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Hans Joachim Oberle
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The paper is concerned with general optimal control problems (OCP) which are charac-
terized by a nonsmooth ordinary state differential equation. More precisely, we assume
that the right-hand side of the state equation is piecewise smooth and that the switching
points, which separate these pieces, are determined as roots of a state- and control de-
pendent (smooth) switching function. For this kind of optimal control problems necessary
conditions are developed. Special attention is payed to the situation that the switching
function vanishes identically along a nontrivial subarc. Such subarcs, which are called
singular state subarcs, are investigated with respect to the necessary conditions and to
the junction conditions. In extension to earlier results cf. Ref.5, in this paper the case of
a zero-order switching function is considered.

1. Nonsmooth Optimal Control Problems, Regular Case.

We consider a general OCP with a piecewise defined state differential equation. The pro-
blem has the following form.

Problem (P1). Determine a piecewise continuous control function u : [a, b] → R ,
such that the functional

I = g(x(b)) (1)

is minimized subject to the following constraints (state equations, boundary conditions,
and control constraints)

x′(t) = f(x(t), u(t)) , t ∈ [a, b] a.e., (2a)

r(x(a), x(b)) = 0 , (2b)

u(t) ∈ U = [umin, umax] ⊂ R. (2c)

The right-hand side of the state equation (2a) may be of the special form

f(x, u) =





f1(x, u), if S(x, u) ≤ 0,

f2(x, u), if S(x, u) > 0,
(3)



where the functions S : R
n+1 → R , fk : R

n × R → R
n ( k = 1, 2 ), and

r : R
n × R

n → R
` , ` ∈ {0, . . . , 2 n} , are assumed to be sufficiently smooth. S is

called the switching function of Problem (P1).

Our aim is to derive necessary conditions for Problem (P1). To this end, let (x0, u0)
denote a solution of the problem with a piecewise continuous optimal control function
u0 .

Further, we assume that the problem is regular with respect to the minimum principle,
that is: For each λ, x ∈ R

n both Hamiltonians

Hj(x, u, λ) := λTfj(x, u), j = 1, 2, (4)

possess a unique minimum u0
j with respect to the control u ∈ U .

Finally, for this Section, we assume that the following regularity assumption holds.

Regularity Condition (R). There exists a finite grid a =: t0 < t1 < . . . < ts < ts+1 :=
b such that the optimal switching function S[t] := S(x0(t), u0(t)) is either positive or
negative in each open subinterval ]tj−1, tj[, j = 1, . . . , s + 1 .

Note, that the one-sided-limits u(t±j ) exist due to the assumption of the piecewise
continuity of the optimal control. Now, we can summarize the necessary conditions for
Problem (P1). Here, on each subintervall [tj, tj+1] , we denote H(x, u, λ) := Hk(x, u, λ)
where k ∈ {1, 2} is chosen according to the sign of S in the corresponding subinterval.

Theorem 1.1.

With the assumptions above the following necessary conditions hold.

There exist an adjoint variable λ : [a, b] → R
n , which is a piecewise C 1 –function, and

Lagrange multipliers ν0 ∈ {0, 1} , ν ∈ R
` , such that (x0, u0) satisfies

λ′(t) = −Hx(x
0(t), u0(t), λ(t)), t ∈ [a, b] a.e. (adjoint equations), (5a)

u0(t) = argmin{H(x0(t), u, λ(t)) : u ∈ U} (minimum principle), (5b)

λ(a) = −
∂

∂x0(a)
[νTr(x0(a), x0(b))] (natural boundary conditions), (5c)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (5d)

λ(t+j ) = λ(t−j ), j = 1, . . . , s, (continuity condition), (5e)

H[t+j ] = H[t−j ], j = 1, . . . , s, (continuity condition). (5f)
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Proof. Without loss of generality, we assume, that there is just one point t1 ∈]a, b[ ,
where the switching function S[·] changes sign. Moreover, we assume that the following
switching structure holds

S[t]

{
< 0, if a ≤ t < t1

> 0, if t1 < t ≤ b.
(6)

We compare the optimal solution (x0, u0) only with those admissible solutions (x, u) of
the problem which have the same switching structure (6). Each candidate of this type
can by associated with its separated parts ( τ ∈ [0, 1] )

x1(τ) := x(a + τ(t1 − a)), x2(τ) := x(t1 + τ(b − t1)),

u1(τ) := u(a + τ(t1 − a)), u2(τ) := u(t1 + τ(b − t1)).
(7)

Now, (x1, x2, t1, u1, u2) performs an abmissible and (x0
1, x

0
2, t

0
1, u

0
1, u

0
2) an optimal solution

of the following auxillary optimal control problem.

