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Convergene of disretization proedures for problems

whose entropy solutions are uniquely haraterized by

additional relations

R. Ansorge, Hamburg

Abstrat

Weak solutions of given problems are sometimes not neessarily unique. Relevant solutions are then piked

out of the set of weak solutions by so-alled entropy onditions. Connetions between the original and

the numerial entropy ondition were often disussed in the partiular ase of salar onservation laws

(e.g. [1℄, [2℄), and also a general theory was presented for general salar problems ([3℄, [4℄). The entropy

onditions were realized by ertain inequalities not generalizable to systems of equations in a trivial way.

It is a onern of this artile to extend the theory in suh a way that inequalities an be replaed by

general relations, and this not only in an abstrat way but also realized by examples.

1 Introdution

Often, (weak) solutions of problems like a system of onservation laws are not neessarily

unique. In order to pik out of the set of solutions the partiular one relevant from the

point of view of the appliations under onsideration, additional relations to be ful�lled

by the seeked solution are added to the original problem. We all a solution that ful�lls

these additional relations an entropy solution, and the set of these additional relations

itself is alled an entropy ondition.

In order to ensure that numerial proedures leading to approximate solutions do really

approximate the entropy solution instead of another (weak) solution, also the numerial

solutions have to ful�ll ertain additional relations. The set of these onditions will be

alled a numerial entropy ondition.

2 The oneption

As in [4℄, let X; Y;X

n

� X be topologial -normally metri- spaes (n = 1; 2; � � � ).
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Let the originally given problem be written as

~

Au = w (1)

with

~

A :

~

X ! Y ;

~

X � X :

If neessary, we replae problem (1) by a weak representation:

Find u 2 X so that

A(

^

�) u = a(

^

�) ; 8

^

� 2

^

J (2)

where

^

J is an index set, where

n

a(

^

�) j

^

� 2

^

J

o

� Y is a given set, and where

n

A(

^

�) j

^

� 2

^

J

o

is a set of operators with joint domain D � X and with

A(

^

�) : D! Y ; 8

^

� 2

^

J :

The elements u 2 S with

S = fu 2 X j u solves (2)g

are alled weak solutions of (1) or simply solutions if the following impliations hold:

a)

~

X � D ^ u solves (1) ) u 2 S

b) u 2 S \

~

X ) u solves (1) .

We are now going to be only onerned with problem (2). The elements

^

� 2

^

J are alled

test elements

1

.

Assume Z to be a topologial spae, too, let

n

^

A

n

: X

n

! Z ; n = 1; 2; � � �

o

be a sequene

of operators, and let fâ

n

g � Z be a sequene ompat in Z .

For eah �xed n 2 N , we ask for an element u

n

2 X

n

with

^

A

n

u

n

= â

n

(n = 1; 2; � � � ) : (3)

(3) is looked upon as a numerial disretization proedure onstruted in order to solve

problem (2) approximately. Let this method be suitable, i.e.

S

n

:= fu

n

2 X

n

j u

n

solves (3)g 6= ; (n = 1; 2; � � � ) ; (4)

but eah S

n

is allowed to ontain more than one element

2

.

The elements u

n

2 S

n

(n = 1; 2; � � � ) are alled approximate solutions or numerial

solutions of problem (2) where suitable onnetions between the problems (2) and (3)

have still to be formulated.

1

Here,

^

J � X an our.

2

as it sometimes happens if impliit �nite-di�erene methods are used in order to solve ertain di�erential

equations
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Problem (3) was expeted to be independent of test elements

3

. Nevertheless, we assume

that (3) an also be formulated in a weak sense, namely that there is for every

^

� 2

^

J a

sequene of operators

n

A

n

(

^

�) j

^

� 2

^

J ; n 2 N

o

with

A

n

(

^

�) : X

n

! Y ; 8

^

� 2

^

J

as well as a sequene

n

a

n

(

^

�)

o

� Y with

lim

n!1

a

n

(

^

�) = a(

^

�) (5)

so that

A

n

(

^

�) u

n

= a

n

(

^

�) ; 8

^

� 2

^

J ; 8 u

n

2 S

n

(n = 1; 2; � � � ) : (6)

We all formula (6) a weak formulation of the numerial proedure.

