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zur Angewandten Mathematik

Radiation Models for Thermal Flows
at Low Mach Number
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Radiation Models for Thermal Flows at Low Mach Number

I. Teleaga∗, M. Seäıd†, I. Gasser‡, A. Klar§, J. Struckmeier¶

Abstract

Simplified approximate models for radiation are proposed to study thermal effects in low
Mach flow in open tunnels. The governing equations for fluid dynamics are derived by applying
a low-Mach asymptotic in the compressible Navier-Stokes problem. Based on an asymptotic
analysis we show that the integro-differential equation for radiative transfer can be replaced
by a set of differential equations which are independent of angle variable and easy to solve
using standard numerical discretizations. As an application we consider the situation of fires in
vehicular tunnels. The results presented in this paper show that the proposed models are able
to predict temperature in the tunnels accurately with low computational cost.

Keywords. Radiation hydrodymanics; low-Mach number flows; simplified PN approximations;
fires in vehicle tunnels.

1 Introduction

Thermal radiation in gas flows has direct effects on many industrial applications such as fires,
furnaces and gas turbines. Growing concern with high temperature processes has emphasized the
need for an evaluation of the effect of radiative heat transfer. Nevertheless, it is common for work
on convective flows to neglect thermal radiation mainly because it involves tedious mathematics,
which increase the computational work, and also because of the lack of detailed information on
optical properties of the participating media and surfaces. However, radiation can strongly interact
with convection in many situations of engineering interest and neglecting its effects may have
significant consequences in the overall predictions. For discussion on the effect radiative properties
of participating gases we refer to [9, 19, 10] and further references can be found therein.

The main difficulties raised when approximating thermal radiation in convection flows lie es-
sentially on the large set of dependent unknowns and the coupling between the radiative transfer
and the energy equation. The most accurate procedures available in the literature for computing
radiation transfer in furnaces are the zonal and Monte Carlo methods [15]. However, these methods
are not widely applied in comprehensive combustion calculations due to their large computational
time and storage requirements. Also, the equations of the radiation transfer are in non-differential
form, a significant inconvenience when solved in conjunction with the differential equations of flow
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and convection. On the other hand, much of the current work on modeling energy transport in
high-temperature gas or chemically reacting flows, uses computational fluid dynamics (CFD) codes.
Therefore, the models for solving the radiative transfer equations must be compatible with the nu-
merical method! s employed to solve the flow equations. The zonal and Monte Carlo methods for
solving the radiative transfer problem are incompatible with the mathematical formulations used in
CFD codes, and require prohibitive computational times for spatial resolution desired. The discrete
ordinates methods [2] appear to be reasonable compromises for solving the radiative transfer equa-
tions, but still one has to deal with large systems of algebraic equations, resulting from discretizing
angle and space coordinates, that may deteriorate the efficiency of the CFD solver. For these rea-
sons, numerous investigations are currently being carried out worldwide to assess computationally
efficient methods. The present work deals with the design of such methods.

In this paper, we consider the simplified PN (SPN ) approximations to the radiation problem.
The SPN approximations were first proposed in [4] and theoretically studied in [12]. In [11, 18] the
SPN approximations have been extensively studied for radiative transfer in glass manufacturing,
while in [3] they have been implemented for radiation in gas turbines. The SPN approximations
have also been studied in [1] for internal radiation in crystal growth. The main advantage in
considering SPN approximations is the fact that the radiative transfer equations are transformed
to a set of parabolic/elliptic equations independent of the angular directions and easy to solve
numerically using standard methods. Furthermore, comparisons presented in the above mentioned
references have shown that the SPN models approach the full radiative heat transfer with very low
computational cost.

The motivation for this work is the need to obtain efficient numerical solutions to thermal
radiation in gas flows at low Mach number. A typical example of such application is the modeling
of fires in vehicle tunnels. As stated in [6, 5], the characteristic velocity in the tunnel is of order
1 m/s, for which low Mach number flow can be a suitable model. In fact, low Mach number
approximation systematically removes acoustic waves without eliminating density variation. Here,
the governing equations for unsteady compressible flow are the Navier-Stokes equations. For low
Mach number flow, it is well known that numerical solution of these equations is computationally
demanding because of the severe restriction imposed on the time step by acoustic wave propagation
which is much faster than flow speeds. Following the work in [13], acoustic waves are removed by
expanding independent variables in powers of the Mach number while density variations are still
all! owed. When the essential dynamics in flows such as low-speed combustion is dependent on
density differences but not compressibility (e.g. fire events in a tunnel) this procedure improves
computational efficiency.

Compressibility effects can be neglected in low Mach number flows but density variations must
still be accounted for when phenomena such as combustion are present. Then the time scale of
acoustic waves is small compared to that of the hydrodynamic phenomena. An algorithm designed
for general compressible flow will be computationally expensive because time steps must be small
enough to resolve the acoustic waves while the integration period must remain large enough to
capture the hydrodynamic phenomena. The radiation time-scale must be dealt with separately.
Our goal in the present work is to develop robust and efficient solvers for the radiation convection
problems. This is reached by coupling the low-Mach number flows for fluid dynamics and the SPN

models for the radiation. The coupled problem can be solved by a slight modification of the Marker
and Cell (MAC) scheme [23, 7] for incompressible flows.