Problem (P1’). Determine a piecewise continuous control function u = (u1, u2) :
[0, 1] → R

2 , such that the functional

I = g(x2(1)) (8)

is minimized subject to the constraints

x′

1(τ) = (t1 − a) f1(x1(τ), u1(τ)) , τ ∈ [0, 1], a.e., (9a)

x′

2(τ) = (b − t1) f2(x2(τ), u2(τ)), (9b)

t′1(τ) = 0, (9c)

r(x1(0), x2(1)) = 0 , (9d)

x2(0) − x1(1) = 0, (9e)

u1(τ), u2(τ) ∈ U ⊂ R. (9f)

Problem (P1’) is a classical optimal control problem with a smooth right-hand side, and
(x0

1, x
0
2, t

0
1, u

0
1, u

0
2) is a solution of this problem. Therefore, we can apply the well–known

necessary conditions of optimal control theory, cf. References 2–4, i.e there exist continuous
and piecewise continuously differentiable adjoint variables λj : [0, 1] → R

n, j = 1, 2,
and Lagrange-multpliers ν0 ∈ {0, 1} , ν ∈ R

` , and ν1 ∈ R
n , such that with the

Hamiltionian
H̃ := (t1 − a) λT

1 f1(x1, u1) + (b − t1) λT
2 f2(x2, u2), (10)

and the augmented performance index

Φ := ν0 g(x2(1)) + νTr(x1(0), x2(1)) + νT
1 (x2(0) − x1(1)) , (11)
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the following conditions hold

λ′

1 = −H̃x1
= −(t1 − a)

∂

∂x1

(
λT

1 f1(x1, u1)
)
, (12a)

λ′

2 = −H̃x2
= −(b − t1)

∂

∂x2

(
λT

2 f2(x2, u2)
)

(12b)

λ′

3 = −H̃t1 = −λT
1 f1(x1, u1) + λT

2 f2(x2, u2), (12c)

uk(τ) = argmin{λk(τ)Tfk(xk(τ), u) : u ∈ U}, k = 1, 2 (12d)

λ1(0) = −Φx1(0) = −
∂

∂x1(0)
(νTr), λ1(1) = Φx1(1) = −ν1, (12e)

λ2(0) = −Φx2(0) = −ν1, λ2(1) = Φx2(1) =
∂

∂x2(1)
(ν0 g + νT r), (12f)

λ3(0) = λ3(1) = 0. (12g)

Now, due to the autonomy of the state equations and due to the regularity assumptions
above, both parts λT

1 f1 and λT
2 f2 of the Hamiltonian are constant on [0, 1] . Thus, λ3

is a linear function which vanishes due to the boundary conditions (12g). Together with
the relation (12c) one obtains the continuity of the Hamiltonian (5f).

If one recombines the adjoints

λ(t) :=





λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λ2

( t − t1
b − t1

)
, t ∈ [t1, b],

(13)

one obtains the adjoint equation (5a) from Eq. (12a-b), the minimum principle (5b) from
Eq. (12d), and the natural boundary conditions and the continuity conditions (5c-e) from
Eq. (12e-f).

It should be remarked that the results of Theorem 2.1. easily can be extended to nonau-
tonomous optimal control problems with nonsmooth state equations. This holds too, if the
performance index contains an additional integral term I = g(x(tb))+

∫ tb

ta
f0(t, x(t), u(t))dt .

Both extensions can be treated by standard transformation techniques which transform
the problems into the form of Problem (P1). The result is, that for the extended problems,
one simply has to redefine the Hamiltonian by

H(t, x, u, λ, ν0) := ν0 f0(t, x, u) + λTf(t, x, u). (14)

Example (1.1) The following example is taken from the well-known book of Clark.
It describes the control of an electronic circuit which encludes a diode and a condensor.
The control u is the initializing voltage, the state variable x denotes the voltage at the
condensor. The resuling optimal control problem is given as follows.