3 A onvergene theorem

De�nition 3.1 A pair [fC

n

g ; C℄ onsisting of an operator sequene fC

n

g and of an

operator C is alled asymptotially losed if the impliation

v

n

! v ^ C

n

v

n

! z ) C v = z (7)

holds.

De�nition 3.2 An operator sequene fC

n

g is alled asymptotially regular if the impli-

ation

fC

n

v

n

g ompat in Y ) fv

n

g ompat in X (8)

holds.

De�nition 3.3 The numerial proedure (3) is alled onvergent if set onvergene

S

n

! S (9)

is ensured in the following sense:

fS

n

g is disretely ompat, i.e. eah sequene fu

n

j u

n

2 S

n

; n = 1; 2; � � � g is ompat in

X, and if u is the limit of a onvergent subsequene, u 2 S follows.

Using these de�nitions, the following theorem an be stated:

Convergene Theorem:

(i) Let

hn

A

n

(

^

�)

o

; A(

^

�)

i

be asymptotially losed for every �xed

^

� 2

^

J ;

(ii) let

n

^

A

n

o

be asymptotially regular.

3

beause omputers do not understand what test elements are
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Then:

S

n

! S (10)

holds.

For the proof, f [4℄.

Remark 3.1: It should be mentioned that the assumption (ii) an be replaed by the

weaker assumption

fS

n

g disretely ompat

as far as the right sides fâ

n

jn = 1; 2; � � � g are onstant:

â

1

= â

2

= â

3

= � � � .

In this ase, only

u 2 S for every limit of a subset

has to be shown.

Remark 3.2: If the result (10) is guaranteed, S 6= ; follows so that even the existene

of (weak) solutions of the given problem is stated.

4 Existene and uniqueness of entropy solutions

Let R be a relation between X and the set

^

J . This means that there is a statement

onerning ordered pairs (u ;

^

�) of elements u 2 X ;

^

� 2

^

J so that it an be deided

whether or not this statement is true for the given pair.

If it is true, we write

uR

^

� :

Assume that there is a uniqueness theorem available of the following type:

There is at most one element u 2 S with

uR

^

� ; 8

^

� 2

^

J : (11)

Moreover, we assume that there is for eah n 2 N a relation R

n

between X

n

and

^

J , and

at least one element u

n

2 S

n

with

u

n

R

n

^

� ; 8

^

� 2

^

J : (12)

Finally, let the relations R

n

(n = 1; 2; � � � ) be ontinuously onvergent to R in the following

sense:
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For every �xed

^

� 2

^

J , the impliation

n

u

n

j u

n

2 X

n

; u

n

R

n

^

�

o

! u ) uR

^

� (13)

holds.

Theorem:

Under the assumptions of the onvergene theorem and of this setion, the entropy solution

u

E

exists uniquely, and eah of the sequenes fu

n

j u

n

2 S

n

; n = 1; 2; � � � g onverges to u

E

.

Proof: The Convergene Theorem leads to the validity of property (10), i.e. eah sequene

fu

n

j u

n

2 S

n

; n = 1; 2; � � � g ontains a onvergent subsequene fu

n

0

jn

0

2 N

0

� Ng with

a ertain limit u 2 S.

Consider now espeially a sequene

n

u

n

j u

n

2 S

n

; u

n

R

n

^

� ; 8

^

� 2

^

J ; n 2 N

o

: (14)

Sequenes of this type exist beause of the assumptions made before, and eah of these

sequenes ontains a onvergent subsequene.

Take one of these sequenes and then one of its onvergent subsequenes. Denote its limit

by u

E

. Hene, u

E

2 S .

From (13),

u

E

R

^

� ; 8

^

� 2

^

J (15)

follows, and beause of the uniqueness theorem, the whole sequene (14) onverges to

this limit u

E

, and all sequenes of type (14) behave so. Thus, u

E

is the unique entropy

solution.

