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Abstract

Applying a low-Mach asymptotic for the compressible Navier-Stokes equation we
derive a new fluid dynamical model, which should be capable to model large tempera-
ture differences in combination with the low—Mach number limit. The model is used to
simulate fires in vehicle tunnels, where the standard Boussinesq—approximation for the
incompressible Navier—Stokes seems to be inappropriate due to the high temperatures
developing in the tunnel. The model is implemented using a modified finite—difference
approach for the incompressible Navier—Stokes equations and tested in some realistic
fire events.

1 Introduction

Severe fire accidents in european vehicle tunnels during the last years have arised the
question on how to improve the safety regulations and evacuation plans in existing or
presently projected vehicle tunnels. To getter a better knowledge about the heat and
smoke propagation and the corresponding emergency strategies it is necessary to perform
real fire experiments in existing tunnels, which is a complicated and costly tasks and even
forbidden in some european countries. Besides real experiments the numerical modeling
using computer simulations becomes more and more necessary and even tractable.

Up to now computer simulations in engineering sciences are nearly exclusively based on
so—called zonal models. In a zonal model the tunnel is divided into certain number of
zones and each zone is characterized by some numerical quantities describing the (aver-
aged) temperature, the mass fraction when considering chemical models as well as some
other typical flow characteristics. Then each zone is coupled with its neighbours based on
some heuristic balance equations, see [1], [2].

A more fundamental approach is to use a field model, i.e. to use equations from compu-
tational fluid dynamics, like the well-known compressible Navier-Stokes equations, and
to perform simulations based on these partial differential equations. In order to use a
model from computational fluid dynamics one should decide whether the flow under con-
sideration is compressible or incompressible, viscous or inviscid, laminar or turbulent and
whether energy transport plays a significant role. First of all, the typical velocities in a
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vehicle tunnel are of the order of 1 m/s, which means that we are close to the low—Mach
number limit, where the fluid becomes incompressible. On the other hand it is clear, that
during a fire event the energy transport is crucial to model the heat propagation correctly.
Incompressible viscous fluids are usually described by the incompressible Navier—Stokes
equations, which are extended to energy transport using the so—called Boussinesq-appro-
ximation [3], [4]. Nevertheless this model seems to be inappropriate to describe fire events,
because the validity of the Boussinesq—approximation is restricted to small temperature
differences. To describe large temperature variations one should use the compressible
Navier—Stokes equation, but it is known that this model is inappropriate when consider-
ing the low—Mach number limit.

In the present paper we will derive a new fluid dynamical models, which is capable to
combine the low—Mach number limit with large temperature deviations occuring in the
flow. The model is derived using a low—Mach number asymptotic for the compressible
Navier—Stokes equations, where the fire in the tunnel is modeled by heat sources in the
energy equation of the Navier-Stokes system.

2 The Navier—Stokes System with Source Terms

The starting point for the description of the flow propagation in the tunnel during a fire
event are the compressible Navier—Stokes equations [5]. Additionally, the fire is modeled
by a heat source in the energy equation, which represents a heat release rate inside a
given volume, where the fire takes place. This method leads to a rather correct energy
distribution inside the tunnel volume.

Hence, the two—dimensional compressible Navier—Stokes equations with source terms are
written as

(p); +div(pu) = 0
1 -
@+ (@ V)at VP = %Aiﬁtf (1)
(cofT); + div(c,@pT) + pdiv(a) = MAT +§

where p(x, t), w(x,t) = (i,9)T, p(x,t), T(x,t) denote the density, the velocity, the pres-
sure and the temperature of the fluid, respectively (see also [6]).

The quantities 4, ¢, ¢, describe the dynamic viscosity, the specific heat coefficient under
constant pressure and under constant volume, respectively.

The term f = ( fas fy)T models the external forces, e.g. the gravitational force.

The source term § consists of three contributions, i.e.

¢ = Guwtdqntgs

where ¢, is the heat conduction through the wall, ¢} is the heat source and ¢; is the sink
source.

In many instances a compressible fluid can be regarded as a perfect gas, even if viscous
effects are taken into account and the equation of state is written as

p = PRT



where R = ¢, — ¢, is the gas constant.
System (1) is non-dimensionalized using the following scales:
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where h is the height of the tunnel. Typical values for the reference quantities in the case
of long tunnels are (see also [6]):

Uso = 1m s, poo =10°kg m s, poo = 1.2kg m 3, T, = 300K
Reformulating system (1) in the new variables (2) leads to:

