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1 INTRODUCTION

1.1 ON POPs AND ON THIS MANUAL

Principal Oscillation Patterns (POPs) are a technique for identifying the
characteristic ~ time-scales and  characteristic  spatial patterns of a  multi-
component vector time-series. POPs may be seen as the normal modes of a linear
dynamic system whose system matrix is estimated from the data.

The POP technique was developed at the Max-Planck-Institut fuer Meteorologie
(Hasselmann (1988) and Storch et al. (1988)1) and is nowadays a routinely used
tool. In Appendix 6, a list of applications of the POP method is given. A
standard POP program has been implemented at the Deutsches Klimarechenzentrum
(DKRZ). 1t is the purpose of the present manual to describe this POP program.
See Section 1.3 on how to use this manual.

The POP approach has been used to design forecast schemes (Xu and Storch,
1990, Storch and Xu, 1990); recently two generalizations were proposed:
cyclostationary POPs (Blumenthal, 1991) and complex POPs (Birger, 1991). These
aspects are not covered by the POP program and by this manual.

1 For the references see Appendix 6.
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12 VERSION OF CODE

The POP program this manual refers to is "Version 3". It has been installed in
January 1991 and differs from Version 2 by

° a completely new wuser interface reducing the parameter input to one line
of text,

" the processing of data gaps in the calculation of moments,

° the smallest possible covariance matrix for EOF expansion,

& the exclusive use of Extra Code format in input and output files making
the POPs program open to the world of Extra-Code modular system,

P dynamically declared array dimensions, thus the user has no problems with
setting sufficient array bounds any more,

e the explained local variance is computed to give an overview where a
cer-tain POP explains a significant fraction of the variability,

° the FORTRAN code has become more readable and updatable, e.g. the sub-
routines are in a top-down order and there is more modular structure. But
for reasons of limited time, a complete re-engineering could not be done,
so the well-known principles of modular programming (e.g., minimality,
program-independent interface, single purpose) was brought only in parts
to the program.
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1.3 HOW TO USE THIS MANUAL

This section is intended to give a short guideline on how to use this manual.
The flow chart on the next page should contain the most important routes
on your way through the POP manual.

Are you unpatient - or do you belong to the group of users of computer
software that first try out a program and then, after the program crashed,
read the manual? Then, if you are a user at the DKRZ, the quickest way to run
the POP program (thick arrows in diagram) is to read how the input data are
supplied (Section 3.1) and how to access the executable program (Local user’s
guide, Appendix 4.C). All options have defaults so you may just start the
program and look at the printer output (Section 4.1) and the output files
(Section 4.2).

If you are a foreign user without account on the computers at the DKRZ you
will first have to build the executable from source before you can start the
POP program. Read Appendix 4B on how to do this. The POP program has been
written in standard FORTRAN so that it can be used on any computer.

If you want to specify options to the POP program others than the defaults
then you have to read Section 3.2 and possibly Appendix 2 for time filtering
and Appendix 3 for the case that your data contain gaps.

If the POP program abnormally aborts execution then, hopefully, the internal
checking has produced an adequate error message. If one of the NAGLIB routines
caused the termination then see Appendix 5 for the meaning of the error codes.

Last but not least, if you want to know what POPs are and how a POP analysis
is carried out by the POP program then read Section 2. An outline of how to
interpret the results of a POP analysis and an example are given in Section 5.
Appendix 6 contains a list of publications in which the POP analysis technique
has been applied.
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2  OUTLINE THEORY.

The POP method is the linear approximation of the more general ‘Principal
Interaction Patterns (PIPs)’ (see Hasselmann, 1988) method to estimate the
normal modes of a system with (possibly) unknown dynamics, or very many
degrees of freedom. The theory given in this section is considered to be the
essential ’'core’ necessary for wusing the POP program - in particular, the
theory is given as used by the program.

2.1 EOF EXPANSION

If we have a system X(rt) with n degrees of freedom (i.e., number of data
points), where r is a spatial index 1 < r < n and t is a time index, then this
system will have n normal modes. The use of the term ‘spatial’ is only used
for convenience as most uses of the program are expected to be for calculating
spatial POPs. The space dimension here means all data points at a given time
whether they be real-space data, Fourier coefficients, etc. Also, this index
docs not have to indicate the physical organization of the data - it is just
an arbitrary label.

For a large system, these normal modes represent a huge amount of data from
which the important characteristics, i.. the dominant normal modes, may be
hard to extract. The method employed is to transform the data to Empirical
Orthogonal Function (EOF) space which is simply a set of (time-invariant)
orthonormal functions which completely spans the real space. The EOFs are
defined as the eigenvectors of the covariance matrix of X(r,t) ie. the

eigenvectors of
C(r,r’) = <X(r,t),X(r’,t)>

where < - > denotes a time average (see Appendix 3). The EOFs are ordered such
that the first EOF accounts for the most variance, the second EOF accounts for
most of the residual variance of the data which is not accounted for by the
first, and so on. If Fi(r) are the EOFs, then the data set X(rt) may be
expanded as:

X(r,t) = z ii(t)Fi(r) (1)

i=1

where ii(t) are a set of coefficients, called Principal Components, given by
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the projection of X(.,t) onto the EOFs 2
X0 = = XEOF ().

Thus, x(t) is the same vector as X but expressed in EOF-space coordinates and
not in Euclidean coordinates . In the following, all quantitics with a bar are
in EOF-space.

We may now truncate the EOF-space to m-dimensions (m < n) with a judicious
choice of m (the fraction of the variance of the original data set accounted
for by the first m EOFs is the sum of the first m eigenvalues). In doing so we
hope to preserve most, if not all, of the signal(s) we are interested in while
removing noisy components. With this reduction we have,

X(r) —> x(@6) = 3 X (OF(r) )

i=1
i.e. we now consider as data space the m-dimensional subspace spanned by the
EOFs F',...F™ with coordinates X ,..X .
Note that if no EOF expansion is performed to reduce the dimension of the
problem the POP analysis is done in the original space and in the next
sections the parts concerning EOFs can just be skipped.




August 1991 Version 3.0 POP Manual - Outline Theoryt

2.2 THE LINEAR VECTOR PROCESS
We now model the time evolution of the system by the linear vector process:

1 x(t) = Ax@) + EO) €)

where A is some constant (n X n) matrix, x(t) is the n-dimensional column
vector formed from x(r,t) and &(t) is some noise vector driving the system.
Discretization of (3) leads to

x(t+1) = Bx(t) + (1) (4)

with some (n x n) matrix B depending on the matrix A and the details of the
fine discretisation.

Using the transformation (2) we can transform equation (4) to truncated EOF-
space,

x(t+1) = B x(1) + E(1) ®)

where B is the matrix B transformed to the truncated EOF-space (ie. B = F'BF
with F the (n x m) mawrix with F',...F™ as columns, F' the transpose matrix
of F) and &(t) is E(t) in the truncated EOF-space.

For the case E(f) = O, the above normally has a in the most cases complete set
of linearly independent, but not necessarily orthogonal, eigenmodes with
eigenvectors Bk, k=1,..m, and corresponding ecigenvalues kk such that:

Bp' =2 p ©)

The ecigenvectors of B are called Principal Oscillation Patterns, POPs. The
matrix B is, in general, not symmetric so that some of the eigenvalues may be
complex. Since x and B are real, any complex eigenvalues and corresponding
eigenvectors occur in conjugate pairs. In the rest of this manual we refer to
POPs with real cigenvalues as ‘real POPs’ and to ‘complex POPs’ as those
associated with complex eigenvalues.

Thus we may reconstruct the time series in terms of the eigenvectors,

x® = L a@®p* . (7)

k=1
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If we transform the POPs to (complex) Euclidean space using,
p=)p F, ®)
i=1
we obtain the representation of the time series in Euclidean space
xt) = X ak(t)pk : 9
k=1

In the remainder of this manual we refer to these POPs (though of course
the same appliecs to EOF-space POPs).
The noise g‘(t) driving POP k is defined by

E® -3 E@p* . (10)
k=1

10
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2.3 ESTIMATING THE PROCESS MATRIX B
If the dynamics of the system are known, then matrix B may be calculated
analytically but, as this is generally not the case, it may be estimated by
fitting it to the process (5). It can be shown that,
R elait
B=CC, (11
where Co. C1 are the lag-0 and lag-1 covariance matrices:
C, = <x(® x'(v> (12)

(':l = <x(t+1) X ()> (13)

with x written as column vector and ' indicating transposition.

11
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24 MAKING THE POPS UNIQUE

The complex eigenvectors pk are only defined to an arbitrary factor m exp iek
ic, if p,_ is an cigenvector, then so is m_ exp B p. We need to choose
some standard normalization for the POPs so that POPs from different systems
may be compared directly. The POPs cannot be defined to be mutually ortho-
normal (ie. p-p* = 8:, for some suitably defined scalar product!) because
the POP matrix B was not symmetric, but each POP can itself be normalized,
choosing m such that p"-p" = n. This normalization ensures that the POPs have
similar magnitudes independent of the choice of n, in the sense that at any
particular location the POP has the same magnitude - the more obvious
normalization pk-pk = 1 would mean that the magnitudes of POP patterns would
depend on n.

The phase angle E)‘E may be chosen in two ways in the present version of the
POPs program. The first choice is to requirc that the real and imaginary
components of each POP (p* = p“+ ip*) be orthogonal with respect to
Euclidean geometry. Having found one orthogonal pair, we would get another one
by multiplying pk by i which results in the POP -p"”+ipk'. This indeterminacy
is obviously resolved (up to a minus sign) by defining p", as being the
component with the larger vector norm, i.c.

pr-pt =0 (14)

AR (15)

The second choice of Ok is to rotate the POPs so that the real and imaginary
components of the forcing are statistically orthogonal,

<EDE >=0 (16)
<EFoEFos>2<t0 o> (17)

with condition (17) corresponding to condition (15). In general, the rotation
angles corresponding to the two normalization choices will differ.

I A suitable definition is a-b = X aib: where a and b are two vectors of

order n and = denotes the complex conjugate of a complex number.

12
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25 REAL VECTOR PRESENTATION OF POPS

The complex conjugate of a POP describes the same signal as the POP itself.
Thus, if it is assumed that the complex POP matrix P = (p'|.[p" has m
complex eigenvectors (which occur in complex conjugate pairs) and n - 2m real
eigenvectors, the real matrix R contains the same information as P does:

R = (r'|...|r")
with

- Re(pz}l ) for j =1 m
2j 2j-1 P
r* = Im(p~ )

ro= pj for j = 2m+1,...,n ,

(18)

The Principal Adjoint Patterns (PAPs) qk are the eigenvectors of the
transposed  matrix B". In Appendix 1 adjoint patterns and some of their
properties are introduced.
The adjoint patterns may be calculated from R using the following
relationship:
it S = (s'|s?]...Is® = RD? then

q 2j1_ 15(52)'-1 + isd )

2] L2 2 } for j=1,...m

q- = i(s - 1s7) (19)
qj - for j = 2m+1,...,n

Proof:

L4

The vectors q'| are the unique solution of pk-qj = Skj (k=1,n) (cf. Appendix
1, (AS5)). It has to be shown that this relation holds if qj is replaced by
using (18):

*
2k-1 _2j-1 1 2k-1 .2k 2j-1 2
P q” -2 [r + ir :l-[sJ - is ’]

2k - j-1 2k 1 . 2j- - j
= Lr?*lg?It 4 p?Rg? oy jp?Rg?it L p2R1 g2

1 .
= 5(8kj + 8kj + i[0 - 0]) = Skj

since S is the inverse matrix of R".

