that the solvability of the congruence is a necessary condition for the existence of a 
single such number; and if gcd(a(1),...,a(r))  = 1, it is no condition at all (easy exercise in 
group theory). It is left to the reader to show (by an equally trivial argument) that the class 
of a mod m also contains numbers of infinitely many different types, and gcd(a,m) = 1 is 
not even needed for this. So a theorem of „Dirichlet type“ holds not only „horizontally“, 
namely  for  the  sequence  of  numbers  of  certain  types,  but  also  „vertically“,  for  the 
sequence of types. Statements on equidistribution over classes (if true at all), however, are 
presumably more difficult to prove . 

6. Arithmetical functions.  Among the familiar arithmetical functions some depend on 
the  actual  primes  entering  in  the  prime  decomposition  of  the  argument,  like  Euler´s 
totient or the divisor sums, but others depend only on the type, i.e. factorize over the type 
map  n    t(n);   most notably  ω, the  Möbius  µ-function,  and  Liouville´s function  λ = 
(−1)l  ,  where  we  abbreviate  l(n)  =  l(t(n)).  I  wonder  which  of  the  type-dependent 
arithmetical   functions can be expressed in terms of these three (of course,  one must 
specify the meaning of „expression“). 

The three above-mentioned „basic“ type-dependent functions are interrelated by various 
identities. Let us write  f ∗g  for the Dirichlet convolution of arithmetic functions, 

(f ∗g)(n) =    Σ f(d) g(n/d) ,

and  ε for the unit  element for the Dirichlet product (the characteristic function of 1). 
Then we have  µ ∗1  = ε ; this is the basic property of µ, immediately implying Möbius 
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inversion. Using multiplicativity and checking prime powers, one calculates 

2ω ∗ λ = 1   (= constant function 1), whence  µ ∗2ω ∗ λ =   µ ∗ 1 = ε ,

showing that   µ∗2ω  ( = µ²) is the  ∗ -inverse of  λ. Similarly, one can check that

2ω ∗ 2ω λ  =   ε,  whence µ ∗ λ =  2ω λ  and   λ =  1∗ 2ω λ .

Another relation of this type is

ω ∗ λ  = − 1∗(λω)

(proof  omitted).  The  most  elementary  type-dependent  functions,  however,  are  the 
characteristic functions χT of the types T, or  δ -functions on the set of types, namely

χT(n) =  1 if  t(n) = T,  = 0  otherwise;  

every type-dependent arithmetical function f can be written as

f  =  Σ f(T) χT  ,

summing over all types; the infinite sum of course makes perfect sense.  Now we claim 
that 

χ(1)  =  µ ∗  ω . 
 
Proof: on the one hand   µ ∗  ω ∗ 1  =    ω ,  on the other hand     χ(1)  ∗ 1 = ω,  as one 
sees  at  once,  and   the  equation  follows  since  the  constant  function  1  is  Dirichlet-
invertible.  (A similar  argument  shows that  the  function   l  ∗ µ   is  the  characteristic 
function of the set of prime powers; call this function  χ and observe that 

(χ ∗1)(n) =   Σ νp(n) =  l (n), 

where the sum is over the prime divisors of n.)

Next we calculate, for n with prime divisors  q1,..qr ,
  
                                                                                              2   if  n = q1q2

(χ(1)  ∗   χ(1) )(n)  =    Σ  χ(1) (n/qi)  =       {  1   if  n  = q1²   ,
                                                                                               0   otherwise  

from which one reads off  the equation

χ(1)  ∗   χ(1)   =   2  χ(1,1)   +   χ(2)  .

In order to express the right-hand side in terms of  µ  and ω, we calculate 
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(χ(1,1) ∗ 1)(n)  =  cardinality of {(p,q) | p,q prime divisors of n, p q} =  ω(n)(ω(n) – 1)/2 ,

whence by Möbius inversion we get 

χ(1,1)        =     µ ∗ ω(ω − 1)/2   

and thereby also an expression  of  χ(2)  in terms of  µ and  ω (note that both the Dirichlet 
as  the  usual  valuewise  product  are  involved  here).   We now sketch  a  proof  that  all  
functions   χT have such an expression.  (Remark: it is well known that   1∗λ  is the 
characteristic function of the set of all squares of natural numbers. By Möbius inversion, 
this yields

λ   =     µ  ∗ Σ χT

with the sum over all types of squares, that is all  (a1,...,ar)  with all  ai  even. Hence if we 
can express all  such  χT  in terms of  µ and  ω, we also get such an expression for  λ , but 
as an infinite sum!) Defining 

ω(k)(n) = number of p|n with νp(n) = k,  ωk(n) = number of p|n with νp(n)  ≥ k, 

(so  ω1  =  ω)  we have the equations 

ωk   –  ωk+1  =  ω(k)    and    ωk   =  χ(k)  ∗  1. 