(p)¢ +div(pu) = 0
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where the adiabatic exponent -y, the Mach number M, the Reynold number Re, the Prandl
number Pr and the Froude number F'r are given by
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The values corresponding to these parameters can be found in [6]. It turns out that the
Mach number M is of the order of 10~° and therefore we use an asymptotic expansion for
the pressure in the low—Mach number regime given by:

p=po+ ep1 + O(€%) (4)
where € = yM?. Inserting the formula (4) into the system (3), the momentum equation
yields in leading order

Vpo=0 = po=polt)

But, assuming that the ground pressure in a open domain is also constant in time, we can
conclude that pg is constant in time. Using the leading order approximation 7' = % from
the third equation of the system (3), we obtain:

div(u) = %. (5)

Finally, system (3) is transformed into

(p)t +div(pu) = 0 (6)
ug+ (u-V)u + %Vpl = (é) %Au +7f (7)
div(u) = @Q (8)



where @) is the right hand side of equation (5). One should notice that this are not the
incompressible Navier—Stokes equations with variable density ([7], [8], [3]) because the
velocity is not divergence—free.

The system (6)—(8) is considered as an initial-boundary value problem on a bounded,
rectangular domain {2 with boundary 02 given by

N=I1NynNI'sNIy

Here, I'y and I'g denote the entrance and exit of the tunnel, I'y and I'4 the lower and upper
fixed wall, respectively.
The initial conditions are given by

p(z,0) = po(x), u(@,0) = uo(z), p1(2,0) = pr(z) (VzeQ) (9)

The boundary conditions for the velocity are:

8
a—:(w,t) — 0, zel Ul (10)
u(z,t) = 0, zelUuly

For the density we use standard inflow conditions:

ple,t) = po if w(x,t)>0 xely,
ple,t) = pr if w(x,t)<0 xelj (11)

A very sensitive task is to impose boundary conditions for the pressure. In order to
do this we transform our system (6)—(8) applying the divergence operator to equation
(7) (assuming enough differentiability), which yields a nonlinear Poisson equation for the
pressure:

diV(%Vpl) = div(é%Au +f)—Qu-Vu—-V(u-Vu)-u—Q (12)

The boundary conditions are:

pi(z,t) = p(x), on TI'1UT; (13)
11
Vp1 - = (E;Auﬂ*)-ﬁ on ToUTy, (14)

where 7 is the exterior unit normal vector.
Remark:

1) Using Dirichlet boundary conditions for pressure at the entrance and exit of the
tunnel, we can directly simulate atmospheric effects or a pressure profile induced by
ventilators. It is known that a ventilator produces an overpressure which induces a
certain velocity to the fluid.

2) The Neumann boundary conditions for the pressure at the top and the bottom of
the domain are derived by taking the normal component of the equation (7) at the
boundary and using the prescribed boundary conditions for the velocity field.



In the next section we will solve numerically the following system obtained from (6)-(8):
(p)t +div(pu) = 0 (15)

1
ug + (u - V)u + ;Vpl (16)
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div(%Vpl) = div(—e%Au + f) —Qu-Vu—V(u-Vu) u—Q; (17)

together with the initial conditions (9) and the boundary conditions (10),(11),(13) and
(14).

3 The Numerical Scheme

The numerical solution of the system (15)—(17) is realized using an algorithm based on
the Marker and Cell (MAC) method [9]. This method consists of a simple finite difference
scheme with an explicit first—order time discretization. The domain is discretized using
a staggered grid, in which the unknowns are not located at the same grid points. The
discrete values for the velocities, the pressure and the density are located on three separate
grids, each shifted by half a grid spacing to the bottom, to the left, and to the lower left,
respectively (see Figure 3.1).
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Figure 3.1: The staggered grid

The finite difference notations used here are:

pi; = Dressure at the center of cell (i,7) at time level n

pij = density at the center of cell (i, ) at time level n

ug; = velocity in z-direction at the middle of right side of cell (i, j) at time level n
v;; = velocity in y-direction at the middle of top side of cell (i, ) at time level n

Subscripts are used for the cell location and superscripts for the time level at which the
quantities are evaluated such that ¢ = nAt, where At is the time step.

Using this grid we can see that not all the values are lying at the boundary of the domain,
e.g. the values of v. Therefore, the domain is surrounded by a single layer of so—called
ghost cells, see Figure 3.2.
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Figure 3.2: The cell displacement

3.1 Time discretization

The time derivatives appearing in the system (15)—(17) are discretized using a first order
forward Euler method. First, the density p"*! is found from equation (15). Then, to find
u™! and p™*! from (16)-(17) we use an adapted projection method.

This means that in the first step an auxiliary velocity field «u*** is computed from the
following equation:

e = (18)
81(; = w on 09
n

The quantity w is computed such that div(u) = Q on 99 (see Section 3.3).
In the second step, the velocity u"t! is found from:
At n+1

"t = e — prEs Vp (19)

vutt = Q. (20)

In order to find p™*! we derive the discrete version of equation (17). This can be obtained
by taking the divergence of equation (19) and using (20).