-

Similarly, it is shown that ka-q2j = 6kj. "

13
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If a state x is expanded by the POPs, r¥, in real vector representation,
I
X - Z bkr ,
k=1
the real coefficients bk are given by
sz-l = 2Re(a2j—l)
for j=1,...,m

sz = -21m(a2j.l)
bj = aj for j = 2m+1,...,n
and may be calculated from

k
bk X-S

Proof:

From (7) we have
..k o= 2%-1 2k - k
x = Zap =X (a, p" +a,p )+X ap
k=1 k=1 k = 2m+]
- 2k-1 o o’ < k
= X(a, p +a, p )+ ap

. 2k-1 k
k=1 k =2m+]

m n
= Y 2 Re( an_lpz“" )y + X akpk
k=l k = 2m+]

— 2%-1 2% - k
= > (2 Rez(aZk_1 yroo -2 Im(aZk_l yro) o+ Y ar
k=1 k=2m+1

= )E b r*
k=1 ¥
with b _ defined as in (19).
For complex POPs we have (cf. Appendix 1, (A.6))

-

- = 2x.qg2) !
sz-1 isz 2a2j-l 2x-q
2j5-1 . j j - . j
=x[s?) ! - is?] = xs? ! - ixs?)
) :
Thus b = x-s7'and b_= xs2. -
2j-1 2j

(20)

2y

(22)

14
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2.6 THE POP MODEL
The pop coefficients ak(t) obey, from (4), (9) and (10),

a(t+]) = Aa® + E® 23)

where Ek(t) is the noise driving POP k (10) and |xk| < 1 (an amplifying, and
therefore non-physical, solution would result from |A | > 1).

In the absence of noise (i.e. Ek(t) = 0) equation (23) becomes
a® = a(0) (24)

If we express Xk as |lk|-exp(ic)k) (24) may be written as

. 2T
a(t) = exp(-vt) exp(i *r;“) 2 (0) 25)
with an e-folding (decay) time
T = - 1/10g |2l > 0 (26)
and an oscillation period Tk
T, =2n/a . 27

We now drop, for the sake of simplicity, the index k and wuse the
real vector representation (18) and (21) for a particular POP

p=p +ip
2 a(t) = z(1) - i 2,00

Then (25) is equivalent to

zl(t) cos(wt) sin(wt)
z® | = PCYD - Lsinn cos(o

z (0)
2,0 | - (28)

If we assume that zl(O)-l, 22(0)=0, i.e. the initial noise is driving the real
part of the POP only, the time evolution of the bivariate index (zl.zz) for
the duration of one period can be represented in a dial diagram as follows:

15
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where we have assumed that A falls into the 1% quadrant of the complex plane.

The interpretation of the particular POP p may be made clearer by showing the
time evolution for the POP (driven by an impulse &-function) at t=0:

P(1)

Observed pattern at time t corresponding to the POP

a®) p+a@®p =2Refa® p](=2Re[p2ra0)])

zl(t) pl + zz(t) p2

I

pzsin_z.r"_t ] exp -un

1]
—
L)

(o]
e}
w
-
[

where again only the real part is driven by the initial noise (22(0)=0).

Thus at t = O the observed pattern is purely due to the real part of the POP.
One quarter of a period later the observed pattem is that due to minus the
imaginary part, followed, a further quarter of a period later, by minus the
real part, then (plus) the imaginary part and finally back to (plus) the real
part again. The magnitude of the observed pattern continually decays by a
factor 1/e in time t. The following diagram illustrates this POP cycle:

-p2

T/4 / T/4

16
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The elliptic form of the diagram reflects the fact that the trajectory of P(t)
in the p’/pz-phase space is, apart from the damping, an ellipse because, in
general, p1 and p2 have to be neither orthogonal nor of equal length.

For a real POP p (24) is equivalent to
zl(t) = exp -t/T - zl(O)

and the corresponding observed pattern is just this POP damped with the
e-folding time T.

The time series of POP coefficients a(t) for each POP p may be computed either
by inverting equation (9) or by calculating the scalar product of the field x
with the corresponding Principal Adjoint Pattern q :

a() = x(-q , (30)
similarly, the real coefficients can be computed from (20) or from (22):

zl(t) = x(t)-sl a1
zz(t) = x(t)-s2

where S, and s, represent q in real vector representation (19). For a real POP
only the first equation in (31) has meaning.

In view of (30) a significant contribution a(t) of a certain statc is not
necessarily found if x has a large projection on the POP p but only if the
projection on the corresponding PAP q is large. Note that it is because the
POPs are, in general, not orthogonal to each other that the adjoints can be
different from the POPs and the coefficients are not simply the projection of
the data onto the pattern itself (as in EOF analysis). Since q is subject to
the constraint that is has to be orthogonal to all POPs except the one under
consideration the coefficient time series of a certain POP depends on all
other POPs, in particular those reflecting noise. Therefore, it may sometimes
be advisable to compute the cocfficient time seriecs of a POP p by a least
square fit to the data:

Ihx(®) -at) p-a@®p =1 x@t- AQ p' - 2,1 p> 1 = Min! (32)

The POP program has a switch to choose between the two approaches (31) and
(32) (see section 3.2).

17
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2.7 STATISTICAL ASSESSMENT

In most cases, we interpret one or a few POPs as modelling the original multi-
variate data time series. In this section a means is provided in order to aid
the assessment of the ’usefulness’ of a given POP.

For the following explanations we define three quantities p(t), y(), r(t)
where p(t) is some predictor attempting to model the predictand y(t). We de-
fine the error in the prediction, r(t), such that

yi© = p(t) + r() . (33)

Explicitly, there are two relevant cases to be considered,
1. POPs predicting original data set, i.e.

y(®) = x(t) (34)
p® = § a® p* (35)
Q

where the sum is taken over some subset o« of POPs, as
disscussed below.
2. POPs predicting the rate of change of data,i.e.

¥y = x(t+1) - x() (36)
p® = § (@ (t+1) - a (®) p* (37)

We define the set o for various different cases;
1. The independent single prediction assessment variables, - for each
predictor (POP) separately.

2. The sequential incremental prediction assessment variables, - for each
predictor separately applied to the predictand,

Y =Y-s

where S | is the sum of all predictors up to the one in question.
This implies a certain ordering of the POPs in some hierarchical model
such that the first POP has the lowest relative error, the second POP
has the lowest relative error wusing the first POP as it’s sub-
predictor set, etc.

18
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3. The complementary incremental prediction assessment variables, - for
cach predictor separately applied to the predictand,

y'=y-s

where s; is the sum of all predictors except the one in question.
These variables thus assess how well each POP predicts the data not
accounted for by the other POPs.

4. Total prediction assessment variables. One pair of variables for all
predictors which together model the predictand.

In order to assess the modelled quantities in terms of second moments we now
2
e - /< rz(t) > (38)
<y(@® >
E = / M_Z (39)
<y(t) >

where again <> is expectation resp. time average and - is the Euclidian dot

define two numbers

product in n-dimensional space.

€ is the relative error made by predicing y by p, and & is the biasing
factor. Of course, for p to be a ’good’” prediction € should be small. If
additionally, & is large this means that the component of p which is
statistically orthogonal to y is small.

The explained variance of a POP, that is, the amount of variance the POP
explains as fraction of the variance of the original data, is given by

Expl. var. = 1 - ¢ (40)

with € evaluated for the independent single prediction case. In the sequential
incremental prediction case, this quantity defines the cumulative explained
variance, i.e. the variance explained by all POPs up to the one in question
using the hierarchical ordering described above.

19
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3 INeut TO POP PROGRAM

3.1 INPUT DATA.

The input time series DAT(r,t) is read from an unformatted file. The file name
is given by the user on the command line. In the FORTRAN context, the unit
number is defined as a fixed parameter called JPUNIR.

The data are expected in the Extra Code format (see Borgert and Welke, 1991).
That means, they have been previously written by a FORTRAN program of the
following form, e.g.,

DIMENSION DATA(p,q) with p 2 <oumber of data points>
q > <number of time steps>

(Any user pre-processing of data)

ILEN = <number of data points>
DO | JTIME = | .<number of time steps>
WRITE(<unit>) IDATE. IVAR, ILEV, ILEN
WRITE(<unit>)
& (DATA(JSPACEJTIME),JSPACE~1.ILEN)
1 CONTINUE

For the header parameters, IDATE, IVAR, ILEV and ILEN, the only obligation is
that ILEN is always equal to the length of the following record. Header para-
meters are generally not conserved in the output files. See the output docu-
mentation for details. Note that the output file with the filtered time series
may be used as input file for another POP experiment, with conserved calendar
date IDATE and recoded data gaps.

Data gaps are processed by the POP program if coded by a numerical value of
9.E+99 (FORTRAN parameter PPGAP defined in the include file "scalars.i").

The order of points in the ‘space’ dimension does not matter since the method
uses correlations between ‘points’ in EOF-space and has no knowledge of their
spatial organization.

21
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3.2 PARAMETERS SET BY THE USER.

It is quite simple to run the POP program for the user has to type just one
line to set all his or her parameters. The program will, after being started,
read this line from standard input or from a special parameter file POP.PAR
consisting of that line. See the '"User’'s Guide" in Appendix 4 of this manual
for setting up this behaviour of the POP program and for practical hints to
deal with the parameter line in a UNIX environment.

In this section a standard FORTRAN 77 implementation is assumed where the
parameters are read from standard input (unit °'** in a FORTRAN read
statement).

Let’s look at the syntax for the parameter line as expected by the FORTRAN
program. It is borrowed from the UNIX command line syntax but it iS easy to
understand even if you are not familiar with UNIX.

The parameters have to be specified on one line of at most 120 characters. The
general form is

[-ECTdrupfl] [-n <~1s>] [-t <NTO>] [-€ <NEOF>] [-C <NG>]
[-S <DI‘>] [-m <FACT>] [-1 <inﬁle>] [-O <outﬁlc>]
[-- <PMIN> <P2> <Pl> <PMAX>] ,

where '.."” means that the line is continued on the next line.

The brackets |[] mean that the contents 1is optionally given. In the first
bracket, each one of the letters E,C,T,.. may be typed or be omitted. In all
other brackets, the contents is given completely or is omitted as a whole.
Angle brackets <> are values defined by the user to fill the corresponding
variables or file names in the FORTRAN code. All parameters are optional and
have default values, but an empty parameter line is not meaningful.