The layout of this paper is as follows. In section 2 we formulate the mathematical models
for thermal flow and radiative transfer. This section includes the low-Mach asymptotic for the
fluid dynamics and the SPN approximation for the radiation transfer. Numerical solutions of the
proposed models are presented in section 3. Section 4 is devoted to numerical results for two
examples on fires in vehicular tunnels. Some concluding remarks are given in section 5.
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2 Mathematical Equations

Modeling radiation hydrodynamics requires two sets of mathematical equations. The first set of
equations models the fluid dynamics while the second set determines the radiative signal. The two
processes have different physical characteristics and need careful numerical treatment, we refer to
[14] for more details on radiation hydrodynamics. In this paper, a fluid dynamic model is derived
using a low Mach asymptotic in the compressible Navier-Stokes equations whereas, the radiation
model is formulated using an asymptotic expansion over an optical scale.

The compressible equations for conservation of mass, momentum and energy are

∂t̃ρ̃+ ∇̃ · (ρ̃ũ) = 0,

ũt̃ + (ũ · ∇̃)ũ +
1
ρ̃
∇̃p̃ =

µ

ρ̃

(
∆̃ũ +

1
3
∇̃(∇̃ · ũ)

)
+ f̃ , (2.1)

∂t̃

(
cvρ̃T̃

)
+ ∇̃ ·

(
cvũρ̃T̃

)
+ p̃∇̃ũ− ∇̃ ·

(
λ∇̃T̃

)
= −

∫ ∞

ν0

∫
ω=4π

κ̃
(
B̃(T̃ , ν)− Ĩ

)
dωdν + q̃,

where ρ̃(t,x), ũ(t,x), p̃(t,x), T̃ (t,x) and Ĩ(t, ν, ω,x) denote respectively the mass density, the flow
velocity, the thermal pressure, the temperature of the fluid and the radiative intensity. Here x
is the space coordinate, t the time variable, ω the directional angle and ν the frequency variable.
The terms f̃ and q̃ describe the external forces (e.g. gravitational force) and source contributions
(e.g. heat or sink source), respectively. The quantities µ, λ, cv are the dynamic viscosity, the heat
conductivity and the specific heat coefficient at constant volume, respectively. The frequency ν0 is
the upper bound of opaque band of the optical spectrum where radiation is completely absorbed.
By assuming that the fluid is a perfect gas, the fluid dynamic model is closed by the equation of
state

p̃ = Rρ̃T̃ , (2.2)

where R = cp−cv, with cp is the specific heat coefficient at constant pressure. The spectral intensity
I(t, ν, ω,x) at time t, in position x, within frequency ν and propagating along direction ω with a
speed c, is obtained from the isotropic radiative transfer equation

∀ν > ν0 :
1
c
∂t̃Ĩ + ω · ∇Ĩ + (σ̃ + κ̃)Ĩ =

σ̃

4π

∫
ω=4π

Ĩ(t, ν, ω,x)dω + κ̃B̃(T̃ , ν), (2.3)

where κ̃(ν) is the absorption coefficient, σ̃(ν) is the scattering coefficient and B(T̃ , ν) is the spectral
intensity of the black-body radiation given by the Planck function

B̃(T̃ , ν) =
2hν3

c20

(
ehν/kT̃ − 1

)−1
, (2.4)

with h, k and c0 are Planck’s constant, Boltzmann’s constant and the speed of radiation propagation
in vacuum, respectively, compare [14] for further physical details. For mathematical aspects of the
radiative transfer equation and related issues see for instance [15]. Notice that in the above coupling
we have assumed a thermodynamic equilibrium such that the fluid temperature and the radiation
temperature are equal.

In order to rewrite the above equations in a dimensionless form, we define the following nondi-
mensional variables

x =
x̃
x∞

, t =
t̃

t∞
, σ =

σ̃

σ∞ + κ∞
, κ =

κ̃

σ∞ + κ∞
, λ =

λ̃

λ∞
,

(2.5)

ρ =
ρ̃

ρ∞
, u =

ũ
u∞

, T =
T̃

T∞
, p =

p̃

p∞
, I =

Ĩ

I∞
,
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where the subscript “∞” represents reference quantities. We also impose the relations

t∞ =
x∞
u∞

, p∞ = Rρ∞T∞, I∞ = cvρ∞T∞u∞, B(T, ν) =
B̃(T̃ , ν)
I∞

. (2.6)

Using the new variables (2.5), equations (2.1) can be rewritten in dimensionless as

∂tρ+∇ · (ρu) = 0,

∂tu + u · ∇u +
1

γM2

1
ρ
∇p− 1

Re

1
ρ

(
∆u +

1
3
∇(∇ · u)

)
= f , (2.7)

∂t (ρT ) +∇ · (uρT ) + (γ − 1)p∇ · u− γ

Pr

1
Re

∆T = −1
τ

∫ ∞

ν0

κ
(
4πB(T, ν)− ϕ

)
dν + q,

where the adiabatic exponent γ, the Mach number M , the Reynolds number Re, the Prandtl
number Pr and the Froude number Fr are given by

γ =
cp
cv
, M2 =

ρ∞u
2
∞

γp∞
, Re =

ρ∞u∞x∞
µ

, Pr =
µcp
λ
, Fr =

u∞√
x∞‖f‖

, (2.8)

with

f =
f̃

Fr2‖f̃‖
, q =

q∞x∞
u∞p∞

(γ − 1)q̃.