Now, we will write in more details the method explained above. First we rewrite the
convective terms in equation (16) using the continuity equation (8):

S = u"—l—At(é#[(% giyg)]n_ [Bgf)]n_ [8(520)]n+
[u@ + fu]" — [%%]nﬂ) (21)
o = yn+At(é#[(% g:;)]n [85;5))]n_ [ag;)]n—l—
[vQ + f]" - [%g—]y)]nﬂ) (22)



Using equation (18) we can write

ous n 1 1 v O%u\1n O(u?)qn O(uv)qn
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Using again (20), we get from (23)—(24):
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which, after rearranging, becomes a nonlinear Poisson equation for the pressure p"*! at
time 41

a2pn+1 a2pn—|—1 1 <apn+1 apn—H apn—|—1 apn—}—l )

0x? o2 prt\ 9z Oz oy Oy
pn—|—1 Oy aue Hyour B Qpn—l—l
At [ oz T oy ] At (25)

Finally, u™t! is updated using equation (19).

3.2 Spatial discretization

Now, we have to discretize all spatial derivatives appearing in the semi—discrete equations
derived in the previous section. For the spatial discretization of the density equation (15)
we use a standard upwind method:

L At _ At
pZ_H - p?]' ZJA (pm p?—lj) sz (pl+1] PZ)
At _At
_U;;A_y(/’?j - ﬂi"jq) - UijA_y(p%+1 - PZ) - Atp?j ?J (26)

where

1 1
u+:maxu,0:—u+u, - =min(u,0) = =(u — |ul|).
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The spatial discretization of equations (23)-(24) is:

At 1
+1 n+1 n+1
ug = ugy - Az p—?j—i—l (pis; — i) (27)
1= 1’ ---aimam - 15 .7 = 17 "'ajmam
At 1
+1 auzx n+1 n+1
U?j = Uy = A_yp?jﬂ (pij+1 — Dy ) (28)

1= 17 ---aimawa .7 = 1, '-'7jmaw -1

The Laplace operator appearing in the equations of u*** are discretized using the standard
5-point stencil. Some difficulties appear when we discretize the convective terms 8(u?)/0r,
O(uv) /0y, O(uv)/0z, and O(v?)/0y. Because the convective terms become dominant at
high Reynoldy numbers, it is necessary to use a mixture of the central differences and the
donor-cell discretization (see [10],[11]).

As an example, we give here the discretization of the convective term 0(u?)/0z evaluated
at the midpoint of the right edge of cell (4,7), i = 1, ....imaz — 1, 7 = 1, ..., Jmaz:

[B(UZ)] _ 1 ((uz‘,j Uiz (tiog Uy )2>
or lij; = Az 2 2
P ( Ui + Uit (Ui — wigrg)  [wimy + wig|(wio1y — ui,j))
Az 4 4

where the parameter vy is chosen between [0, 1], v = 0 corresponds to central differences,
while v = 1 yields the donor-cell scheme.
The discrete Poisson equation for pressure is

1 1 1 +1 +1 +1
p?jlj - 2p%+ +pznj1j Pt — 2P P B
(Az)? (Ay)?
+1 1 n+l +1 +1 1 n+l +1
1 [p?+1j — P ity — Py n Pije1 — Pij1 Pijri _p%l] _
p?j"'l 2Ax 2Ax 2Ay 2Ay
1
piy Ul — ity | v "’?ﬂuﬂ] _ Qupi! (29)
At Ax Ay At

1=1,.4maz, J=1,..0; Jmaz-

3.3 Boundary conditions

The discrete boundary conditions for the velocities read as:

’Ulo,j = ul,j’ uimamyj = u’imaacflaj
V0 = VLjr  Vimae+lg = Vimasy> 10T J =1, Jmaa-

Uq,0 = —Us4,1, Us,jmae+1 = Ui jmaz
v 0 = 0, Vi jimaz = U, for i=1,...,%maz-

auxr

Additionally, we need the following values of u*“* v at the boundary in order to

compute the right hand side of equation (29):

aux aux - .
ugs, Uiy for =1, ..., jmax
auxr auzxr

IU'iaO » Vi Jmaz? fOI' = 1’ -y tmax



which have been not yet specified.