Minimize the functional

I(u) =
1

2

∫ 2

0

u(t)2 dt (15)
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with respect to the state equation

x′(t) =

{
a (u − x), if S = x − u ≤ 0,

b (u − x), if S = x − u > 0,
(16)

and the boundary conditions

x(0) = 4, x(2) = 3. (17)

First, we consider the smooth case, i.e. we choose a = b = 2 . The solution easily can be
found applying the classical optimal control theory. The Hamiltonian is given by

H = u2/2 + a λ (u − x),

which yields the adjoint equation λ′ = a λ , the optimal control u = −a λ . Thus, we
obtain the linear two-point boundary value problem

x′ = −a2 λ − a x, x(0) = 4,

λ′ = a λ, x(2) = 3.
(18)

The (unique) solution for the parameter a = 2 is given in Figure 1.
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Fig. 1 Example 1.1: Smooth Case.
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For the nonsmooth case, a 6= b , we assume that there is just one point t1 ∈]0, 2[ where
the switching function changes sign. Further, due to the results for the smooth problem
shown in Fig. 1, we assume the solution structure

S[t]

{
> 0, if 0 ≤ t < t1,

< 0, if t1 < t ≤ 2.
(19)

According to Theorem 1.1 we obtain the following necessary conditions for the solution
(x0, u0) :

(i) t ∈ [0, t1] : H = H2 =
1

2
u2 + b λ (u − x),

λ′ = b λ, u = −b λ.

(ii) t ∈ [t1, 2] : H = H1 =
1

2
u2 + a λ (u − x),

λ′ = a λ, u = −a λ.

The continuity condition (5f) yields

H[t+1 ] − H[t−1 ] = (b − a) λ(t1)

[
a + b

2
λ(t1) + x(t1)

]
= 0.
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Fig. 2 Example 1.1: Nonsmooth and Regular Case, a = 4 , b = 2 .
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So, we obtain the following three-point boundary value problem

x′ =

{
−b (b λ + x) : t ∈ [0, t1],

−a (a λ + x) : t ∈ [t1, 2],

λ′ =

{
b λ : t ∈ [0, t1],

a λ : t ∈ [t1, 2],

x(0) = 4, x(2) = 3,
a + b

2
λ(t1) + x(t1) = 0.

(20)

In Figure 2 the numerical solution of this boundary value problem is shown for the pa-
rameters a = 4 and b = 2 . The solution is obtained via the multiple shooting code
BNDSCO, cf. References 6-7. One observes that the preassumed sign distribution of the
switching function is satisfied. Further, the optimal control and the optimal switching
function is discontinous at the switching point t1 .

For the parameters a = 2 and b = 4 the solution of the boundary value problem (20) is
shown in Figure 3. Here, the preassumed sign distribution of the switching function is not
satisfied. So, the estimated switching structure for these parameters is not correct and we
have to consider the singular case, i.e. the switching function vanishes identically along a
nontrivial subarc.
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Fig. 3 Example 1.1: Nonsmooth and Regular Case, a = 2 , b = 4 .
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2. Nonsmooth Optimal Control Problems, Singular Case.

In this section we continue the investigation of the general optimal control problem (P1).
However, we drop the regularity condition (R). More precisely, we assume that a solution
(x0, u0) of the optimal control problem contains a finite number of nontrivial subarcs,
where the switching function vanishes identically. These subarcs are called singular state

subarcs, cf. the analogous situation of singular control subarcs, cf. Ref. 1. In order to have
a well-defined problem, we now have to consider the dynamics on the singular manifold
S(x, u) = 0 . Therefore, we generalize the problem formulation (P1) a bit, and allow the
system to possess an independent dynamic on the singular subarcs.

Problem (P2). Determine a piecewise continuous control function u : [a, b] → R ,
such that the functional

I = g(x(b)) (21)

is minimized subject to the following constraints (state equations, boundary conditions,
and control constraints)

x′(t) = f(x(t), u(t)) , t ∈ [a, b] a.e., (22a)

r(x(a), x(b)) = 0 , (22b)

u(t) ∈ U = [umin, umax] ⊂ R, (22c)

where the right-hand side f is of the special form

f(x, u) =





f1(x, u), if S(x, u) < 0,

f2(x, u), if S(x, u) = 0,

f3(x, u), if S(x, u) > 0,

(23)

with smooth functions fk : R
n × R → R

n , k = 1, 2, 3 . All other assumptions with
respect to Problem (P1) may be satisfied also for (P2).

Again, our aim is to derive necessary conditions for (P2). To this end, we assume that
there exists a finite grid a < t1 < . . . < ts < b such that the tj are either isolated points
where the switching function S[t] := S(x0(t), u0(t)) changes sign or entry or exit points
of a singular state subarc.

We assume, that the switching function is of order zero with respect to the control u , i.e.