For the situation of fires in vehicular tunnels, typical values for the reference parameters and the
dimensionless numbers (2.8) can be found in [6]. In the equations (2.7), ϕ is the total incident
radiation defined as

ϕ(t, ν,x) =
∫

ω=4π
I(t, ν, ω,x)dω. (2.9)

Analogously, the radiative transfer equation (2.3) can be rewritten in dimensionless as

∀ν > ν0 :
1
c
∂tI + τω · ∇I + (σ + κ)I =

σ

4π
ϕ+ κB(T, ν), (2.10)

where the optical scale τ is defined by

τ =
1

(σ∞ + κ∞)x∞
. (2.11)

Note that the scaling parameter τ depends on optical characteristics of the fluid and reference
height of the fluid domain. It can be viewed as a dimensionless number to differentiate between an
optically thick medium (τ � 1) and an optically thin medium (τ ≈ 1).

Equations (2.7) and (2.10) have to be solved in a bounded domain Ω with smooth boundary
∂Ω and subject to given initial and boundary conditions. These conditions strongly depend on
the problem under consideration. Since the emphasis in the present work is to simulate fires
in vehicular tunnels, we shall focus in a generic two-dimensional tunnel shown in figure 1, and
boundary conditions are set according to its geometry. Thus

∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, (2.12)

where Γ1 and Γ2 represent the entrance and exit of the tunnel, while α defines the tunnel slope.
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Figure 1: A generic two-dimensional domain for vehicular tunnels.

2.1 Low Mach Asymptotics

There are two approaches for solving low Mach number flows. The first approach begins with the
equations for compressible flow, devise a numerical method and then consider modifications to the
numerical algorithm when low Mach number flows are encountered. In practice, this procedure is
performed using some type of preconditioning techniques in the sense that they scale the eigenvalues
of the system to similar orders of magnitude and remove the disparity in wave speeds, leading to
a well-conditioned system, compare for instance [21]. The second approach is to begin with the
equations for low Mach number flows and adapt numerical schemes devised for incompressible flows
to allow density variations. This last approach has been taken here.

The approach consists in a Taylor series expansion of variables (in our case the pressure) in
power terms of the Mach number. The basic idea behind this technique is to decrease the numerical
representation of the speed of sound artificially, by subtracting a constant pressure p(0) across the
entire domain,

p = p(0) + εp(1) +O(ε2), (2.13)

where ε = γM2, p(0) is the ground pressure and p(1) is the fluctuation pressure part. The leading
order momentum equation reduces to ∇p(0) = 0; therefore, p(0) can only be a function of time
i.e. p(0) = p(0)(t). In closed systems, the ground pressure may change with time whereas it
remains constant in open systems like vehicular tunnels considered in this paper. Then, considering
p(0) = constant and that in leading order we have T = p(0)/ρ, the system (2.7) can be rewritten as

∂tρ+∇ · (ρu) = 0,

∂tu + (u · ∇)u +
1
ρ
∇p =

1
Re

1
ρ

(
∆u +

1
3
∇(∇ · u)

)
+ f , (2.14)

∇ · u = Q,

where the right-hand side term Q is given by

Q(T, ϕ) =
1

p(0) PrRe
∆T − 1

γp(0)

1
τ

∫ ∞

ν0

κ
(
4πB(T, ν)− ϕ

)
dν +

q

γp(0)
, T =

p(0)

ρ
.

Note that all quantities that appear in these equations, are the leading order terms (ε0) of their
corresponding expansion, except for the hydrodynamic pressure p = p(1), which appears in the
momentum equation and is a first order (ε1) quantity. The nonlinear system (2.14) is transformed
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using a modified projection method described in [5] into

∂tρ+∇ · (ρu) = 0,

∂tu + (u · ∇)u +
1
ρ
∇p =

1
Re

1
ρ

(
∆u +

1
3
∇Q

)
+ f , (2.15)

∇ ·
(

1
ρ
∇p
)

= ∇ ·
(

1
Re

1
ρ

(
∆u +

1
3
∇Q

)
+ f
)
.