To determine these boundary values we take a look at equations (27) and (28) evaluated
at the boundaries. It turns out that we need the values of u_1 j, Ui, 41,55 Vi,—15 Vi jmas+1
and to compute these values we use the discrete boundary conditions and the discretized
continuity equation (8) in the cells (0, 7), (imaz,?), (4,0), (4, jmaz)-

Imposing the Dirichlet and Neumann boundary conditions for the pressure we get:

po; = 2™ —puj,
Pimaz+1,57 = 2pout — Pimawz,j, J =1, Jmaz

aur

Ay
pl70 = pzil - Epl,ovz,o ?
Ay )
pi;jmam+1 = pi,jmaz + Epi,jmamviu;gfmz’ 1= 17 -+ tmax
where p™™, p°* represent the hydrostatic pressure with respect to the height of the domain.
3.4 Stability condition

In order to ensure stability of the numerical scheme we have to impose stability conditions
on the time step At. Usually, these conditions are of the form:

24t _ ( 1
Re ~ \(Az)* = (Ay)?

where |Umaz|, |Umaz| are the maximal absolute values of the velocities. Based on these
stability conditions an adaptive time step is computed in [11], such that At for the next
time step satisfies all the conditions (30):

-1
) s |Umaz| At < Az, |Umaez| A < Ay (30)

At < Tmin(%( ! ! )2)_1, Az Ay ) (31)
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The factor 7 €]0,1] is a so—called safety factor. To solve the Poisson equation for the
pressure (29) we apply a standard SOR-scheme.

4 Numerical Examples

In the following we give some numerical results for two realistic fire events in a vehicle
tunnel. In both cases the heat source has a strength of 1 MW.
The heat source is placed exactly in the middle of the tunnel and it is distributed over a
rectangular area of size 10m x 4m. One should notice that the heat source is implemented
as an indicator function and not as an obstacle. In the first example the tunnel profile has
no slope, in the second one we consider a constant slope of 3 %.

4.1 Tunnel configuration without slope

The tunnel configuration is listed in Table 4.1 and the initial conditions are given by:

’u,o(iE) = Uo(iE), po(-’l)) = 1.2, P(y) = pgY

where the value for the pressure is just the hydrostatic pressure.



Table 4.1: Tunnel configuration

Length 1km
Height 10m
Slope 0%
Heat source 1MW
Pressure difference (bottom—top) 120Pa
Simulation time 30 min

Figure 4.1 shows an isoline plot of the temperature field during th first part of the sim-
ulation. Because there is no pressure difference between the entrance and the exit of the
tunnel (see also Figure 4.3) the fronts of the temperature (as well as the velocity) propa-
gate symmetrically with respect to the middle of the tunnel. To get some information on
the speed of propagation, Figure 4.2 shows a zoom of the velocity field close to the heat
source.

In the second half of the simulation (Figures 4.4—4.6) we observe that the temperature
and velocity front remain symmetric up to the end of the simulation. The pressure nicely
stabilizes to the given values. The results even show that there are no boundary instabili-
ties caused by improper boundary conditions, which proves that the boundary conditions
used are suitable conditions for our model equations.

4.2 Tunnel configuration with slope

The tunnel configuration is listed in Table 4.2 and we use the same initial conditions like
in the previous case.

Table 4.2: Tunnel configuration

Length 1km
Height 10m
Slope 3%
Heat source 1MW
Pressure difference (bottom—top) 120Pa
Simulation time 30 min

As in the previous example, the largest speed of propagation of the fronts occurs at the
beginning of the smulations in the neighbourhood of the heat source, see Figure 4.8. Here,
because the tunnel profile has a slope of 3 %, we do not observe a symmetric propagation
of the fronts. Due to the pressure difference the front moves more fast to the right than
to the left, see Figure 4.8, 4.10 and 4.11. right than to the left (see Fig. 8,10,11). Due to
the Reynoldsnumber of Re = 2500 some vortex structures appear in the temperature and
velocity field.

5 Conclusion

In the present paper we derived a new fluid dynamical model which is used to model low—
Mach number lows in combination which large energy transport. The model was applied
to simulate fire events in vehicle tunnels, where standard models from computational
fluid dynamics seem to fail. The system is discretized using a modification of a standard
projection method based on finite-differences and numerical results were given for two
realistic fire events.
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The model should be seen as a physically motivated alternative to compressible flow models
on one hand and incompressible equations on the other hand. Both types of models are
known to run into difficulties when modeling low—Mach number flows in combination with
strong heat transfer.

Concerning fire events in vehicle tunnels we concentrate on the most important effects
occuring in the flow. The model has to be generalized to the case a large tunnel slopes,
ventilation systems in the tunnel, to the case of air supply systems etc. Moreover, one may
take into account radiative heat transfer. A further generalization concerns the modelling
of turbulence. Some work in these directions is presently under investigation.
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Figure 4.2: The mean velocity isolines (in m/s)
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Figure 4.4: The temperature isolines (in C)
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