A straightforward calculation shows 

 χ(k)  ∗ ( –1) ω  =   ( –1) ω ( ωk+1  –  ω(k)  ) =   ( –1) ω(2 ωk+1  –  ωk
  ),

and together these equations imply inductively that all functions  χ(k)  have an expression 
in terms of  µ and  ω. (The function  ( –1) ω  seems to play a key role, which should be 
elucidated further; for example, it  enters in the characteristic function of the set of all 
powerful numbers.)

Before we proceed, we have to take a closer look at the (Dirichlet-) multiplication of the 
functions χT,  which is quite interesting. Here are some more products:

χ(1)  ∗   χ(2)    =   χ(2,1)  +   χ(3) ,    χ(1)  ∗   χ(1,1)   =  3χ(1,1,1)  +   χ(2,1)  ,

χ(1,1)  ∗   χ(1,1)   =  6χ(1,1,1,1)  +  2χ(2,1,1)   +  χ(2,2)  .

Of particular interest are the  ∗ - powers  of  χ(1) . We have calculated  χ(1)
∗2   above; the 

next two are 

 χ(1)
∗3  =    6χ(1,1,1)  +  3 χ(2,1)    +   χ(3) ,
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 χ(1)
∗4  =    24χ(1,1,1,1)  +  12 χ(1,1,2)    +  6 χ(2,2)     +   4χ(1,3)    +   χ(4)    .

The n-th power   χ(1)
∗n  involves  all and only the types of length n ; the type 1n appears 

with coefficient n!, the type (n) with coefficient 1 (proofs  by induction on n).  

The general case reads as follows: let  T = (a1,...,ar) ,  S = (b1,...,bs). Then 

χT  ∗   χ S     =    Σ  m(T, S; R)  χR  ,  

where  R runs over all types  R =  (c1,..., ct)  such that each  c  is either an a or a b or a sum 
of an a and a b, and all a´s and b´s are used up, informally: R arises by shoving S and T 
one upon another; clearly S,T < R in the arithmetic order. The multiplicity m(T, S; R) is 
the number of possibilities to obtain R from S and T in this  way; these multiplicities  
should be related to the orders of the types R,S,T involved in the type graph. Note that 
l(R) =  l(T) +  l(S)  for such R; so the  ℤ-algebra generated by the  χT   is graduated by 
length. Also, every product   χT ∗ χS  involves at least two summands; no χT is a product 
of other such functions.

Now we can finish the proof that the χT  can be expressed  in terms of  µ and  ω by  an 
induction along  ω(n). The case of ω(n) = 1 has already been settled. For arbitrary T, we 
have an equation 

χT  ∗  χ (k)     =   Σ  m(T, k; R) χR  + χ(T,k)  , 

where (T,k) denotes the type obtained from T by adding an exponent k, and the sum is 
over  types R with   ω(R) =  ω(T).  Since any type  S  with  ω(S) = ω(T) + 1  can be 
written in the form S = (T,k), this completes the induction. 

An amazing thing here is the following: if we view the types as partitions, then we see 
that thereby we have made the set of all partitions (of all numbers) the basis of an infinite-
dimensional, associative and commutative graduated algebra, which would not be easy to 
see from the point of view of partitions alone. It might be interesting to describe  (finite-
dimensional?) representations of this algebra or images modulo primes. In any case this 
algebra should be of use for the theory of partitions. 

7. Zeta functions of types. With every type T we can associate its zeta function

ζT  (s) :  =   L(s, χT)    =    Σ  n -s ,

where the sum is over all n such that t(n) = T. Clearly the series converges for Re s > 1, 
and 

Σ  ζT (s)  =  ζ  (s) ,

with the sum over all types (including T = (0), having  χ(0) =  ε ), is the Riemann zeta 
function.  This  equation  can  be  viewed as  an  additive  analogue  of  the  Euler  product 
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decomposition. The exact abscissa of convergence of  ζT (s)  is  

σT  : =  1/min(a(i)) ,

where as usual  T = (a(1),...,a(r)). To prove this, let us assume that a(r)   is minimal. It is 
easy to see that

σT   ≤ σ(a(r),...,a(r))  

(compare the summands of the series in question); on the other hand for  s = 1/a(r)   the 
series  ζT (s)  diverges, because it contains subseries of the form

q1
-a(1)/a(r)...qr-1

-a(r-1)/a(r)   Σ p -1   

with fixed primes qi  and the sum running over the remaining primes; so  actually   σT   = 
σ(a(r),...,a(r))  . The proof of    σ(a,...,a)   =  1/a  is left to the reader. The standard formula for the 
abscissa of convergence of a Dirichlet series 5  reads in our case

σT   =   inf {a > 0 |  πT (x)  =  O(xa) } ,

so comparing the two expressions we obtain

1/min(a(i))  =  inf {a > 0 |  πT (x)  =  O(xa) },

which however is a rather trivial statement when looked upon more closely. The equation 

L(s,f ∗ g) = L(s,f) L(s,g)

can be used to derive equations among the functions  χT ; for instance, the equation 

χ(1)  ∗   χ(1)   =   2  χ(1,1)   +   χ(2) 

also follows from the evident identity

2  ζ(1,1)   =  ζ(1) ²  −    ζ(2)  .