For the above system we impose the following boundary conditions

n(x̂) · ∇u(t, x̂) = 0, ∀ x̂ ∈ Γ1 ∪ Γ3,

u(t, x̂) = 0, ∀ x̂ ∈ Γ2 ∪ Γ4,

ρ(t, x̂) = ρ0, ∀ x̂ ∈ Γ−1 ,
ρ(t, x̂) = ρ1, ∀ x̂ ∈ Γ−3 , (2.16)
p(t, x̂) = p0, ∀ x̂ ∈ Γ1,

p(t, x̂) = p1, ∀ x̂ ∈ Γ3,

n(x̂) · ∇p(t, x̂) =
1
Re

1
ρ

(
∆u +

1
3
∇Q

)
· n(x̂) + f · n(x̂), ∀ x̂ ∈ Γ2 ∪ Γ4,

where n(x̂) denotes the outward normal in x̂ with respect to ∂Ω and

Γ−1 = {x̂ ∈ Γ1 : n(x̂) · u(t, x̂) ≤ 0} , Γ−3 = {x̂ ∈ Γ3 : n(x̂) · u(t, x̂) ≤ 0} .

As pointed out in [5], using Dirichlet boundary conditions for pressure at the ends of the domain
we can directly simulate atmospheric effects or the pressure induced by ventilators. It is known
that a ventilator produces an over pressure which induces a certain velocity to the fluid.

2.2 Simplified PN Approximations

The SPN approximations for radiative heat transfer problems have been analyzed in [11]. The SPN

approximations have also been studied in [18, 8] for glass manufacturing and in [3] for gas turbines.
Here we extend these approximations to the radiation hydrodynamics. Since the photons travel
with very high speed, the term 1/c in (2.10) is negligible and is dropped in the remainder of paper.

First we rewrite the equation (2.10) as(
1 +

τ

σ + κ
ω · ∇

)
I = S,

where the right-hand term is given by

S =
1

σ + κ

( σ
4π
ϕ+ κB(T, ν)

)
.

Then, we apply a Neumann series to formally invert the transport operator

I =
(

1 +
τ

σ + κ
ω · ∇

)−1

S

≈
(

1− τ

σ + κ
ω · ∇+

τ2

(σ + κ)2
(ω · ∇)2 − τ3

(σ + κ)3
(ω · ∇)3 + · · ·

)
S.

Note that the source term S does not depend of the angle coordinates. Integrating respect to ω
over all directions in the unit sphere and using∫

ω=4π

(
ω · ∇

)n
dω =

(
1 + (−1)n

) 2π
n+ 1

∇n,
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with ∇2 = ∇ · ∇ = ∆, we obtain the formal asymptotic equation for ϕ

4πS =
(

1− τ2

3(σ + κ)2
∇2 − 4τ4

45(σ + κ)4
∇4 − 44τ6

945(σ + κ)6
∇6

)
ϕ+O(τ8).

When terms of O(τ2), O(τ4), O(τ6) or O(τ8) are neglected we obtain the SP0, SP1, SP2 or SP3

approximations, respectively. Higher order approximations can be derived in a similar manner.

The SP0 approximation:
ϕ = 4πS,

which is equivalent to
∀ ν > ν0 : ϕ = 4πB(T, ν). (2.17)

Note that the equilibrium (2.17) cancels the radiation effects in the fluid dynamics model (2.7). In
this paper, we consider only the SP1 and SP3 approximations and our techniques can be straight-
forwardly extended to other approximations. Thus,

The SP1 approximation:

4πS = ϕ− τ2

3(σ + κ)2
∇2ϕ+O(τ4),

and the associated equations are given by

∀ ν > ν0 : − τ2

3 (σ + κ)
∆ϕ+ κϕ = 4πκB(T, ν). (2.18)

The SP3 approximation:

4πS =
(

1− τ2

3(σ + κ)2
∇2 − 4τ4

45(σ + κ)4
∇4 − 44τ6

945(σ + κ)6
∇6

)
ϕ+O(τ8),

and the associated equations are given by

∀ ν > ν0 : − τ2

σ + κ
µ2

1∆ψ1 + κψ1 = 4πκB(T, ν),
(2.19)

− τ2

σ + κ
µ2

2∆ψ2 + κψ2 = 4πκB(T, ν).

The new variables ψ1 and ψ2 in (2.19) are related to the total incident intensity (2.9) by the relation

ϕ =
γ2ψ1 − γ1ψ2

γ2 − γ1
. (2.20)

The boundary conditions for SPN approximations are derived from variational principles and are
strongly connected to the PN approximations Marshak’s conditions, compare [15]. Here we for-
mulate boundary conditions for the SPN approximations which are consistent with fluid boundary
conditions (2.16). For more general formulation of these boundary conditions we refer the reader
to [11]. Hence, the boundary conditions for SP1 equations (2.18) are

n(x̂) · ∇ϕ(t, x̂) = 0, ∀ x̂ ∈ Γ2 ∪ Γ4,
(2.21)

τ

3(σ + κ)
n(x̂) · ∇ϕ(t, x̂) + ϕ(t, x̂) = 4πB (T (t, x̂), ν) , ∀ x̂ ∈ Γ−1 ∪ Γ−3 .
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For SP3 equations (2.19), the boundary conditions are given by

n(x̂) · ∇ψ1(t, x̂) = 0, n(x̂) · ∇ψ2(t, x̂) = 0, ∀ x̂ ∈ Γ2 ∪ Γ4,
τ

σ + κ
n(x̂) · ∇ψ1(t, x̂) + α1ψ1(t, x̂) = η1B (T (t, x̂), ν) + β2ψ2(t, x̂), ∀ x̂ ∈ Γ−1 ∪ Γ−3 , (2.22)

τ

σ + κ
n(x̂) · ∇ψ2(t, x̂) + α2ψ2(t, x̂) = η2B (T (t, x̂), ν) + β1ψ1(t, x̂), ∀ x̂ ∈ Γ−1 ∪ Γ−3 .