Su(x
0(t), u0(t)) 6= 0 (24)

holds along each singular state subarc. By the implicit function theorem, the equation
S(x, u) = 0 can be solved (locally unique) for u . Thus, we assume that there exists a
continuously differentiable function u = V (x) which solves the equation above. With
this, we define

f̂2(x) := f2(x, V (x)). (25)

For the regular subarcs we introduce the Hamiltonian

H(x, u, λ) := Hj(x, u, λ) := λTfj(x, u), (26)
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where j ∈ {1, 3} is chosen in the corresponding regular subinterval [tk, tk+1] according
to the sign of S . For the singular subarcs we set

H(x, u, λ) := H2(x, u, λ) := λTf̂2(x). (27)

In the following, we summarize the necessary conditions for Problem (P2).

Theorem 2.1.

With the assumptions above the following necessary conditions hold.

There exist an adjoint variable λ : [a, b] → R
n , which is a continuous and piecewise

C 1 –function, and Lagrange multipliers ν0 ∈ {0, 1} , ν ∈ R
` , such that (x0, u0) satisfies

the conditions

λ′(t) = −Hx(x
0(t), u0(t), λ(t)), t ∈ [a, b], a.e. (28a)

u0(t) =





argmin{H(x0(t), u, λ(t)) : u ∈ U}, on regular subarcs,

V (x0(t)), on singular subarcs,
(28b)

λ(a) = −
∂

∂x0(a)
[νTr(x0(a), x0(b))], (28c)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (28d)

λ(t+j ) = λ(t−j ), j = 1, . . . , s, (28e)

H[t+j ] = H[t−j ], j = 1, . . . , s. (28f)

Note, that on a singular subarc there holds no minimum principle for the control which
is completely determined by the switching equation S(x, u) = 0 .

Proof of Theorem 2.1. For simplicity, we assume, that the switching function S[·] along
the optimal trajectory has just one singular subarc [t1, t2] ⊂]a, b[ , and that the following
switching structure holds

S[t]





< 0, if a ≤ t < t1,

= 0, if t1 ≤ t ≤ t2,

> 0, if t2 < t ≤ b.

(29)

Again, we compare the optimal solution (x0, u0) with those admissible solutions (x, u)
of the problem which have the same switching structure. Each candidate is associated
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with its separated parts ( τ ∈ [0, 1] , t0 := a , t3 := b )

xj(τ) := x(tj−1 + τ(tj − tj−1)), j = 1, 2, 3,

uj(τ) := u(tj−1 + τ(tj − tj−1)), j = 1, 3.
(30)

Now, (x1, x2, x3, t1, t2, u1, u3) performs an abmissible and (x0
1, x

0
2, x

0
3, t

0
1, t

0
2, u

0
1, u

0
3) an op-

timal solution of the following auxillary optimal control problem.

Problem (P2’). Determine a piecewise continuous control function u = (u1, u3) :
[0, 1] → R

2 , such that the functional

I = g(x3(1)) (31)

is minimized subject to the constraints ( t0 := a, t3 := b, τ ∈ [0, 1] )

x′

j(τ) =

{
(tj − tj−1) fj(xj(τ), uj(τ)) , a.e., j = 1, 3,

(t2 − t1) f̂2(x2(τ)) , a.e., j = 2,
(32a)

t′k(τ) = 0, k = 1, 2, (32b)

r(x1(0), x3(1)) = 0 , (32c)

x2(0) − x1(1) = x3(0) − x2(1) = 0, (32d)

u1(τ), u2(τ), u3(τ) ∈ U ⊂ R. (32e)

Problem (P2’) again is a classical optimal control problem with a smooth right-hand side.
We can apply the classical necessary conditions of optimal control theory, cf. Hestenes, Ref.
10. If S satisfies the constraint qualification (36), there exist continuous and continuously
differentiable adjoint variables λj , j = 1, 2, 3 , and Lagrange-multpliers ν0 ∈ {0, 1} ,
ν ∈ R

` , and ν1, ν2 ∈ R
n , such that with the Hamiltonian

H̃ := (t1 − a) λT
1 f1(x1, u1) + (t2 − t1) λT

2 f̂2(x2) + (b − t2) λT
3 f3(x3, u3) (33)

and the augmented performance index

Φ := ν0 g(x3(1)) + νTr(x1(0), x3(1)) + νT
1 (x2(0) − x1(1)) + νT

2 (x3(0) − x2(1)), (34)

the following conditions hold

λ′

1 = −H̃x1
= −(t1 − a)

(
λT

1 f1

)
x1

, (35a)

λ′

2 = −H̃x2
= −(t2 − t1)

(
λT

2 f̂2

)
x2

(35b)