5 Examples

5.1 One-dimensional salar onservation law

Let


 = f(x; t) j x 2 R ; t 2 [0; T ℄g ; X = L

lo

1

(
) ;

~

X = C

1

(
) ; Y = C(
) ;

~

Au =

�

�

t

u + �

x

f(u) = 0 ; f 2 C

1

(R) stritly onvex, f � 0 ; f(0) = 0

u(x; 0) = u

0

(x) :

(16)

Let

^

J =

n

^

� = (�; ) j� 2 C

1

0

(
) := J;  2 R

o
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where J is the spae of funtions ontinuous on 
 and with ompat support.

Formula (2) will then be realized by

h

A(

^

�) u

i

(x; t) = �

Z




[�

t

�(x; t) u(x; t) + �

x

�(x; t) f(u(x; t))℄ d


�

Z

R

�(x; 0) u

0

(x) dx (17)

= 0 :

In order to onretize the numerial proedure (3), we are going to use an expliit one-step

three-point FDM in onservation form:

For eah �xed n 2 N , let �t =

T

n

the time step size and �x > 0 the spatial step size

where

� =

�t

�x

is assumed to be a presribed onstant.

With u

m

(x

i

) expeted to beome an approximation to the solution u(i�x; m�t)

(i = 0;�1;�2; � � � ; m = 0; 1; 2; � � � ), the general 3-point sheme is desribed as

u

m+1

(x

i

) = u

m

(x

i

)� � fg(u

m

(x

i+1

); u

m

(x

i

))� g(u

m

(x

i

); u

m

(x

i�1

))g : (18)

Here, the numerial ux g is assumed to ful�ll the onsisteny ondition

g(v; v) = f(v) 8 v 2 R ; (19)

and the numerial initial values are onstruted by

u

0

(x

i

) =

1

�x

x

i+

1

2

Z

x

i�

1

2

u

0

(�) d� : (20)

We assume that the CFL-ondition

� jf

0

j

�

1

< 1 (21)

with jf

0

j

�

1

:= max

�

jf

0

(u)j ; juj � ku

0

k

L

1

	

is ful�lled, too.

u

n

2 L

lo

1

(
) = X will then be de�ned as a pieewise onstant funtion by

u

n

(x; t) := u

m

(x

i

) for

�

x

i

� x < x

i+1

(i = 0;�1;�2; � � � )

m � t � t < (m+ 1)� t (m = 0; 1; � � � )

(22)

(n = 0; 1; 2; � � � ) .

The weak formulation (6) of our partiular method (18) an then be read as
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Z




�(x; t)

�

1

� t

[u

n

(x; t+� t) � u

n

(x; t)℄ +

1

� x

[g(u

n

(x +� x; t); u

n

(x; t))

(23)

� g(u

n

(x; t); u

n

(x�� x; t))℄

o

d
 = 0

so that the requirement (5) is ful�lled naturally.

In order to show the validity of the Convergene Theorem, it suÆes to prove that

[fA

n

(�)g ; A(�)℄ is at least asymptotially losed with respet to sequenes fv

n

g with

v

n

= u

n

2 S

n

; (n = 0; 1; 2; � � � ) : (24)

For these sequenes, (7) holds with z = 0 so that

A(�) u = 0 (25)

follows for onvergent sequenes u

n

! u by means of the Lax-Wendro� theorem [5℄.

By the way, (16) - (25) an also be onsidered as a desription of the situation de�ned

by systems of onservation laws provided that the CFL-ondition (21) is formulated in a

suitable way, and also the Lax-Wendro� theorem holds in this ase. We are going to take

advantage of that later.

But let now restrit ourselves to the salar ase where we will realize the numerial proe-

dure (3) by means of the monotone Engquist-Osher sheme [2℄. The numerial solutions

u

n

2 S

n

are then bounded with respet to the L

1

-norm on eah ompat subset of 
 so

that they form an L

1

-ontration (f. [1℄) whih makes these sequenes onvergent ones

with respet to the L

lo

1

-topology. (f. [6℄).