According to (2.16), the boundary temperature T (t, x̂) in (2.21) and (2.22) is defined as

T (t, x̂) =


p0

ρ0
, if x̂ ∈ Γ−1 ,

p0

ρ1
, if x̂ ∈ Γ−3 .

The remaining parameters appeared in (2.19), (2.20) and (2.22) are listed as follows:

µ2
1 = 0.11558711, µ2

2 = 0.74155574, γ1 = −1.6330966, γ2 = 3.0616681,

α1 = 2.06453963, α2 = 1.28268259, β1 = −0.28678023, β2 = 0.300669118,

η1 = 29.7220898, η2 = 12.5148781.

It is noteworthy that these parameters are valid only when non-reflective boundary conditions are
supplied to the radiative transfer equation (2.3). In [11], mathematical formulae to handle more
general boundary conditions in (2.3) are given.

3 Solution Procedure

The fluid dynamics and radiation equations presented in the previous section can be solved using
existing codes from computational fluid dynamics. In the current work, the fluid flow equations
(2.15)-(2.16) are solved by a modified projection method based on the MAC scheme. This method
is similar to that used in [5] as an extension of the MAC scheme [23] for incompressible flows. The
essential differences are in use of extra source term and the inclusion of radiation effects. The SPN

equations (2.18) and (2.21), or (2.19) and (2.22) are solved using a central difference scheme using
the same mesh hierarchy as the one used in fluid dynamics solution.

Let us consider the two-dimensional case i.e., x = (x, y), u = (u, v) and f = (f1, f2). The
time interval is divided into subintervals [tn, tn+1] with tn = n∆t and let wn denotes the value
of an arbitrary function w at time tn. Given {pn, ρn, un, vn, Tn, ϕn}, we compute the solution{
pn+1, ρn+1, un+1, vn+1, Tn+1, ϕn+1

}
as follows:

Step 1. Solve for ϕn+1

∀ ν > ν0 : − τ2

3 (σ + κ)
∆ϕn+1 + κϕn+1 = 4πκB(Tn, ν), (3.1)

in case of SP1 approximation or

∀ ν > ν0 : − τ2

σ + κ
µ2

1∆ψ
n+1
1 + κψn+1

1 = 4πκB(Tn, ν),
(3.2)

− τ2

σ + κ
µ2

2∆ψ
n+1
2 + κψn+1

2 = 4πκB(Tn, ν),
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ϕn+1 =
γ2ψ

n+1
1 − γ1ψ

n+1
2

γ2 − γ1
, (3.3)

in case of SP3 approximation.

Step 2. Formulate the intermediate source term Qn+1/2

Qn+1/2 =
1

p0 PrRe
∆Tn − 1

γp0

1
τ

∫ ∞

ν0

κ
(
4πB(Tn, ν)− ϕn+1

)
dν +

q

γp0
. (3.4)

Step 3. Update the density ρn+1

ρn+1 − ρn

∆t
+ un∂ρ

n

∂x
+ vn∂ρ

n

∂y
+ ρnQn+1/2 = 0. (3.5)

Step 4. Update the temperature Tn+1

Tn+1 =
p0

ρn+1
. (3.6)

Step 5. Formulate the source term Qn+1

Qn+1 =
1

p0 PrRe
∆Tn+1 − 1

γp0

1
τ

∫ ∞

ν0

κ
(
4πB(Tn+1, ν)− ϕn+1

)
dν +

q

γp0
. (3.7)

Step 6. Calculate an auxiliary velocity (uaux, vaux)

uaux − un

∆t
+
∂(un)2

∂x
+
∂unvn

∂y
− unQn+1 − 1

Re

1
ρn+1

(
∆un +

1
3
∂Qn+1

∂x

)
= fn

1 ,

(3.8)
vaux − vn

∆t
+
∂unvn

∂x
+
∂(vn)2

∂y
− vnQn+1 − 1

Re

1
ρn+1

(
∆vn +

1
3
∂Qn+1

∂y

)
= fn

2 .

Step 7. Solve for the pressure pn+1

− ∂

∂x

(
∆t
ρn+1

∂pn+1

∂x

)
− ∂

∂y

(
∆t
ρn+1

∂pn+1

∂y

)
= Qn+1 − ∂uaux

∂x
− ∂vaux

∂y
. (3.9)

Step 8. Update the velocity
(
un+1, vn+1

)
un+1 = uaux − ∆t

ρn+1

∂pn+1

∂x
,

(3.10)

vn+1 = vaux − ∆t
ρn+1

∂pn+1

∂y
.