22
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The single letters preceded by a minus sign are switches

logical FORTRAN variables in the following manner.

corresponding to

Option Effect FORTRAN

letter variable

-E An EOF analysis is performed (no POP analysis) LEOFS

-C A Complex EOF analysis is made (no POP analysis) LCEOF

-T Time filtering of data is enabled (see Appendix 2) LTFILT

-d Trend filtering of data: the linear trend is LTREND
subtracted from the data after reading (least
square fit)

-r Normalisation of data: at each point the time series LNORM
is divided by it’s (local) standard deviation

-u Turning of pop pairs to statistical LTURN
orthogonality (see section 2.4)

-p Large printout LEVPRI

-f Use of smaller covariance matrix is forced even LFLIP
in case of data gaps (see Appendix 3)

-1 Pop coefficients are computed by a least square LLSF
fit to the data (otherwise, by projection onto
the adjoint POPs) (see section 2.6)

The default value of all these logical values is .false.

The options -n, -t, -e, -C require (positive) integer arguments,

the options -5, -Mm require real arguments,

the options -1, -0 require strings (max. length 60) and

the delimiter -- is followed by 4 (real or integer) numbers

with the following meanings:

23
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Name Type Default Description

NTS Integer As found in data. The number of time series. i.e. the
number of ’spatial’ points in the
analysis (if smaller than found in
data only the first NTS values are
read from each record)

NTO Integer As found in data The length of time series, i.c. the
number of time steps (if smaller than
found in data only the first NTO
records are read from the data file).
The number might be reduced slightly
during run time if the prime number
decomposition is improper for the
NAGLIB routine which is used for
filtering (see Appendix 5).

NEOF Integer 20 Number of EOFs in POP/EOF analysis or
number of complex EOFs in CEOF
analysis. The default will in most
cases retain a sufficient amount of
the data information for calculating
the POPs. If NEOF is set to zero no
EOF analysis is performed prior to the
POP  analysis, ie. the POPs are
computed from the original data
without reduction of dimensions.

NC Integer 10 The number of ‘chunks’ for the
spectral analysis of the data by using
Bartlett’s procedure. The number of
chunks should be set to any ‘natural’
time period represented in the data
e.g. if the data comprises 7 years of
daily measurements of the number of
Patagonian squitrels, then an
appropriate value for NC would be 7.

DT Real 1.0 Length of time intervals in data.

FACT Real 1.0 Factor for multiplication of the data
after reading.

infile String POP.IN Name of input file.

outfile String POP Name base for all output data files.

If "ANTARC" is chosen, the names will
then be, ANTARC.filt, ANTARC.pop, etc.
(see section 4.2).

PMIN, Real or  see description Filter characteristics; a  default
P2, Integer of time filter value is forced by specifying -1 at
P1, parameters in the corresponding place.

PMAX Appendix 2
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Here is an example for starting the POP program if it is assumed that the file
name of the executable is "pop.x":

pop.x <cr>
-d -p -e 18 -¢ 3 -i ENSO.DAT <cr>

The input may be abbreviated up to the limit:

pop.x <cr>
-dp -e18 -c3 -iIENSO.DAT <cr>

If you want to use the defaults for all options (i.e. data in POP.IN,
output files POP.*, 20 EOFs, 10 chunks, etc.) the command line has the very
simple form

pop.x <cr>
<cr>

For time filtering with non-default filter parameters, the command is e.g.

pop.x <cr>
-Tdp -e¢ 18 -¢ 3 -i ENSO.DAT -- 2. 2. 8.0 10. <cr>

All the above used syntax features are supported by the syntax check within
the FORTRAN program by which the parameter line is processed. However, the --
is expected before the filter arguments which are not preceded by an option
letter like -e.
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4 POP PROGRAM OQUTPUT

4.1 PRINTER OUTPUT

In this section, an explanation of the printer output from the POP program is
given, together with some sample output from an actual run.

The example shown is the analysis of geopotential height data of three
winters, 1984/85, 1985/86 and 1986/87 (Schnur et al., 1991b). The time step is
12 hours yielding observations at 540 times. Spatially resolved are latitudes
from 85°S up to 10°S with a distance of 2.5 degrees and heights of 1000, 850,
700, 500, 300, 200 and 100 hPa. In the zonal direction, the data were Fourier
transformed, and only wave number 8 is taken. By that, the length of each
record of data is

434 = 3] latitudes X 7 heights X 2 zonal Fourier coefficients
The POP run was started by entering the command line,

pop.x <cr>
-pd -e18 -c3 -ifort.12 -03dSH8487 <cr>

Generally, the first page of output shows the values of the input parameters.
The values have first been chosen by the user on the parameter line. The
subroutine PARSIN has supplied default wvalues if necessary. Default or
adjusted values have also been found by pre-reading the input data file
looking for the number and length of records.

The program then checks these values for validity generating ‘help’ messages
and aborting if necessary. Even in case of an abort the values are printed out

first to make debugging easier for the user.

In our example we got the following output:
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POP script started at Thu Mar 7 14:54:32 MET 1991

NUMBER OF TIME SERIES IN FILE 434
LENGTH OF TIME SERIES IN FILE 540

IR R R L L R R L R R L L L L L)

44+ 44444494 INPUT PARAMETERS ##%¢¢eescose

L R N L L A R L R L A R R L L L R ]

* NUMBER OF TIME SERIES 434 ¢
* LENGTH OF TIME SERIES 540 ¢
* NUMBER OF CHUNKS 3
* MULTIPLICATION FACTOR .1000E+01 *
* PRINTER OUTPUT HIGH *
* NORMALISATION OFF *
* TREND FILTERING ON *
* TIME FILTERING OFF ¢
* STATISTICALLY ORTHOGONAL TURNING OFF *
* NUMBER OF EOFS 18:¢

(LA R RN R L LR R L R AL R R R NN R L AR AL AL L]

* INPUT NAME: fort.12

* LOGICAL UNIT NO. 1 - SYSTEM NAME:
* 3dSHB487.filt

* LOGICAL UNIT NO. 2 - SYSTEM NAME:
*+ 3dSH8487 .var

* LOGICAL UNIT NO. 3 - SYSTEM NAME:
* 3dSH8487 .eof

* LOGICAL UNIT NO. 4 - SYSTEM NAME:
* 3dSH8487 .cofc A
* LOGICAL UNIT NO. 5 - SYSTEM NAME:
* 3dSH8487 .ecofsp

* LOGICAL UNIT NO. 6 - SYSTEM NAME:
*+ 3dSH8487 .pop

* LOGICAL UNIT NO. 7 - SYSTEM NAME:
* 3dSH8487 .pope

* LOGICAL UNIT NO. 8 - SYSTEM NAME:
* 3dSH8487 .popc

* LOGICAL UNIT NO. 9 - SYSTEM NAME:
* 3dSH8487 .popsp

* LOGICAL UNIT NO. 10 - SYSTEM NAME:
* 3dSH8487 .apop

* LOGICAL UNIT NO. 11 - SYSTEM NAME:
* 3dSH8487 .apope

TOTAL NUMBER OF GAPPY DATA: 0
NUMBER OF SPACE POINTS WITH NO OBS ERVATION: 0
MAX. ABS. VALUE OF NON-GAP DATA: 0.889E+02

The next page of output is generated by the filtering subroutines. The output

comprises the frequency, v the corresponding period P = 1/v and the
characteristic, G(v), for all frequencies 1/2 -> 1/(2 x NTO). However,
those frequencies are shown for which G(v) # 0, and to save repetition,
frequencies at either end of the ‘flat’ part of the window.

filter
only
only
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SRR NNRNRERPR R RN R R RN S H RPN RN NRN e
SRR PE Nttt FleING FEEPE Rttty

SEREEPRRINNNENN RGN N NP S FHNNNNNERE OGRS

In our special example no time filtering was chosen in the POP run.

The first 51 equivalent digital filter weights are then listed - these have
already been described above.

Subroutine VARIAN calculates the time mean and variance of the filtered data
at cach data point. The mean should be equal to zero to within machine
precision since, regardless of whether filtering has actually been performed,
the mean has been subtracted by the filtering subroutines. Trend-filtering may
slightly alter the mean from zero because it is carried out after subtracting
the mean.

If the user has selected 'NORMALISATION ON’ then all the variances should
equal 1 after normalization but, since this is not very useful output, the
variances before normalization are given.

SUBROUTINE VARIAN: COMPUTES VARIANCE OF FILTERED DATA (BEFORE ANY
NORMALISATION)

ESTIMATION OF 1ST AND 2ND MOMENT:

COMPONENT MEAN VARIANCE
1 -0.359679E-05 0.121965E-01
2 -0.120354E- 04 0.171476E-01
3 -0.506 777E- 04 0.100975E+01
4 -0.102398E-03 0.148924E+01
5 -0.139198E-03 0.522246E+01
430 0.440594E-03 0.870012E+01
431 0.109303E-03 0.822323E+01
432 0.377837E-03 0.699672E+01
433 0.169178E-03 0.666123E+01
434 0.300494E-03 0.559445E+01

Subroutine  TSEOFS calculates the EOFs and transforms the data into EOF-space.
The trace (the sum of the eigenvalues of the covariance matrix C(r,r’) is
given, followed by the cigenvalues themselves, in decreasing order.
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It can be shown that the eigenvalue of an EOF is equal to the variance ex-
plained by that EOF. Since the EOFs are orthogonal, the cumulative variance,
i.e, the variance explained by the first k£ EOFs, is simply the sum of the
variances explained by the EOFs individually, Note that this is not true for
the case of the POPs, since they are not orthogonal.

The percentages are obvious but the wuser should notte how much percentage
variance is explained by the first NEOF EOFs and perhaps change NEOF on
input. It is suggested that this number of EOFs should explain at least 95 of
the total variance.

SUBROUTINE TSEOFS: TRANSFORM TIME SERIES IN EOF SPACE.
EIGENVALUE DIAGNOSIS

TRACE = 0.3581E+05

EIGENVALUES
0.1162E+05 0.1137E+05 03183E+04 02594E+04 0.1046E+04 0.8157E+03
0.6020E+03  0.4638E+03 03611E+03 03498E+03 03259E+03 02722E+03
0.2497E+03  0.2248E+03 0.1965E+03 0.1799E+03  0.1390E+03  0.1235E+03

CUMULATIVE VARIANCES
0.1162E+05 02299E+05 02617E+05 0.2877E+05 0.2981E+05 03063E+05
03123E405 03169E+05 0.320SE+05 0.3240E+05 03273E4+05  0.3300E+05
03325E+05 03348E+05 03367E+05 03385E+05 03399E+05 0.3412E405

PERCENTAGES OF EIGENVALUES

325 31.7 8.9 7.2 29 23
1.7 1.3 1.0 1.0 0.9 08
0.7 0.6 0.5 0.5 04 03

PERCENTAGES OF CUMULATIVE VARIANCES

325 64.2 73.1 803 833 85.5
87.2 885 895 905 914 922
92.9 935 94.0 945 949 95.3
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The covariance matrices (_Io, (_31, and B, as defined in Section 2, are output for
diagnostic ~ purposes (not all the elements are given below). Since the
Principal Component (EOF coefficient) time series are statistical orthogonal
the covariance matrix C , has to be of diagonal form within machine precision
(trend-filtering  may  again  slightly increase the error in  non-diagonal
elements, see above).