λ′

3 = −H̃x3
= −(b − t2) (λT

3 f3)x3
(35c)

λ′

4 = −H̃t1 = −λT
1 f1 + λT

2 f̂2, (35d)

λ′

5 = −H̃t2 = −λT
2 f̂2 + λT

3 f3, (35e)
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uj(τ) = argmin{λj(τ)Tfj(xj(τ), u) : u ∈ U}, j = 1, 3, (35f)

λ1(0) = −Φx1(0) = −(νTr)x1(0), λ1(1) = Φx1(1) = −ν1, (35g)

λ2(0) = −Φx2(0) = −ν1, λ2(1) = Φx2(1) = −ν2, (35h)

λ3(0) = −Φx3(0) = −ν2, λ3(1) = Φx3(1) = (`0 g + νTr)x3(1), (35i)

λ4(0) = λ4(1) = λ5(0) = λ5(1) = 0. (35j)

Due to the autonomy of the optimal control problem, all three parts λT
1 f1 , λT

2 f̂2 , and
λT

3 f3 of the Hamiltonian are constant. Therefore, the adjoints λ4 and λ5 vanish and
we obtain the global continuity of the augmented Hamiltonian (33).

If one recombines the adjoints

λ(t) :=





λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λ2

( t − t1
t2 − t1

)
, t ∈ [t1, t2],

λ3

( t − t2
b − t2

)
, t ∈ ]t2, b],

(36)

the state and control variables accordingly, one obtains all the necessary conditions of the
Theorem.

Again, we mention that the results of Theorem 2.1. easily can be extended to nonau-
tonomous nonsmooth optimal control problems and to optimal control problems with
performance index of Bolza type, as well.

Example (2.1) Again, we consider the example of Clark, Ref. 3, but now we try to find
solutions which contain a singular state subarc. The optimal control problem is given as
follows.

Minimize the functional

I(u) =
1

2

∫ 2

0

u(t)2 dt (37)

with respect to the state equation

x′(t) =

{
a (u − x), if S = x − u ≤ 0,

b (u − x), if S = x − u > 0,
(38)

and the boundary conditions

x(0) = 4, x(2) = 3. (39)

If we assume that there is exactly on singular state subarc, or more precisely
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S[t]





> 0, if 0 ≤ t < t1,

= 0, if t1 ≤ t ≤ t2,

< 0, if t2 < t ≤ 2,

(40)

we obtain the following necessary conditions due to Theorem 2.1.

(i) t ∈ [0, t1] : H = H3 =
1

2
u2 + b λ (u − x),

λ′ = b λ, u = −b λ.

(ii) t ∈ [t1, t2] : H = H2 =
1

2
x2,

λ′ = − x, u = V (x) = x.

(iii) t ∈ [t2, 2] : H = H1 =
1

2
u2 + a λ (u − x),

λ′ = a λ, u = −a λ.

The continuity of the Hamiltonian yields with

H[t−1 ] =
1

2
b2 λ(t1)

2 + b λ(t1) (−b λ(t1) − x(t1))

= −
1

2
b λ(t1) (b λ(t1) + 2 x(t1))

H[t+1 ] =
1

2
x(t1)

2.

the interior boundary condition x(t1) + b λ(t1) = 0 . The analogous condition holds at
the second switching point t2

Altogether we obtain the following multipoint boundary value problem.

x′ =





−b (b λ + x) : t ∈ [0, t1],

0 : t ∈ [t1, t2],

−a (a λ + x) : t ∈ [t2, 2],

λ′ =





b λ : t ∈ [0, t1],

−x : t ∈ [t1, t2],

a λ : t ∈ [t2, 2],

x(0) = 4, x(2) = 3,

x(t1) + b λ(t1) = 0, x(t2) + a λ(t2) = 0.

(41)

For the parameters a = 2 , and b = 4 the numerical solution is shown in Figure 4. One
observes the singular subarc with the switching points t1 =̇ 0.632117 , t2 =̇ 0.882117 .
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Fig. 4 Example 2.1: Nonsmooth and Singular Case, a = 2 , b = 4 .

3. Conclusions

In this paper optimal control problems with nonsmooth state differential equations are
considered. Two solution typs are distinguished. In the first part of the paper regular
solutions have been considered. The regularity is characterized by the assumption that
the switching function changes sign only at isolated points. In the second part so called
singular state subarcs are admitted. These are nontrivial subarcs, where the switching
function vanishes identically. For both situations necessary conditions are derived from
the classical (smooth) optimal control theory.
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