Note that the Poisson problem (3.9) is obtained by taking the divergence of equations (3.8) and
using the fact that ∇ · u = Q. In the solution procedure, two linear systems have to be solved at
each time step to update the total incident radiation ϕn+1 from (3.1) or (3.2) and the pressure pn+1

from (3.9). To solve these linear systems in our algorithm we have implemented a preconditioned
conjugate gradient from [22].

The discretization of spatial derivatives appeared in above steps, is carried out using a staggered
grid in which the different variables are approximated at different gridpoints as shown in figure 2.
This type of meshes, widely used in computational fluid dynamics, guarantees that the computed
flow solution is not perturbed by spurious pressure modes.
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Figure 2: Staggered mesh used in the space discretization.

In order to formulate the fully discrete equations for the radiation hydrodynamic equations, we
assume a uniform spatial mesh with grid sizes ∆x and ∆y in x- and y-direction, respectively. We
also denote by wij the value of a function w at gridpoints (xi, yj). Therefore the Laplace operator
in (3.1), (3.2), (3.4), (3.7) and (3.8) is discretized by the central differencing

∆w
∣∣∣
ij
≈ wi−1j − 2wij + wi+1j

(∆x)2
+
wij−1 − 2wij + wij+1

(∆y)2
.

The spatial derivatives of density in (3.5) are descretized by upwind differencing

u
∂ρ

∂x

∣∣∣
ij

≈ u+
ij

ρij − ρi−1j

∆x
+ u−ij

ρi+1j − ρij

∆x
,

v
∂ρ

∂y

∣∣∣
ij

≈ v+
ij

ρij − ρij−1

∆y
+ v−ij

ρij+1 − ρij

∆y
,

where
u±ij =

1
2

(uij ± |uij |) and v±ij =
1
2

(vij ± |vij |) .

Due to the fact that at high Reynolds numbers the convective part in (3.8) becomes dominant, the
spatial derivatives ∂u2

∂x , ∂uv
∂y , ∂uv

∂x and ∂v2

∂y in (3.8) have to be treated by a mixture of central and

donor-cell differencing as in [20]. For instance, the derivative ∂u2

∂x is approximated as

∂u2

∂x

∣∣∣
ij

≈ 1
∆x

((
uij + ui+1j

2

)2

−
(
ui−1j + uij

2

)2
)

+

δ

∆x

(
|uij + ui+1j | (uij − ui+1j)

4
− |ui−1j + uij | (ui−1j − uij)

4

)
,

where δ ∈ [0, 1] is a chosen parameter, δ = 0 corresponds to central differences and δ = 1 yields the
donor-cell differencing. The other spatial derivatives in the convective part of (3.8) can be handled
similarly.

The full discrete formulation of the Poisson problem (3.9) is given by

pn+1
i−1j − 2pn+1

ij + pn+1
i+1j

(∆x)2
+
pn+1

ij−1 − 2pn+1
ij + pn+1

ij+1

(∆y)2
− 1
ρn+1

ij

ρn+1
i+1j − ρn+1

i−1j

2∆x
pn+1

i+1j − pn+1
i−1j

2∆x
−

1
ρn+1

ij

ρn+1
ij+1 − ρn+1

ij−1

2∆y
pn+1

ij+1 − pn+1
ij−1

2∆y
=
ρn+1

ij

∆t

(
uaux

ij − uaux
i−1j

∆x
+
vaux
ij − vaux

ij−1

∆y
−Qn+1

ij

)
. (3.11)

10



At the boundary we use “ghost points” such that the boundary conditions enter the discrete
equations via source terms and they are incorporated in the linear systems to be solved, compare
[5] for more details. It is worth mentioning that the space and time discretizations presented in
this paper are only first order accurate. In addition, to ensure stability of the solution procedure
the time stepsize ∆t has to satisfy the canonical hyperbolic and parabolic CFL conditions

umax∆t ≤ ∆x, vmax∆t ≤ ∆y,
(

1
(∆x)2

+
1

(∆y)2

)
∆t
Re

≤ 1
2
, (3.12)

where umax = maxij |uij | and vmax = maxij |vij |.

4 Results and Numerical Examples

In this section we validate the models presented in this paper for two examples on fires in vehicular
tunnels. As in [5], we consider two realistic fire events in a vehicle tunnel with length 1 km and
10 m height as well as a pressure difference (between top and bottom) of 120 Pa. The reference
quantities and typical values suggested in [6] for fires in vehicle tunnels are listed in table 1. A
heat source with area size of 10 m × 4 m and strength of 10 MW is located in the middle of the
tunnel. Here the heat source is implemented as an indicator function and not as an obstacle. The
radiation source in the temperature equation is acting on the whole domain. Initially, we set the
following conditions

u(t = 0, x, y) = v(t = 0, x, y) = 0, ρ(t = 0, x, y) = 1.2, p(x, y) = ρgy,

which correspond to a fluid at rest with hydrostatic pressure. All linear systems are solved using
the preconditioned BiCGStab algorithm with a tolerance of 10−7 to stop the iterations. The total
duration of simulation is 20 min. In all our simulations we use variable time stepsizes ∆t adjusted
at each step according to (3.12) as