R LI L I R R R R L L R R L R L R R LTI L

LI LTIl L] CAIJCLMTION OF POPS LAl L L)

LI LI A R A R R R LI R R R R A L R Rl L L]

LAG-0 COVARIANCE MATRIX (C0)
PRINTOUT OF MATRIX

TRACE: 0.3412E+05
0.1162E+05 -0.3152E-09 -0.1018E-09 0.8623E-11  0.1089E-10 ...
-0.3152E-09 0.1137E+05 0.1768E-10 0.2167E-10 0.1822E-10 ...
-0.1018E-09 0.1768E-10 0.3183E+04 -0.1552E-10 0.1078E-10 ...
0.8623E-11 0.2167E-10 -0.1552E-10 0.2594E+04 0.3676E-10 ...

0.1089E-10 0.1822E-10 0.1078E-10 0.3676E-10  0.1046E+04 ...

LAG-1 COVARIANCE MATRIX (Cl)
PRINTOUT OF MATRIX

TRACE: 0.2479E+05
0.8262E+04 -0.7103E+04 0.8735E+03 0.5893E+03 0.5636E+02 ...
0.7185E+04 0.7862E+04 -0.1319E+04 0.5539E+03 -0.8827E+02 ...
0.8129E+03 0.1317E+04 0.2472E+04 -0.1282E+04 0.1104E+03 ...
-0.6031E+03 0.6291E+03 0.1293E+04 0.2013E+04 -03130E+03 ...

02937E+02 0.1732E+03 0.1242E+03 0.3052E+03 0.8359E+03 ...
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ESTIMATED SYSTEM MATRIX (STRUMA)
PRINTOUT OF MATRIX

TRACE: 0.1390E+02

0.7109E+00 -0.6249E+00 0.2744E+00 0.2272E+00 053%0E-01

0.6183E+00 0.6917E+00 -0.4144E+00 0.2135E+00 -0.8441E-01 ...

0.6995E-01 0.1158E+00 0.7764E+00 -0.4943E+00 0.1055E+00 ......

-05189E-01 05535E-01 0.4063E+00 0.7759E+00 -0.2993E+00 ...

02527E-02 0.1524E-01 0.3901E-01 0.1176E+00 0.7994E+00 ......
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Subroutine POPS is the main subroutine for calculating the POPs and associated
quantities.

The eigenvalues of the matrix B - (—Zl C.' are given, followed by the matrix of
eigenvectors Ek. Note, however, that the eigenvectors are not stored as

complex matrix P (EOF space) and P (Euclidean space) but as real matrix R and
R (see Section 2.5). From now on, whenever ‘POP k (in Euclidean space)’ is
referred to, it means r* which is a compositt of the two POPs P, p*° (see
equation 18). 'POP k in EOF-space’ means the same with all entities given a
bar. From a complex conjugate pair of POPs the program always selects the one
with positive imaginary part of the corresponding eigenvalue, so that the
period T is always positive.

COMPLEX EIGENVALUES OF MATRIX STRUMA

(0.5708E+00; 0.7613E+00) (0.5708E+00; -0.7613E+00) (0.6884E+00; 0.5876E+00)
(0.6884E+00; -0.5876E+00) (0.7192E+00; 0.5636E+00) (0.7192E+00; -0.5636E+00)
(0.7448E+00; 0.4951E+00) (0.7448E+00; -0.4951E+00) (0.8266E+00; 0.3715E+00)

(0.8266E+00; -0.3715E+00) (0.8254E+00; 0.3040E+00) (0.8254E+00; -0.8266E+00)

In this step the paired POPs are rotated so that the real and imaginary compo-
nents are orthogonal, even when option -u has been specified (see Section2.4):

LENGTH OF RAW EIGENVECTOR: 1.0

SCALAR PRODUCTS: PP, QQ. PQ:0.510638707, 0.489361292,  -1.10090229SE-3
NEW VECTORS ARE:

P(NEU) =  1.00°P - 0.05*Q
QINEU) =  005*P + 1.00*Q

LENGTH OF RAW EIGENVECTOR: 1.0
SCALAR PRODUCTS: PP, QQ, PQ:0.520498439, 0.47950156,  -1.354687558E-3

NEW VECTORS ARE:
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Under the headline "POP MATRIX IN EOF SPACE" the POPs r* are given in EOF
space coordinates.

In this example, we have eight pairs of POPs, i. e., complex POPs and two
single POPs, ie., real POPs. The first pair is marked by "IR" and "I" in the
headline and its EOF space coordinates are given in columns 2 and 3. 'R" and
"I" refer to the real and to the imaginary component. The entries "9" and "10"
in columns 18 and 19 of the headline refer to the two real POPs of this
example.

POP MATRIX IN EOF SPACE

COMP. NR. OF POP
1R I 2R I 3R I 4R I 5R I 6R I 7R I 8R I 9

1 -0.63 1326 10.73 035 9.19 4.64-10.23 848 9.49 608 -6.65 666 -3.29 -280 8.54 558 -2.60
2 14.02 072 0.49 -988 3.71 -954 9.59 930 6.02 -862 7.11 666 -0.87 261 7.51 -383 -3.77

3 1.00 -577 3.25 028 1.86 392 0.24 119 7.65 406 -2.48 391 -2.94 -066 8.29 260 -8.06

In the same way, the principal adjoint patterns, PAPs, are printed in EOF
space. Note, however that the PAPs have not been subject to any rotation as
they are completely specified by the POPs (see Appendix 1, (A.4)).

The printout of he "APOP matrix in EOF space" is analogous to the former one.

The POP eigenvalue is then expanded to give the e-folding time T and the
rotation period Tx for each POP. Note that for a real POP the rotation period
is given as zero and not as infinity as might be expected. Due to the way the
POPs are stored, stated above, real POPs are distinguished from complex ones
by the fact that real POPs have Tk-O.

Next, the POPs r* and the PAPs s* are given in EOF-space and in Euclidean
space. If the POPs have been rotated to obtain statistically independent noise
compo-nents (the variable LTURN set ’true’ by the user option ’'-u’, see
Section 2.5), the EOF space coordinates given above under the headline 'POP
MATRIX IN EOF SPACE" are different from the EOF space coordinates given below.

10

2.98

-4.64

7.23
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POP GROUP NUMBER 1

EIGENVALUE NO.

1 E-FOLDING TIME 0.2013E+02

REAL PART IN EOF-SPACE
0.1402E+02  0.1000E+01 -0.4672E+01 -0.3091E+00 -0.1881E+00
-0.3281E+00  0.6855E+00 0.6886E+00 -0.5666E+00 0.2468E+00
-0.1027E+00  0.8721E-01 -0.4081E-01 -0.7250E-02 -0.1269E+00

-0.6341 E+00
-0.4842E+00
-0.2759E+00
IN
-0.8222E-04
0.8106E-02
-0.1644E-01
0.4136E+00
0.9800E+00
0.1107E+01
0.3833E+00

IMAGINARY PART
0.1326E+02
-0.6987E+00
-0.2627E+00

-0.9787E-03
-0.2275E-02
-0.1703E+00
-0.4830E+00
-0.7300E+00

EUCLIDEAN SPACE
-0.9871E-03 0.2093E-02 -0.6021E-02

0.2286E-01 -0.2137E-01 0.4271E-01
-0.6755E-01 0.6541E-01 -0.1246E+00
-0.3422E+00 0.6140E+00 -0.4810E+00
-0.7413E+00 0.1134E+01 -0.8436E+00
-0.1007E+01  0.9023E+00 -0.1014E+01
-0.8017E+00 0.1962E+00 -0.62S7E+00

IN EOF-SPACE

0.7234E+00 -0.5766E+01 -0.8733E+00
0.1620E+00 0.3371E+00 -0.5126E+00
-0.3764E+00 0.1888E+00 0.2903E+00

IN EUCLIDEAN SPACE

-0.2673E-03 -0.1344E-01 -0.3071E-02
-0.1641E-01 0.2825E-01 0.9726E-02
-0.9817E-01 -0.1982E+00 -0.1564E+00
-0.3684E+00 -0.5588E+00 -0.5941E+00
-0.1029E+01 -0.8454E+00 -0.1144E+01

POP GROUP NUMBER 2
EIGENVALUE NO. 3 E-FOLDING TIME 0.1003E+02

REAL PART IN EOF-SPACE
0.4935E+00  0.3250E+01 0.1694E+01 -0.8646E+01 0.1171E+01
0.2119E+01  0.1417E+01 -0.3684E+00 -0.1113E+01 -0.1911E+00

0.1073E+02
-0.1597E+01
-0.1073E+00

03188E+01  0.8978E-02 -0.5047E+00

IN EUCLIDEAN SPACE
0.7625E-03 -0.7719E-02  0.1355E-01 -0.7137E-01

... and so on ...

OSCILLATION PERIOD 0.6775E+0l

0.8536E-02
-0.4543E-01
0.2109E+00
0.7964E+00
0.1187E+01
0.6344E+00
0.1055E+00

0.5740E+00
0.4343E+00
0.1416E+00

-0.3365E-01
-0.7553E-01
-0.3308E+00
-0.6304E+00
-0.9264E+00

-0.7010E- 02
-0.2573E-02
-0.2143E+00
-0.6204E+00
-0.9433E+00
-0.9486E+00
-0.4560E+00

-0.2622E+00
0.1608E+00
-0.1148E+00

-0.1519E-01
-0.1256E-01
-0.2200E+00
-0.8357E+00
-0.1155E+01

OSCILLATION . PERIOD  0.8892E+01

0.4127E-01

-0.1022E+00 -0.8416E-01

-0.1396E+00
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Next the POPs are tested for orthogonality. The orthogonality is defined by
seij = pi-pj = 0. This matrix is symmetric so only the lower half is printed.
As stated before, the complex POPs are not stored individually, but as a
complex pair so that the diagonal elements of matrix :eij are not equal to NTS

(434 in the given example) but rather that the elements occur in pairs which
2 »2

should add up to NTS (sum over p* + p* = NTS for each k). For real POPs,
however, the diagonal element should be exactly NTS.

If the parameter '-u’ has n ot been selected (as here), the POPs have been
rotated such that pk -pk = 0 and this should be manifest in the corresponding
off-diagonal elements.