In order to ensure that the limit funtion oinides with the entropy solution, we onsider

the partiular realization of the relation R by

uR� ()

�

R




f�

t

�(x:t)V (u(x; t); ) + �

x

�(x; t)F (u(x; t); )g d
 (26)

�

R

R

�(x; 0)V (u

0

(x); ) d x � 0 ; 8

^

� 2

^

J ;

where fV (� ; ) j  2 Rg is a one-parameter family of real funtions whih are ontinuous,

onvex and pieewise di�erentiable with respet to x for every �xed  2 R .

We hoose espeially

V (u; ) = ju� j ; (27)

all it the entropy funtional and determine the entropy ux F : R � R ! R by the

reqirement to ful�ll weakly

�

t

V (u(x; t); ) + �

x

F (u(x; t); ) = 0 ; 8  2 R and for every smooth solutionu : (28)
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In the salar ase, there is at most one (weak) solution u ful�lling the inequality (26) for

all  2 R, indeed (f. [7℄) .

Let us now introdue a numerial ux funtion G by

G(�; �; ) := F

+

(�; ) + F

�

(�; )

with

F

+

(�; ) =

�

F (�; ) ; � � 

0 ; � < 

; F

�

(�; ) =

�

0 ; � � 

F (�; ) ; � < 

: (29)

Beause of formulas (27), (28), formula (29) together with (16) leads to

F

+

(�; ) =

�

f(�) ; � � 

0 ; � < 

; F

�

(�; ) =

�

0 ; � � 

�f(�) ; � < 

: (30)

If the relations R

n

(n = 1; 2; � � � ) will then be realized as

u

n

R

n

^

� ()

R




�(x; t)

n

V (u

n

(x;t+� t);)�V (u

n

(x:t);)

� t

+

G(u

n

(x;t);u

n

(x+�x;t);)�G(u

n

(x��x;t);u

n

(x;t);)

�x

o

d
 � 0 ;

(31)

8 2 R,

the onvergene property (13) will hold as it was shown in [3℄, [4℄.

6 One-dimensional systems of onservation laws

Let us now look at systems of onservation law problems of the type (16) and of two or

more equations, say r equations (2 � r 2 N ) .

And these systems are assumed to be stritly hyperboli and genuinely nonlinear where

smooth solutions ful�ll the equation (28) automatily with a stritly onvex funtion V .

Let the numerial solution be omputed by means of the Glimm-�nite-di�erene sheme

(f. [8℄). And it follows from [8℄ that these numerial solutions onverge for inreasing n,

i.e. for dereasing step sizes, to a (weak) solution u

E

of the original problem. Moreover,

u

E

ful�lls the Lax entropy onditions

�

k�1

(u

E

l

) < s < �

k

(u

E

l

)

(32)

�

k

(u

E

r

) < s < �

k+1

(u

E

r

)

for an integer k 2 f2; � � � ; r � 1g .
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Here, the values �

1

; � � � ; �

r

are the eigenvalues of the Jaobian of the ux f , s is the

veloity of a k-shok, and u

E

l

; u

E

r

are the values of u

E

at the left or at the right side of

this shok, respetively. We suppose that the inequalities (32) guarantee the uniqueness

of u

E

as it is suggested by arguments of information theory.

But (32) only holds if and only if the inequality

(V

l

� V

r

)s � F (V

l

)� F (V

r

) (33)

holds along the shok, and this property is equivalent to the inequality (26), i.e. to

uR

^

� :

Moreover, the Glimm sheme ful�lls for positive step sizes also the relations

u

n

R

n

^

� (n = 1; 2; � � � )

beause of (31), so that the onsiderations onerning the salar ase an immediately be

transfered to the situation studied here (f. [9℄, p. 337).

Here, in the ase of the Glimm sheme, the numerial ux G reads as

^

J = J

(34)

G(u

n

i

; u

n

i+1

) :=

1

� t

t

n+1

Z

t

n

F

�

v

n

(x

i

+

� x

2

; t)

�

dt

where v

n

(x; t) solves the loal Riemann problem

�

t

v

n

+ �

x

f(v

n

) = 0 on [x

i

; x

i+1

℄� [t

n

; t

n+1

℄

where (35)

v

n

(x; t

n

) =

(

u

n

i

for x < x

i+

1

2

u

n+1

i

for x > x

i+

1

2

:
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