∆t = Cmin

(
∆x
umax

,
∆y
vmax

,
Re

2

(
1

(∆x)2
+

1
(∆y)2

)−1
)
,

where C is a safety factor set to 1/2 for all test cases to ensure the stability of the numerical
scheme. We assume non-scattering and gray participating media in the tunnel. Thus the black-
body radiation is given by

B(T ) = aRT
4,

where aR = 5.67 × 10−8 W/m2K4 is the Boltzmann constant. The spatial domain is discretized
into 2500 × 50 gridpoints and the optical scale is τ = 0.1. We should mention that non-gray
computations can also be carried out using our simplified models provided detailed information on
the spectral properties of the medium is given. In the sequel we shall use the terminology SP0,
SP1, and SP3 to refer to the equations (2.15), (2.15)-(2.18) and (2.15)-(2.19), respectively. Two
situations are selected namely fire accidents in a tunnel without slope and in a tunnel with slope
of 3%.

4.1 Vehicular Tunnel without Slope

Our first test example is a fire event in vehicular tunnel without slope. The isotherm plots obtained
by the SP0, SP1 and SP3 models are shown in figure 3 at different times. In each case the fluid
rises from the hot source and propagates along the cold regions in the tunnel as can be clearly seen
in figure 4, where temperature distribution is plotted together with velocity vectors obtained by
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Table 1: Quantities, units, reference quantities and typical values used in computations.

Quantity Unit Reference quantity Typical reference value

t s t∞ = u∞/h 15 min
x, y m L 103 − 104 m

height m h 10 m
u m/s u∞ 1 m/s
ρ kg/m3 ρ∞ 1.2 kg/m3

p kg/ms2 p∞ 105 Pa = 105 kg/ms2

f m/s2 f∞ 10 m/s2

T K T∞ 300 K
σ 1/m σ∞ 1 /m
κ 1/m κ∞ 100 /m
I kg/s3 sr I∞ 1 kg/s3 sr
q W/m3 q∞ 105 − 106 W/m3

R m2/Ks2 287 m2/Ks2

cp m2/Ks2 1005 m2/Ks2

λ kgm/Ks2 25 · 10−3 kgm/Ks2

µ kg/ms 18 · 10−6 kg/ms

the SP3 approximation. The results obtained by SP0 and SP1 approximations are not included in
this figure for sake of brevity. The absence of pressure differences between the entrance and exit of
the tunnel permits to the temperature fronts to move symmetrically with respect to the middle of
the tunnel where the source is located. Some deviations on the temperature plots between the left
and right regions are observed in the horizontal cross sections in figure 6, which may be caused by
the coarse mesh used in the simulations.

In order to have a clear comparison between the nonradiating convection (SP0 model) and the
radiating convection (SP1 and SP3 models), we display in figure 5 vertical cross sections of the
computed temperatures at two points in the tunnel. The first point is located exactly at the source
position, while the second point is positioned at 100 m right from the source. The horizontal cross
sections of the computed temperature in the middle of tunnel height are presented in figure 6 at
four different instants. As can be seen from these figures, the maximum temperature occurs in
the source region, which explains why the fluid rises in the central region of the tunnel and moves
symmetrically downstream and upstream. For instance, in the point located at (600 m, 5 m), the
maximum value of the temperature predicted by SP3 approximation is 3.4% higher than SP0 results
at time t = 4 min, while at time t = 16 min, the SP3 temper! ature is 5.2% higher than SP0

temperature.

The time evolutions of the temperature for two points located at (500 m, 5 m) and (600 m, 5 m)
are presented in figure 7. The difference in accuracy between SP1 and SP3 results were not signif-
icant, which confirms the asymptotic expansion discussed in section 2.2. Here the fluid radiation
increases with fluid temperature and when the fluid temperature is less than 700 K, combined
radiation and convection is close to pure convection. When radiation is included, temperature
decreases near the fire event and increases in regions far from the source. This can be explained
as follows. A radiative energy is proportional to the fourth power of absolute temperature, with
the increase of temperature difference the radiative heat transfer between the hot source and the
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closer regions becomes stronger than that between the other cold regions in the tunnel. On the
other hand, the temperature gradients are weakened near the hot source but strengthened n! ear
the far cold regions.

4.2 Vehicular Tunnel with 3% Slope

The second test example consists of a fire event in vehicular tunnel with a slope of 3%. We use
the same setting as the previous example. This test case occurs in many realistic fire events and
differs from the previous example in that, in the current example, pressure differences are present
in the tunnel and buoyancy effects act as additional forces. In figure 8 we present the isotherms
plots obtained by the SP0, SP1 and SP3 models at different times. Temperature distributions and
velocity vectors obtained by the SP3 model are shown in figure 9. It is clear that the slope strongly
alters the distribution of fluid temperature in the tunnel and also breaks the symmetry detected
in the case with vanishing slope. Initially the flow field and temperature propagate downstream
(entrance) in the tunnel, after certain time the flow moves upstream (exit) in the tunnel as can be
seen from figure 8 and fig! ure 9. This is due to buoyancy forces acting in the tunnel with slope.
Similarly to the previous example there is no significant differences between the SP1 results and
those obtained by the SP3 model.