CHECK OF GEOMETRIC ORTHOGONALITY
IR 221.64
I 0.00 212.36
2R -0.99 117.53!1225.92
I -111.78 0.32 0.00208.08
3R 28.11 108.10! 88.52 -92.61!205.23
I -115.86 34.55 100.86 88.74 0.00 228.77
4R 124.75-129.69!104.47 -88.41!-51.28-168.60!238.67
I 128.74 109.34 77.52 -86.59 133.92 -44.11 0.00 195.33
SR 62.18 82.69!147.01 -76.23!123.77 4.40!-24.94 127.42!233.00
I -88.45 56.92 69.24126.18 5.23 135.93-149.72 -13.81 0.00 201.00
6R  81.34 -72.62!-82.37 -91.97! -3.23-126.98!157.42  9.39!-43.16-125.25!230.78
I 94.11 67.07 89.24-73.24 98.40 -1.65 -9.95 139.46119.78 -16.47 0.00 203.22
TR -8.48 -28.63!-74.68 47.99!-41.30 -56.84! 38.50 -17.62!-85.14 -7.74! 40.80 -9.28!196.63
I 20.54 -31.25 -72.30 -71.50 19.37 -47.60 45.01 -0.97 -5.81 -94.68 -2.86 -4.25 0.00237.37
8R  74.07 70.06! 86.28 -97.61!144.35 -48.65! 8.73 137.08!217.03 -42.05 -14.31 112.14!-39.60 85.27!323.78
I -41.78 57.45 66.99 27.73 44.84 98.78-105.57 20.83 34.59 96.96 -61.85 33.86 -61.86 -29.38 0.00 110.22

9 -86.00 2.94! -9.68 23.84!-59.79 -9.12! -5.99-107.42!-54.96 -75.57 -13.98-101.37! 14.34 20.05!-20.93 -68.32!434.00

10 -51.77 6.52! 5.71 57.34! -8.51 33.13!-70.63 -34.44! 50.97 90.47 107.49 -1.35! 10.33 -38.52! 87.23 -15.90! -3.72!434.00
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A summary of the statistics for the time series of POP coefficients is then
given for each POP pair.

The e-folding time and oscillation period are repeated. For real POPs the
e-folding time has also been estimated from the time series. The standard
deviation (STD. DEV.) of the time series is given.

The other information given is for debugging purposes and are not generally
useful but for completeness they are :- ACF(1) -- the lag-1 auto-correlation
function, TAU - the estimated decorrelation time; ANGLE -- the difference
be-tween the angles for the two POP rotation choices; NOISE VARIANCE -- the
variance of the ‘EOFs’ defined by equations (23) and (24).

LR R I L R R R L L L L R R L LT

4444444+ TIME SERIES STATISTICS #4444+ 4+ 4+

LR R L R L R R L L R L L

POP E-FOLDING TIME OSC.PERIOD STD.DEV. ACF(1) TAU ANGLE NOISE VAR.
NR. POP EST. POP ESTIM. EST. EST. DEG. EOF1 EOF2
1R 20.13 6.77 5.74*

I 20.13 6.77 5.78¢ -35.0 80.5 79.8
2R 10.03 8 .89 2 .80*

I 10.03 8.89 2.78* 44.0 12.2 12.1
3R 11.08 9.45 2.62

I 11.08 9.45 2.59 75.7 9.8 9.6
4R 8.95 10.71 3.46*

I 8.95 10.71 3.60* -45.5 15.1 14.3
SR 10.16 14 .87 3.51*

I 10.16 14 .87 3.48* 21.3 9.0 8.9
6R 7.80 17.80 1.98¢

I 7.80 17.80 1.97 38.5 2.3 2.3
7R 5.13 25.51 1.52¢

I 5.13 25.51 1.51* -10.9 1.1 1.1
8R 9.19 36.47 2.79*

I 9.19 36.47 3.13* -80.5 2.9 2.1
9 11.46 11.97 1.23 0.9 229
10 7.03 7.55 1.16 0.9 14.1
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The correlation coefficient is calculated between all pairs of time series
cocfficients (bi’b,-)' This is defined as

cov{bi(l)bj(t)}

\/var{bi(t)}var{bj(t)} ‘

This is obviously symmetric with respect to iy so only the ‘lower diagonal’
is printed. Note that c= L

CORRELATION MATRIX
IR 1.00
1 0.00 1.00
2R -0.07 0.07! 1.00
I -0.07 -0.07 0.00 1.00
3R -0.06 -0.09! 0.07 0.33! 1.00
I 0.08 -0.06 -0.34 0.07 0.01 1.00
4R 0.07 0.05! 0.04 -0.15! 0.00 0.29' 1.00
I -0.07 0.07 0.14 0.02 -0.28 -0.03 0.01 1.00
SR -0.02 -0.02! 0.02 0.17! 0.12 -0.02! -0.12 0.09! 1.00
I 0.02 -0.01 -0.17 0.03 -0.02 0.09 -0.13 -0.14 -0.01 1.00
6R -0.01 0.02! 0.09 0.03! 0.02 -0.05!-0.20 0.11! 0.36 0.02! 1.00
I 0.00 0.00 -0.05 0.09 0.05 0.03 -0.10 -0.21 0.03 0.37 0.00 1.00

7R 0.02 0.00! 0.00 -0.07! 0.03 -0.05! 0.01 -0.02! 0.04 -0.17! -0.08 -0.26! 1.00

1 -0.01 0.02 008 0.00 0.07 -0.04 -0.03 0.08 0.18 0.00 0.33 -0.11 -0.04 1.00

8R 0.00 0.01!-0.03 0.02!-0.04 0.03!-0.07 -0.03! -0.17 0.29!-0.03 0.14! -0.15 -0.34! 1.00

1 -0.01 0.00 0.03 -0.04 0.01 -0.04 0.04 -0.06 -0.25 -0.15 -0.21 -0.01 0.35 -0.16 0.12 1.00

9 0.00 -0.01!-0.02 0.05! 0.05 -0.01! 0.06 0.03! 0.15 -0.05! 0.11 0.05! 0.04 0.06'-0.19 -0.08' 1.00

10 -0.02 0.00! 0.06 -0.07' 0.02 0.00! 0.07 -0.03' -0.14 -0.10! -0.05 -0.15! 0.13 0.08' 0.10 0.55'-0.23! 1.00
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Next a set of statistics is printed in order to aid the assessment of the
‘usefulness’ of a given POP. The notation has been introduced in Section 2.7.
Note that the POPs have been ordered as explained there and thus the POPs
are not listed in the same order as given previously.

* * *

...... STATISTICS PACKAGE

LRI LA AL AL L AL L L] * Py

- PLEASE SEE MANUAL FOR EXPLANATION OF QUANTITIES

EPS - RELATIVE ERROR

XI - BIAS FACTOR

EV - EXPLAINED VARIANCE

CEV - CUMULATIVE EXPLAINED VARIANCE

3 CASES (==

*1* - INDEPENDENT SINGLE PREDICTION ASSESSMENT

#2* - SEQUENTIAL INCREMENTAL PREDICTION ASSESSMENT

*3* - COMPLEMENTARY INCREMENTAL PREDICTION ASSESSMENT

++++STATISTICS FOR POPS PREDICTING DATA****

- ] Ll 02. .3‘
POP NO EPS XI EPS X1 EPS X1 EV CEV

1 0.780 0397 ! 0.780 0.397 ! 0.324 0.895 ! 0.391 0.391 !

! ! : {

5 0.941 0.131 ! 0.895 0.221 $ 0.491 0.759 ! 0.114 0.512 !

! ! ! !

8 0975 0.075 ! 0.904 0.195 ! 0.565 0.681 ! 0.049 0.602 !

! ! ! !

4 0.943 0.131 ! 0.877 0.305 H 0.488 0.762 ! 0.112 0.694 H

! ! ! !

3 0.995 0.046 i 0.888 0.239 ! 0.604 0.635 ! 0.010 0.758 !

! ! ! !

2 0.961 0.086 ! 0.805 0.371 ! 0.578 0.666 ! 0.077 0.843 !

! ! ! !

6 0.990 0.034 ! 0.837 0.301 ! 0.706 0.501 ! 0.021 0.890 !

! ! ! !

7 0.993 0.021 * 0.864 0.253 ! 0.793 0370 ! 0.015 0918 !
! ! ! !

9 0.991 0.018 ! 0.881 0224 ! 0.849 0.279 ! 0.017 0.936 !

$ ! ! !

10 0.994 0.014 ! 0.862 0.257 ! 0.862 0.257 ! 0.012 0.953 !
' ' ' ]

TOTAL 0217 0.953
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*+**STATISTICS FOR POPS PREDICTING RATE OF CHANGE OF DATA®****

L l L] 02 - .3 L]
POP NO EPS X1 EPS X1 EPS X1 EV CEV

1 0.634 0618 ! 0634 0.618 ! 0237 0.944 ! 0598 0598 !

! ! ! !

4 0966 0.104 ! 0889 0.281 ! 0.460 0.788 ' 0067 0682 !

! ! ! !

3 1.000 0.042 ! 0884 0241 ! 0558 0.689 ! 0.000 0751 !

! ! ! !

2 0962 0.092 ! 0831 0372 'o0s11 0.739 ' 0075 0828 !

! ! ! !

5 0982 0.066 ! 0886 0.385 ! 0.535 0.714 ! 0036 0865 !

! ! ! !

8 1.010 0.010 ! 0863 0274 10702 0.508 ! 0019 0900 !

! ! ! !

6 1.004 0.011 ! 0846 0.294 10745 0.445 ! -0.008 0928 !

! ! ! !

7 0998 0.012 ! 0848 0282 ! 0807 0348 ! 0.004 0948 !

! ! ! !

10 1.000 0.004 ' 0920 0.153 ' 0910 0.172 ! 0.000 0956 !
! ! ! !

9 1.000 0.003 ! 0933 0.129 ! 0933 0.129 ! 0.000 0962 !

1] ] ' ]

TOTAL 0.195 0.962

The ‘"explained local variance” is related to this but is not contained in the
printer output. Instead it is output on one of the output files (see Section
4.2). These are numbers defined on each original (Euclidean) point and for
ecach POP (pair) giving a measure for the variance explained by that POP (pair)
as a spatial pattern. They are defined in the same way as the explained
(total) variance given above, (39), with the only difference that (37) is
evaluated at every Euclidean point and the product is the product of real
numbers.
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4.2 DOCUMENTATION OF OUTPUT FILES

The POP program writes the output data on 12 different files with logical
numbers 1,2,..,12. They may well be merged together later on to one file.
This is supported by the fact that the first three header fields are a unique
key for the data record, i.e. no two headers are the same on all output files.

General description of the Extra Code header:

KDATE  Calendar date or some other number describing the sequence of a
fixed variable. For the POPs, KDATE is the number of a POP or of a
pair of real POPs. Note that a negative @ KDATE denotes a set of
eigenvalues, periods or similar items.

KVAR Code for the wvariable. In the POP context, this 1is simply the
logical unit number added to 500.