7.1. One also may ask for Euler products. It is easy to see that a single  ζT (s) cannot have 
one, but suitable (infinite) sums of such zetas can; simply start with such a product

Π (1 + p-a(1,p)s + p-a(2,p)s + ... )

with natural exponents 0 < a(1,p) < a(2,p) < ...(the sequence may or may not terminate) 
and look what happens. If this is to be a sum of functions  ζT (s) , then the exponents a(i,p) 
= a(i) must be independent of p, and then exactly those types occur which have all their 
exponents in the set of the a(i)´s, and the product is the sum of the corresponding zeta 
functions. For example,

17



Π (1+p-s) = L(s,²) =  ζ(s)/ζ(2s)

is the sum of the zetas of all sqarefree types, plus 1, and

Π (1+p-2s)  =  L(s, ( µ ∗  µ²)² )  =  ζ(2s)/ζ(4s)

is 1 plus the sum of zetas of all types (2,...,2) (exercise). It would be interesting to know 
which functions of this kind can be expressed by the Riemann zeta function, as products 
and quotients of functions   ζ(as)  for various natural a. Operating with the Euler factors, 
one quickly sees that the problem boils down to the following: Let H be the subgroup of 
the multiplicative group  of ℚ(t)  generated by all  1 − tn . Then we want to know which 
elements of H have all their coefficients = 0 or 1 when expanded as a power series in t, 
and which sequences of  0,1 can arise in this way. For example, 

1/(1 – tn) =  1 +  tn   +  t2n +  ....

yields the types of all n-th powers. If the power series is actually a polynomial, then all of 
its roots must be roots of unity; so e.g. 1 + t² + t³  cannot occur,  and  the Dirichlet series 
1 + Σ  ζT (s) , where the sum is over all types having exponents 2 or 3,  is not an aggregate 
of functions ζ(as), but  

1 + t + t³ + t4 =  (1 + t)(1 + t³)  = (1 – t²)/(1 – t)  (1 – t6)/(1 – t³) 

does occur, and the corresponding Dirichlet series equals  ζ(s)ζ(3s)/ζ(2s)ζ(6s). Note that 
the Dirichlet series arising in this way can be motivic zeta functions only in very special  
cases (are there others than X = {pt}?), since the polynomials defining the Euler factors 
are independent of the prime; so for example Dedekind zeta functions of number fields 
other than ℚ cannot occur 6. 

7.2. Analytic continuation will not generally be possible, at least not for single functions 
ζT . In the standard proof of Dirichlet´s theorem one derives the formula

log  ζ(s)  ~   ζ(1) (s) ,

expressing the fact that the difference of both sides is holomorphic in a neighbourhood of 
1. (I would like to see analogous formulas for other types.) Now the function on the left  
cannot be viewed as meromorphic at 1 (the derivation of the formula is valid only in the 
half-plane re s > 1). (Elementary argument: if  log  ζ(s) were meromorphic at 1, then it 
would have a pole of order at least one. But using the well known formula

log  ζ(s)  ~   log 1/(s – 1) 

one sees that, for every  a > 0, if  s tends to 1+, then 

lim (s – 1) a log  ζ(s)  =  lim (s – 1) a log 1/(s – 1)  = 0, 
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which is a contradiction.) So one cannot speak of a pole of  ζ(1) (s) at s = 1 in the usual 
sense; nevertheless it is possible to establish a calculus of orders for such functions, by 
virtue of the following construction7. 

We consider functions f,g : (1, 1 + ε)   ℝ×  defined in some (possibly varying) interval 
right to 1 and define   f ≈ g   if the limit of  f(s)/g(s), for  s  tending to  1+,  exists and  is 
≠ 0. This is an equivalence relation; we denote the class of f by o(f) and define addition 
and ordering of the classes by

o(f) + o(g) = o(fg), o(f) < o(g)  if  lim g(s)/f(s) = 0. 