Overall the temperature levels for radiating fluid (SP1 and SP3 models) are lower and more
uniform than for the nonradiating fluid (SP0 model) as radiation provides an additional mechanism
to transfer the heat generated inside the tunnel. As a consequence, the flow near the heated source
breaks down and weakens considerably. As expected, in the region near the fire source, a strong heat
transport induced by the pressure difference and therefore much lower temperatures are predicted.

Figure 10 shows the time evolution of the temperature for two points located near the fire
source at (540 m, 0.4 m) and (540 m, 0.8 m), respectively. As discussed in the previous example,
the radiating SP1 and SP3 models generally overpredict the velocities, especially those in the
neighboring regions to the heat source. When the radiative participation is more important, velocity
increases in the fire source. Therefore mass transport is more important in the center of the tunnel.
Thus this center participates more in transfers, as shown from the results presented in figure 9.
Furthermore, the appearance of radiation varies the temperature distribution in the tunnel, so that
the temperature and the flow field in the tunnel are altered. For example, in the point located at
(540 m, 0.4 m), the maximum value of the temperature predicted by SP3 approximation is 2.1%
higher than SP0 results at time t = 4 min. At time t = 16 min, ! this percentage changes to 3.7%.

As a final remark we want to comment on the computational work for the presented approxima-
tions. The number of iterations and CPU times required by SP0 approximation solutions were but
slightly lower than the respective SP1 solutions. The SP3 approximation, which is comparable to
the discrete ordinates method in accuracy [17], requires simultaneous solution of two second-order
elliptic differential equations for radiation calculations compared to one elliptic equation for the
SP1 approximation.

5 Conclusions

In this paper we have presented a comprehensive methodology for realistically predicting thermal
flows at low Mach number. The flow equations are derived from a low-Mach asymptotic in the
compressible Navier-Stokes problem. The radiation is approximated by the SPN equations also
derived by an asymptotic expansion in the radiative transfer problem. The combined models have
the potential to eliminate many difficulties that one faces when attempting to solve the radiation
hydrodynamic equations. For example, the low-Mach asymptotic removes the acoustic waves from
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Figure 4: Temperature distribution and velocity vectors obtained by SP3 approximation for the
tunnel without slope at times t = 0.5, 1, 2, 3, 5, 20 min.
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Figure 5: Vertical cross sections of the temperature at x = 500 m (top row) and at x = 600 m
(bottom row) in the tunnel without slope.
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Figure 6: Horizontal cross sections of the temperature at y = 5 m for different times.
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at (600 m, 5 m) (right column) in the tunnel without slope.
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Figure 9: Temperature distribution and velocity vectors obtained by SP3 approximation for the
tunnel with a slope at times t = 0.5, 1, 2, 3, 5, 20 min.

19



0 2 4 6 8 10 12 14 16 18 20
300

400

500

600

700

800

900

Time [min]

Te
m

pe
ra

tu
re

 [K
]

SP0
SP1
SP3

0 2 4 6 8 10 12 14 16 18 20
300

400

500

600

700

800

900

Time [min]

Te
m

pe
ra

tu
re

 [K
]

SP0
SP1
SP3

Figure 10: Time evolution of the temperature for points located at (540 m, 0.4 m) (left column)
and at (540 m, 0.8 m) (right column) in the tunnel with 3% slope.

the compressible flow without eliminating density variation. Whereas, the SPN approximations for
radiative transfer result in a set of equations independent of directional coordinates and easy to
solve. To solve the proposed models numerically we have implemented a modified MAC method
that allows incorporation of radiation source terms. Results indicate that the models are efficient
in generating accurate solu! tions and prove to be strong candidates for the integration into
comprehensive software packages.

Validation of the models has been carried out using two fire events in vehicular tunnels. In the
first example, the tunnel is without slope which ensures that no pressure differences take place in
the tunnel. The second example assumes a tunnel with a slope of 3% which allow buoyancy forces
to act in the tunnel. In both examples the heat source is centered in the tunnel and has a strength
of 10 MW corresponding to a burning car. It has been shown that for low temperatures, fluid
radiation does not strongly affect the convective heat transfer. However, if the radiative term is
much higher than the convective term, this conclusion may not hold. A large heat flux gradient
can change the temperature gradient, which will affect convective heat transfer. Furthermore, in
both examples the corresponding flow fields are affected by the presence of radiation. For instance,
velocities are intensified in regions near the fire source.

Although the new models were successfully implemented in a realistic fire event in tunnels, before
recommending a final version for widespread industrial two issues need to be considered. First, real
Reynolds numbers and chemical reactions in the fire event which have the advantage of predicting
turbulence effects. Second, revisiting the gray assumption by consider the optical properties of
mixed gases in the tunnel. These and further issues are subject of future investigations.
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