KLEV Additional sequence information if KDATE is not unique for the
variable under KVAR. For a complex POP, the real part has KLEV = 1,
the imaginary part has 2.

KLEN Always the length of the following data record.

The file name extensions are given in the table on the next two pages.

Note: In the filtered data all data gaps are re-coded and all calendar dates
KDATE are restored in the headers from the original data file.
All spatial points where no observations are available at all, ic. for
each time step the value at these points is *PPGAP*, are also coded as
being gappy in the output of all EOFs and of all POPs and APOPs in
Euclidean space.
Time steps at which no observation is available, ie. for each spatial
point the value at these time steps is *PPGAP*, should be interpolated
prior to the POP analysis because this is not done in the program.
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Log. unit KDATE KVAR KLEV KLEN Data description
number /
file ext.
1 Calendar 501 -- NTS Data prepared by the
Silt date filter algorithms
(data gaps arc re-coded)
2 -1 502 -- NTS Local variances
.var
POP No -- NTS Explained local variances
(group) for a POP group
3 -1 503 -- NEOF EOF eigenvalues
.eof
EOF No - NTS EOFs
4 -1 504 -- NEOF EOF eigenvalues
eofc
EOF No -- NTO Principal Components
time series
5 -1 505 -- NEOF EOF cigenvalues
eofsp
-2 -- depends  Frequencies
EOF No 1 depends Variance spectra of
Principal Components
6 -l 506 - NEOF  c-folding times
-pop
-2 -- NEOF POP periods
POP No. 1 NTS POP in Euclidean space:
(group) real part
POP No. 2 NTS imaginary part
7 -1 507 - NEOF  c-folding times -
.pope
-2 -- NEOF POP periods
POP No. 1 NEOF POP in EOF space:
(group) real part
POPNo. 2 NEOF imaginary part
8 -1 508 -- NEOF e-folding times
.popc
-2 -- NEOF POP periods
POP No 1 NTO POP cocfficient time
(group) series: real parts
POP No 2 NTO imaginary parts
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Log. unit KDATE KVAR KLEV KLEN Data description
number /
file ext
9 -1 509 -- NEOF e-folding times
-POpsp .
-2 -- NEOF  POP periods
-3 2*NC  depends Frequencies (NC is the
number of chunks used in
the Bartlett procedure to
compute the spectra, 2*NC
is the number of degrees
of freedom which may be
used to compute confidence
intervals)
POP No. 1 depends POP coeff. time series:
Variance spectra,
real parts
POP No 2 depends Variance spectra,
imaginary parts
POP No 3 depends Phase spectra
POP No 4 depends  Squared coherence spectra
10 -1 510 -- NEOF  e-folding times
.apop
-2 - NEOF POP periods
APOP No 1 NTS APOP in Euclidean space
real part
APOP No 2 NTS imaginary part
11 1 511 N NEOF  c-folding times
.apope
-2 -- NEOF POP periods
APOP No. 1 NEOF APOPs in EOF space:
real parts
APOP No. 2 NEOF imaginary parts
12 -1 512 -- NCEOF CEOF cigenvalues
.ceof
CEOF No. 1 NCEOF CEOF: real parts
CEOF No. 2 NCEOF CEOF: imaginary parts

43



August 1991 Version 3.0 POP Manual - Interpretation of Output

5. INTERPRETATION OF QUTPUT.

As with all statistics, the user should be wary of the results produced by the
program. To give a long list of significance tests would probably overwhelm
the wuser and thus make more difficult the assessment of the results. The
following are guidelines for determining whether a particular set of POPs are
useful, based on the experiences of certain members of the Max-Planck-
Institut. No one piece of information can alone determine whether a POP is
‘significant’.

o Look at the output from the ‘Statistics Package’ to see how much of the
variance in the original data each POP explains (plus the other
associated quantities). A good POP will probably have € small and £
large.

. Look at the e-folding time for each POP. If this is less than one (time
step) then that POP is not useful. The ratio of the e-folding time to the
oscillation period should also be not too small (greater than 1/4, say) -
this ratio shows how much the POP will ‘develop’ before becoming damped
out.

. Look at the variance of the complex POPs as given in the Time Series
Statistics section of the output. If the POP model (.) is to be valid
then the variance of the real and the imaginary part of a POP have to be
of about ecqual magnitude.

. Perform a Cross Spectral Analysis of the time series of POP coefficients

- in particular the variance, relative phase and coherence as a function
of frequency (only the first is defined for real POPs). Jenkins and Watts
(Jenkins, G., M., and Watts, D., G., ,1968. Spectral Analysis and its
Applications, Holden Day, San Francisco) is a standard work on this
subject.
If the POP model is good then the maximum variance should be near the POP
frequency, but be careful that the maximum is not a false one produced by
the filter window. Also the phase near the POP frequency should be close
to -90° and the coherence should be high. The phase of -90° indicates
that the imaginary part of the coefficient time series leads the real
part for a quarter of a period thus reflecting the evolution equation
(18). Any other phase is not consistent with the POP model.
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. Plot any POPs which look ‘interesting’ under the above definitions. It is
probably most useful to reconstruct the POPs in some physical space which
can be readily interpreted. Real POPs represent no oscillation but a
continuously damped pattern. Real and imaginary parts of complex POPs
should be plotted together if possible. Interpret the evolution of these
in the light of the known cycle

IMAG — REAL —— -IMAG —— -REAL —— IMAG .. etc.

If any maxima in the real and imaginary part are displaced relative to
each other and if the phase is -90° then the POP can be said to be a
‘travelling wave’. If the maximum/minimum of either the real or the
imaginary part is close to zero then the pattern of the other part
describes a ‘standing oscillation’. If the amplitude of one part is
significantly smaller than that of the other part the POP can be thought
of as a superposition of a travelling and a standing oscillation.

You may also make a plot of the local explained variances to see for
which points or in which regions your POP explains most of the total
variance.

To make things clearer we now go through the above procedure for the case of

the example given before - the ‘Southern Hemisphere/Wavenumber 8 baroclinic

waves’:

. Statistic Package.
Here we sece that the most outstanding POP is POP No. 1 which accounts for
39% of the total variance in the original data set. But the relative
error (Ein) for the POP predicting the data is about 0.78 and the
paralle]l component (?;',in) is only 0.39. This indicates that the POP has a
fairly large component which is statistically orthogonal to the data.
However these numbers change to (?;in) = 089, (¢) = 032 for the POP
predicting the data after all the other POPs have been subtracted. The
total prediction variables (§r,e1_) = (095, 0.27) are also good and the
statistical variables for the POP predicting the rate of change of data
is even better.
All other POPs have higher relative errors and lower bias factors.

. E-folding time. (Output shown previously)
Here we see that the first POP has an e-folding time of 20 time steps.
The ratio of the e-folding time to the oscillation period is about 3 so
that about 3 full oscillations will be ‘seen’ before the POP dies away
(in the absence of subsequent driving impulse, that is).
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. Time Series Statistics.
It can be seen that the variance of the coefficient time series driving
the POP are about the same for the real and imaginary pars, confirming
that the evolution of the signal is in fact described by the POP cycle
(25).

. Cross Spectral Analysis
Figure 3 shows the results produced by a spectral analysis package at the
Max-Planck-Institut. It used a Bartlett procedure (g.v.) with 3 chunks.
Note the logarithmic scales and be aware that the filter window 4/6-50/60
(i.e. PMIN/P2 - PI/PMAX ) automatically produces a decrease of variance
for periods larger than about 60 time steps.
In the variance plot the solid line represents the variance associated
with the real part of the POP and the dashed represents the imaginary
part. The variance has a maximum around the POP frequency (indicated by
the vertical dashed line) and is fairly flat in this period band.
The relative phase near the POP frequency is close to -90o and the
coherence (squared) is also well above the 99% coherence squared level.
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Figure 3 Example Cross Spectral Analysis for Southern Hemisphere /
Wavenumber 8 baroclinic wave.

47



August 1991 Version 3.0 POP Manual - Interpretation of Output

. Plot of POP.

The data analysed comprised cosine- and sine-coefficients of zonal wave-
number 8 geopotential height for 31 latitudes and 7 levels. Thus, a (y.z)
contour plot of amplitude and phase is adequate for reconstructing the
data in real space. Figure 4 shows the selected POP 1.

Amplitude
hPa hPa
100 - 100
200 real imag -{ 200
300 - 300
500 - 500
700 - 700
850 - 850
1000 = —t———1 1000
30 20 10 80 30 20 10
°S
Phase
hPa hPa
100 < 100
200 | \1200\( rea' 180 \ \k |mag - 200
300 10)00 -100°\ 140° 160 \ N 300
500 |- ) P * Q 4 so00
7 °lg
700 | o \ 0\ - 700
850 |- \ 140 - 850
-40°
1000 1 L L L T—T__ L 1 1 L L . — N [-—. N \ N M M " N " 1000

80 70 60 S0 40 30 20 10 80 70 60 S50 40 30 20 10
°S °S
Figure 4: Plot of POP for Southern Hemisphere | Wavenumber 8 baroclinic

wave.

The horizontal scale is the latitude and the vertical scale is the
vertical level in a logarithmic pressure coordinate system. The two
panels on the left show the amplitude/phase representation of the real
part, on the right the imaginary part is shown. The phases are only
plotted where the amplitude is at least 5% of it’s maximum value.

It can be seen that the amplitudes of both pattems are of equal
magnitude and structure. The structure of the two phase plots is also
very similar with a phase difference (real - imaginary) of about 900 SO
that, having already noted that the relative phase is about -900. this
POP represents a smooth eastward propagation.
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APPENDIX 1: PRINCIPAL ADJOINT PATTERNS

In this appendix we briefly put together the algebra of adjoint patterns. For
this purpose the Euclidean dot product in a n-dimensional space is considered.
For any two complex n-dimensional vectors x and y, the dot product
(scalar product) x-y is defined as

. L
xy = Lx ¥y, = ¥ x
k=1
where ° denotes the complex conjugate and b transposition. Note that - is

linear in the first and conjugate linear in the second argument.

Theorem: If B is a real matrix with transposed matrix B’ the following
statements hold:

(A.D) Bx)y = x (BTy) for all x and Yy.
(A2) B and B have identical eigenvalues.
(A.3) If pk is an eigenvector of B with ecigenvalue A*  and qJ an
cigenvector of B" with eigenvalue AJ, then
pq =0
if
YRy

Proof:
(A1) Bx)y = J, (}. b,x) ¥,
. T

= L% @ by = x®BY)
(A.2) detB - A\) = det(B - AI)" = det(BT - A
(A.3) Aptq’) = pHq = BpHq = p"B'g)

= W ') = Mp*q')
if A¥ # ¥, it follows that (p“q’) =0 . =

Generally, an operator :B'sau’sfying <Bx,y> = <x,:B°y> is called to be adjoint
to B. In view of (A.l), the transpose matrix B is the adjoint matrix of B.