This gives an ordered semigroup, which we denote O+(1);  its  elements may be called 
„(right) orders of real functions at 1“.  Note the „ultrametric“ property: if  o(f) >  o(g), 
then  o(f + g) = o(g), which follows from the trivial fact that  lim f(s)/g(s) = 0  implies 
lim(f(s) + g(s))/g(s) = 1. The map  a     o((s–1)a)  is an embedding of the additive group 
of real numbers into O+(1). By what we have seen above,

0: =  o(1)  >  o(log ζ(s))  > – a

for all positive a; the function log ζ(s) has at s = 1 a pole of positive but infinitesimally 
small order; we put

δ : =  o(log ζ(s)) = o( ζ(1) (s))

and claim: for any type T, o(ζT ) equals δ times the number of 1´s among the exponents of 
T. The proof is by induction on this number. If no exponent is 1, then, as we have seen 
above,  ζT   is holomorphic and  ≠0 in a neighbourhood of 1, having order 0. For arbitrary 
T consider the equation

          χT  ∗   χ (1)     =      χ(T,1)    +   Σ  χS  ,       

and  the sum contains only types S having at most as many 1´s as T. Using the inductive 
hypothesis and the ultrametric property, we conclude

o( ζ(T,1) ) =    o(ζT  ∗   ζ (1))   =  o( ζT )  +   o( ζ(1) )  , 

which implies our claim. Thinking speculatively, one might expect that  o(ζT)  has some 
impact on the growth order of the counting function  πT (which, nota bene, cannot depend 
on this order alone); this would require a new sort of „Tauberian“ theorem. 

Note also that 

  ζ(1) (s) = L(s, χ(1) ) = L(s, µ) L(s, ω) =   ζ (s)-1 L(s, ω),

so L(s, ω) has a pole of order 1 – δ  at s = 1. We see that zetas of single types do play a 

19



role, but the role is different from the one played by the motivic zeta functions. Certainly 
there remain things worthy to discover. 

Conclusion. I have explained elsewhere 8 in some detail how a certain incompatibility of 
the additive and the multiplicative structure of the natural numbers can be viewed as the 
ultimate  source  for  many  problems  of  number  theory.  Both  structures  are  easy  to 
understand if viewed in isolation; it is their simultaneous presence, with the distributive 
law as a link between them, which causes those problems. The set of natural numbers, as 
codified  by  the  Peano  axioms,  is  generically  of  an  additive  structure,  and  so  is  our 
primary intuition of it: just continue adding the unit. It is a natural problem to understand 
how multiplicative complexity unfolds itself as one moves (additively) along the number 
sequence. For this understanding the concept of multiplicative type (of which the concept 
of prime number is  just  a special  case) is  evidently  fundamental;  as are some of the 
problems formulated here. We have also seen that some of the natural questions arising 
with this concept are easily answered, others require more effort, but can be answered 
with existing methods, but others will (probably) require new methods. In any case one 
should be aware of the old dictum of Siegel 9, valid in all of mathematics, but particularly 
in number theory, „daß man über die wirklichen Schwierigkeiten eines Problems nichts 
aussagen kann, bevor man es gelöst hat.“

Notes and References

1 Writing this up I was made aware by Henrik Bachmann (Hamburg) of some websites 
which contain numerical material,  e.g. a list with successive numbers having the same 
type (the type is called „prime signature“ there).  He has also carried out a computer 
search which seems to confirm the expectations concerning the growth of π(1,1) and  π(2,1) 

(section 5), and found the quintuple and septuple repetitions mentioned in section 5.1. 
Furthermore, he pointed out to me the argument using the Pell equation in section 5.4. I 
thank him heartily for his commitment to these problems. 

2 See M.Aigner, Combinatorial Theory, Springer 1979, p.76. Such sequences are called 
„unimodal“. 
3 T.M.Apostol, Introduction to Analytic Number Theory, Springer 1976, p.316. 

4 Our first example is the case of  3 + 4ℤ      5 + 6ℤ,  the example connected with 
Artin´s conjecture is  1 + 2ℤ       3 + 4ℤ . One must exclude the case where a and m 
are odd and b is even (or vice versa), because in this case k must be even if  a + mk  is to  
be prime, but then  b + nk  is even. This seems to be the only obstruction for the general 
question to be meaningful. 

5 See Don B.Zagier, Zetafunktionen und quadratische Zahlkörper, Springer 1981, p.5. 

6 Lists of L-series of arithmetical functions expressed as zeta-aggregates can be found in 
the above-mentioned books by Zagier, p.14  and Apostol, pp. 231, 247.

7 I owe the idea to F.Waismann, Einführung in das mathematische Denken, München 
1970, p. 196 ss. No doubt it has been worked out „canonically“ somewhere. 
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8 See my essay „Über Addition und Multiplikation“, in: E.K., Studien zur Struktur und 
Methode der Mathematik, Leipziger Universitätsverlag 2012. 

9 C.L.Siegel, Transzendente Zahlen, Mannheim 1967, S.72. 
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