In the POP concept, the POPs are the cigenvectors of the matrix B (see (3)).
The principal adjoint patterns (PAPs) are the eigenvectors of the adjoint
matrix B'. The significance of the PAPs in the POP concept originates from the
following.
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Theorem: Let all eigenvalues of B be mutually different. If
P=lp*l ..|p"H

is the (complex) matrix of eigenvectors of B, i. e. the POP matrix, the
matrix of eigenvectors

Q-@'l ¢l .. la"

of B, i e. the PAP matrix, is given by
(A4) Q= @Y’

The columns q° of Q are the unique solutions of
(A.5) pj-q“ =5 J=1,n.

For the columns qk of Q the following relation holds:
(A.6) X = Z (xg )"

for all x.
Proof:

(A.4) If P is the POP-matrix of B and A the matrix with the eigenvalues
in the main diagonal:

P'BP=A =@®'BP) =AT=A =PBEHY=-A.
Because of (P')" = (PT)" after setting Q = (P™)" :

Q'B'Q = A
showing that Q is the eigenvector matrix of B’

(A.5) is equivalent to P’ Q = 1 which follows immediately from Q = (PT)".

(A.6) Since (A.4) is equivalent to PQ" = 1
x=@PQx =PQ™ =% @x)p* =% (xq")p* . =
k k
Relation (A.6) allows the calculation of the POP coefficients a (see (10)) of
a certain state x by projecting this state on the adjoint pattern q":

A  a®=x0q" = ¢“xO

50



August 1991 Version 3.0 POP Manual - Appendix

APPENDIX 2: TIME FILTER PARAMETERS

The POP program has an option which allows the user to time filter the given
time series before processing thus removing features on ‘uninteresting’ time
scales. For example, suppose the given time series contains daily values of
some quantity and the user wishes to look for the important oscillations on
time scales of the order of a few weeks. Now if this time series has a very
strong annual cycle then this may dominate in the POP analysis, so much so
that the features of interest may be completely lost. The filtering subroutine
would enable the user to remove all variations with periodicity greater than,
say, one month.

The filtering technique 1is Fourier filtering whereby the data set X(rt) is
transformed into Fourier space by the finite Fourier transform,

1 2 X(r,t) exp(-i2mvt)
v N t=1

i(r.v) =

where v is a frequency component. The filter window G(v) is defined by the
four parameters PMAX, P1, P2, PMIN such that,

(0, ifv<vMAx;

1 T .

- l+cos(—(v-v))], if v v <=y,

z[ VoA 1 MAX 1
G(v) = 1, if vi SV <vy

1 T . .

E[I'COS(V_T(V'VMIN))]' 'fVZSVSVMIN'

MIN 2
0

, if VMIN < v,

where VMIN = PM'}N_ etc. Figure (1) may make this clearer.

1.0
]
'
'
1
'l 1
P

PMIN P2 1 PMAX
PERIOD

AMPLITUDE

Figure 1: Filter window with cosine tails.

The reason for the introduction of the cosine ‘tails’ is to suppress the
secondary maxima that might occur for a pure ‘rectangular’ filter, parti-
cularly for the case of the response to a pulse (Figure 2) which may thenbe
falsely interpreted as an true oscillation of the data set. This problem is
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particularly important when a very narrow filter window is requested. To help
the wuser detect any such ‘false signals’ the program output includes the
‘Equivalent Digital Filter ~Weights’ which effectively shows how the filter
transforms a pulse at t=I.

AMPLITUDE

0.04 TIME

Figure 2: Response to unit impulse at t=0 after filtering with
rectangular window.

The user may select the following special types of window;

General Rectangular filter; P1=PMAX, P2=PMIN

High Pass filter; P2=PMIN=1 (default)

Low Pass filter; P1=PMAX=2x<length of time series>

Default values; P1=PMAX=2x<length of time series>,
P2=PMIN=2

Note that in the wuser parameter line, the filter parameters have to be typed
in the order PMIN, P2, Pl, PMAX, separated by one or more spaces. A default
value is inserted by the program if the value -1.0 is typed at the correspond-
ing place. For instance, in the second case when the program is given
P1=PMAX=-1, it sets P1=PMAX=2x<length of time series> because this corresponds
to the lowest frequency represented in the data. If all four parameters take
their default values, then no filtering is performed. This can Dbetter be
achieved by not setting the -T option in the input parameter line of the POP
program (see input description).

The time series is then reconstructed using the inverse Fourier transform with
each frequency weighted by the window,

X'(rt) = GWV)X(r,v)exp(i2mvt)
1

5 |-

Il 15
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APPENDIX 3: DATA GAPS AND THE ESTIMATION OF MOMENTS,
ESPECIALLY EOFS

Usually, the length of the multivariate time series will be larger than the
number of time series. However, if the spatial dimension n of the problem is
much larger than the number m of samples a considerable amount of computing
time can be saved by an alternative approach. It turns out that the EOFs, i.e.
the ecigenvectors of the nxn-covariance matrix, can equally well be obtained by
computing the eigenvalues and eigenvectors of a (smaller) mxm-matrix which is
related to the transposed ('tilted’) data matrix. For details of theory and
computation rules of this procedure see

Hans von Storch and Gerhard Hannoschoeck, "Comments on ’Empirical Orthogonal
Function Analysis of Wind Vectors Over the Tropical Pacific Region’", Bull.
Am. Met. Soc., Vol. 65 (1984), page 162.

In the POP program it is automatically decided weather to use the untilted or
the tilted data matrix. If no gaps are contained in the data set the results
arc identical.

A special problem arises when computing EOFs from the tilted data matrix with
data gaps included. When moments are estimated using the input data set, there
is generally the convention that a sum of quantities is divided by the number
of terms. This number is reduced if data gaps occur for the program will not
interpolate  from existing data then. Considering the covariance between the
two points with numbers i and j, the number to divide the sum by is

n, = number of times with existing data at i and j.

This nonlinear dependence cannot be exactly transferred to the tilting case
computation. But a good approximation is the following numbers assuming that
all spatial points have about the same ’no-data times’. Instead of n, we use

o0

with n_:= number of times with existing data at i.

1
The program uses this approximation in the tilting case because then the new
summations can be split up between pairs of i and j.
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However, because of the assumption made with this approximation the POP
program does not use the tilted data matrix by default if it has detected data
gaps. The user can force the use of the smaller matrix in the computation of
the EOFs by giving the option "-f' to the program (see section 3.2). So it is
ensured that no false results are obtained ’by accident’ if there arc many
data gaps which are irregularly spread over space and time.
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APPENDIX 4: USER’S GUIDE

A INTRODUCTION

This section is intended to provide a guide to install and use the POP program
in a general environment. Additionally, it gives hints for local users at the
Deutsches  Klimarechenzentrum DKRZ  for accessing the program and for
post-processing.

B  RUNNING THE POP PROGRAM

The main program is the FORTRAN file "pop.f'. The input data must be in EXTRA
Code format, or be converted to that format. See section 3.1 and
Borgert and Welke, 1991: Description of Programs Handling Files in EXTRA
and GRIB Format, Max Planck Institut fiir Meteorologie, Hamburg, FRG
for details of the Extra Code.

B.l Generating executable program from source

To get an executable POP program the FORTRAN source code in file "pop.f' has
first to be compiled with your FORTRAN compiler, e.g. cft77 in the UNICOS
operating system on Cray machines. You need two additional files in your
current  working  directory, ‘"scalars.i" and  '"arrays.i", which contain the
variable declarations for scalars and arrays and which are automatically
included into the source code in the appropriate places during compilation
time. If you have to make changes to any declaration you only have to change
these files. If your FORTRAN compiler doesn’t support the INCLUDE-statement

you have to edit "pop.f" and insert the two files manually, look for statement
INCLUDE.

The second step consists of linking all subroutines with the loader, e.g.
segldr in UNICOS. The only external subroutines which have to be linked to the
program are from the NAGLIB mathematical library and are listed in Appendix 5.
If you don’t have this library you will have to substitute them by own
versions with the same effect.
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B.2 Switching dynamical field lengths on and off

In the Cray version, the array dimensions *NSER*, *NTSDIM* and *NEODIM*
(length of time series, number of time series and number of EOFs) are defined
dynamically at run time as possible on the Cray. This is done in subroutine
*SETDIM* (U0101). In this case the PARAMETER statement in the following piece
of code from '"scalars.i" has to be blinded to comments by the user, and the
COMMON statement is read by the compiler.

Since not all Fortran compilers (e.g. f77 on Sun workstations) allow
adjustable declaration of non-parameter arrays in subroutines one can switch
to standart FORTRAN with fixed field lengths by de-commenting the PARAMETER
line and hiding the COMMON statement. Also, you have to make *SETDIM* an empty
subroutine (e.g. by comment C’s).

Example (hide one of the following two statements by comment C’s):

COMMON /DIMS/ NSER, NTSDIM, NEODIM

PARAMETER ( NSER = 1500, NTSDIM = 1400, NEODIM = 18 )

C VARI ABLE TYPE PURPOSE.

C SR S o S -y = N

(& NSER INTEGER MAXIMAL LENGTH OF TIME SERIES.

C NTSDIM INTEGER MAXIMAL NUMBER OF TIME SERIES (IN EUCLIDEAN
C SPACE) .

C NEODIM INTEGER MAXIMAL NUMBER OF EOF'S.

B.3 Running the POP program on different operating systems

Non-UNIX system:
In the default implementation the POP program reads the parameter line from
standard input (e.g. terminal). This is done by setting variable *LPINPUT* to
*TRUE* in include file '"scalars.i". If,- for some reason, you want to change
this behaviour so that the parameters are read from a file "POP.PAR" just set
*LPINPUT* to *FALSE.* in ‘'scalars.i". This input file then consists of one
line containing the parameters as described in section 3.1. Don’t forget the
delimiter -- before the filter parameters and don’t exceed 120 characters.
Example:

LOGICAL LPUNIX

PARAMETER( LPUNIX = .TRUE. )
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UNIX-system:

If you are lucky to be in a UNIX environment you should read the
parameters from standard input. The syntax of the parameter line is like in
shell commands. The output from the UNIX shell command ’getopt’ is a standard
form of command parameters which is fully accepted by this program. Therefore,
the most comfortable way is to let the POP program be called from a command
file (shell script) to gain all shell syntax features including syntax check.
An example of such a (Bourne) shell script is given below.

#!/bin/sh
#
# All lines beginning like this one are comments from here on!
#
set -- ‘getopt ECThdrupfln:tie:c:sim:i:o: §*°
#
# Give user help for syntax error or if called with option -h
#
err=§?
if [ Serr -ne 0 -0 "S$1" = "-h" ]
then
echo "Usage: SO [-ECThdrupfl] [-nNTS] [ -t NTO] [-e NEOF] "
echo "........... [-¢ NC] [-s DT] [-mFACT]"
echo ........... [-1i infile] [-ooutfile] -- [PMIN P2 Pl PMAX]"

(more help messages)

exit 1
fi
#
echo $* | <whereever the executable is located>/pop.x
#
exit

With this shell script the last example from section 3.2 would be run by
just typing

pop -Tdp -el8 -c3 -iENSO.DAT -- 2 2 8 10 <cr>
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C LOCAL USER’S GUIDE
C.1 Accessing the POP program at the DKRZ

The program will generally be run on one of the Cray computers by calling the
shell script "pop" as described in B.3. At login every user has set a global
environment variable

EXTRA=/pool/EXTRA/programs

which leads to the directory that contains "pop". Thus, to run the POP program
you either have to

add this directory to your PATH variable
for the Bourne shell in ".profile" by
PATH = $PATH:...$EXTRA
and for the C-shell in ".cshrc" by
set path="$path $EXTRA"

and just type
pPop ... <cr>
or type
$EXTRA/pop .... <cr> .

If you enter "pop -h" you will get a help message. If you specify "pop" with
no options a POP analysis will be performed with all options set to the
default values (see Section 3.2).

C.2  Post-Processing

The output from the program probably contains much information that is not of
use to a particular user, for example, you may only be interested in the POPs
themselves, and don’t care about the time series ctc. Then you will keep only
the comresponding output files in permanence. To process the resulting data
further you may wuse the fact that all are in the standard format Extra-Code
which is supported by numerous data manipulation and plot routines available
and documented at the MPI (Borgert and Welke, 1991).
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APPENDIX 5: EXTERNAL SUBROUTINES

The POP program uses several NAGLIB routines to perform various operations.
Users who do not have access to this mathematical library will have to supply
their own versions. The following 1is a brief description of the functions
performed by these subroutines. In addition, the error codes are explained
which are generated by the NAGLIB routines in case of abnormal program
termination (FORTRAN variable IFAIL).

A) Fourier transforms.

Subroutines CO6FAF, CO6FBF and CO6FCF calculate the discrete  Fourier
transform ik of a sequence of N data values xj

1 N .
. .2njk
zZ = X, exp(-i N ) , k=1,...N
2 v N ij )

A

in 3 different cases:
CO06FAF (Subroutine FILTTS): xj is a sequence of real data values.
DIMENSION X(p), WORK(q) with pg 2 N

CALL CO6FAF(X,N,WORK,IFAIL)

X is the array, of dimension at least N, containing the real data. Then, ik is

a Hermitian sequence of complex values (i.c. iN_k is the complex conjugate of

ik). On exit, X contains these transformed data in Hermitian form, ie. for
z =a + ﬂ)k
a =a . for 1 £ k £ N/2
k N-k
X(k) = {
. --bk. for N/2 < k €N
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CO6FBF (Subroutines FILTTS and FILGEW): X, is a Hermitian sequence of N
complex data values.

DIMENSION X(p), WORK(q) with p,g 2 N
CALL COG6FAF(X,N,WORK.IFAIL)

END

Before entry, X contains the xj stored in Hermitian form (see above). The
transforms ik are purely real and are stored in X on exit.

In particular, CO6GBF followed by CO6FBF forms the inverse Fourier transform
to that performed by CO6FAF.

CO6FCF (Subroutines SPEC and CEOFAN): X, is a sequence of N complex data
values.

DIMENSION X(p), Y(p'), WORK(q) with pp’,\q 2 N

CALL COSFAF(X,Y ,N,WORK IFAIL)

Before entry, X(j) contains the real part and Y(j) contains the imaginary part
of the data (j=1,..,.N). On successful exit, the two arrays contain the real
and imaginary part of the transformed data.

In particular, to compute the inverse Fourier transform CO6FCF should be
preceded and followed by a call to a routine which computes the conjugate of
a complex sequence.

In all three program fragments above WORK is a workspace array of dimension of
at least N and IFAIL is a parameter which determines how errors are treated.
On exit, IFAIL=0 if no ermors occurred. If the routine has not been
successful, probably for reasons unique to the NAGLIB, then IFAIL contains
the following:
1 N has at least one prime factor greater than 19. NAGLIB is unable
to compute the transformation in this instance.
2 The number of prime factors of N is greater than 20. This can
only occur for N > 10°,
3 N <1
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B) Subroutine CO6GBF (Subroutines FILTTS and FILGEW) calculates the complex
conjugate of a Hermitian sequence of N complex data values, ie. forms the
conjugate of the sequence formed by CO6FAF.

DIMENSION X(p), WORK(q) with p,g =2 N

CALL CO6GBF(X.N,IFAIL)

with X containing a Hermitian sequence before entry and it’s conjugate on
exit. IFAIL = 1 indicates that N < 1.

C) Eigenvalues and Eigenvectors.

F02ABF (Subroutine TSEOFS) calculates all the eigenvalues and eigenvectors of

a real symmetric matrix:

DIMENSION X(NXD.p). EV(q). EVEC(NED.r). WORK(s) with p,q,r,s =2 NXO
NXD,NED > NXO

CALL F02ABF(X,NXD/NXO EV EVECNED,WORK,IFAIL)

X is the given symmetric matrix, with first dimension NXD as defined in the
calling subprogram, and order NXO. Only the lower triangle is used. On exit,
EV contains the eigenvalues in ascending order and the columns of EVEC contain
the normalised eigenvectors , where (EVEC(],i),j=1,N) corresponds to EV(i).

WORK is used as workspace. IFAIL = 0 on successful exit and IFAIL = 1 other-
wise (NAGLIB fails if more than 30-NXO iterations are required to isolate all
the cigenvalues).
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FO02AGF (Subroutine POPS) calculates all the eigenvalues and eigenvectors of a
real unsymmetric matrix.

DIMENSION X(NXD,p). EVR(Q). EVI(r), with p,q,rstu =2 NXO
EVECR(NERD,s), EVECI(NEID,Y), NXD,NERD,NEID > NXO
& INTGER(u)

CALL FO2AGKX.NXD.NXO.EVR.EVLEVECR.NERD.EVECLNEID.INTGER.IFAIL)

X is again the given matrix, with dimensions as above. EVR, EVI are arrays
which on exit contain the real and imaginary parts of the eigenvalues of X.
The columns of EVECR and EVECI contain the real and imaginary parts of the
eigenvectors corresponding to the eigenvalues. The eigenvectors are normalised
such that the sum of the squares of the components is one and the eigenvector
is rotated so that the component of largest magnitude is real (this also
ensures that eigenvectors associated with real eigenvectors are purely real).
INTGER is a workspace array which on exit contains the number of interations
used to find the eigenvalues. IFAIL has the same meaning as above.

F02AXF (Subroutine CEOFAN) is used only in a CEOF analysis to compute the
eigenvalues and eigenvectors of a complex Hermitian matrix. Only the calling
sequence is given here, the notation follows the previous cases:

DIMENSION XR(NXRD,p), XI(NXID,g), EV(r) with p,q,r,stuvw = NXO
EVECR(NERD,s), EVECI(NEID,1), NXRD,NXIDNERD,NEID = NXO

WORKI(u), WORK2(v), WORK3(w)

CALL FO2AXF(XRNXRD.XINXIDNXO.EV EVECRNERD, EVECINEID,

& WORK1,WORK2 WORK3,IFAIL)

Additionally, IFAIL = 2 on exit means that the diagonal elements of XI are not
all zero, ie. the complex matrix is not Hermitian. The normalisation is as
for FO2AGF.
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D) Inverse
FO01AAF (Subroutine POPS) computes the approximate inverse of a real matrix.

DIMENSION A(NADjp). B(NBD.g). WORK() with p.q.r 2 NO
NAD,NBD = NO
CALL FOlAAF(ANADNO,BNBD,WORK.IFAIL)

Before entry, A contains a real matrix of order NO and on exit B contains it’s
inverse provided A is non-singular. In this case, IFAIL = 0. If A is singular
or almost singular, possibly due to rounding errors, IFAIL = 1.
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APPENDIX 6: APPLICATIONS OF THE POP METHOD

The POP method is nowadays a diagnostic tool that is routinely used at the
Max-Planck-Institut  fiir Meteorologie. In the following a list of publications
is given. In these publications the POP technique has been used.

Blumenthal, B., 1991: Predictability of a coupled ocean-atmosphere model. J.
Climate, in press

Birger, G., 1991: Complex Principal Oscillation Patterns. In preparation

Hasselmann, K..H., 1988: PIPs and POPs: The Reduction of Complex Dynamical
Systems Using Principal Interaction and Oscillation Patterns. - Geophys. Res.
93, 11.015-11.021

Latif, M. and, M. Fligel, 1990: An investigation of short range climate
predictability in the tropical Pacific. J. Geophys. Res. 96, 2661-2673

Laif, M., A. Sterl and E. Maier-Reimer, 1991: Climate variability in a
coupled GCM. Part I: The tropical Pacific. Submitted to J. Climate

Latif, M., and A. Villwock, 1989: Interannual variability in the tropical
Pacific as simulated in Coupled ocean-atmosphere models. - J. Marine Sys. 1,
51-60

Schnur, R. and G. Schmitz, 1991: POP Analysis - an application to midlatitude
baroclinic waves. - In preparation

Schnur, R. and H.v.Storch, 1991: POP-Analysis of global large-scale travelling
Rossby waves. - Max Planck Institut fiir Meteorologie, unpublished manuscript

Storch, H.v., T. Bruns, I. Fischer-Bruns and K. Hasselmann, 1988: Principal
Oscillation  Pattern Analysis of the 30- to 60-Day Oscillation in General
Circulation Model Equatorial Troposphere. - J. Geophys. Res. 93, 11.022-11.036

Storch, H. von, and J. Xu, 1990: Principal Oscillation Pattern Analysis of the
tropical 30- to 60-day oscillation. Part I: Definition on an index and its
prediction. - Climate Dyn. 4, 175-190
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Storch, H. von; U. Weese and J. Xu, 1990: Simultaneous analysis of space-time
variability:  Principal  Oscillation Patterns and Principal Interaction Patterns
with applications to the Southern Oscillation. - Z. Meteor. 40, 99-103

Storch, H. von, and D. Baumhefner, 1991: Principal Oscillation Pattern
Analysis of the tropical 30- to 60-days oscillation. Part II: The prediction
of equatorial velocity potential and its skill. - Climate Dynamics 5, 1-12

Xu, I, 1991: On the relationship between the stratospheric QBO and the
tropospheric SO. - J. Atmos. Sci., in press

Xu, J, 1990: Analysis and prediction of the El Nino Southern Oscillation
phenomenon  using Principal Oscillation Pattern Analysis. Max Planck Institut

fir ~ Meteorologic =~ Examensarbeiten 4  (Max-Planck-Institut ~ fir ~ Meteorologie;
Bundesstrasse 55; 2000 Hamburg 13, Germany)

Xu, J. and H. von Storch, 1990: "Principal Oscillation Patterns"-prediction of
the state of ENSO. - J. Climate 3, 1316-1329
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