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Abstract: We compute certain contributions to the lattice &2

coefficient. These imply possibly, up to 30* corrections on m/A

determinations from Monte Carle calculations with Wilson, Hanton

and Villain actions. Other modifications of the Standard Wilson

action raay have large corrections which raay completely obscure

the expected asymptotic freedoir, behaviour for moderate values of

the bare coupling.

S inee Creutz's results indicating the existence of a phase in

lattice Yang-Mills theory with static quark confinement and asymp-

totic freedom there has been a rapid development and enthusiasm

in perforrning Monte Carlo (MC) experiments. The stage has been reached

where some groups are determining QCD hadron spectra using MC

rnethods and claiming good agreement with experiment, even for the

IYV5/r'\d Ĉi ratlos. This state of affairs is very encouraging.

However, to ensure that the MC experiments are giving us reliable

results for the continuum limit, which are more significant than

mere strong coupling expansions plus some extrapolation procedure

incorporating asymptotic freedom, various improvements must be made.

These include

(3)proper account of finite size effects

estimates of lattice cutoff a effects (a = lattice spacing)

and their reduction by working with systematically improved
(4)

i)

ü)

iii) a better treatment of lattice fermions than the methods at

present available

iv) an estimate of effects of working at finite bare coupling g .

It is the latter perturbative effects with which this letter is

concerned.

A physical mass m (i.e. having a finite continuum limit without

multiplicative renormalization) behaves in the limit a —> O, g —^ 0,

A_ finite äs

(D- c/\ -t-

with

-.£>
(2)
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Here S , 0 are the universal first two coefficients of the

Callan-Symanzik ß-function, which for SU(N) Y.M. are given

by'5)

• -

If we have two masses m. , m- we can get an idea of lattice cutoff

effects by studying the ratio f*VXrV ' which sho'Jlc be a constant

with exponentially, damped corrections. Frequently, however, we

have only one sufficiently well measured massive quantity, (eg.

string tension) at our disposal and we use MC data to determine c

In practice, since äs yet not even the lowest order correction

f(0) has been calculated the MC data has been fitted to

K = (5)

comparing with (1), (2) we See

(6)

Since on a finite lattice we work in a region of finite bare coup-

ling where thecorrelaticn length is not so large that finite size

effects dominate, the correction factors in (6) may be significant.

Indeed this appears to be the case in analogous calculations in the

CP models , first pointed out by Martinelli, Parisi and Pe-

tronzio.

We should therefore indeed check for the lattice action under con-

sideration, that the correction factor in (6) is not too large.

An Impression of the corrections involved comes from comparing mea-

surements of a physical quantity using different lattice actions.

Defining

'A. \f

^i (7)

3 -

'̂'/ \, Rebbi and Salomonson' find \ differing by 40%

from the theoretical value in the comparison of Standard Wilson

and Manton actions (see Table 1 taken from ref. 7)-it would be satis-

fyincifthe perturbative corrections described above could account

for these differences- In principle one should determine the relation

between g and g' in the physical limit and compare the data in terms

of one coupling. Without the raw data at hand we make the rough

approximation g. in (6) and thereby estiinate

with

(8l

(9)

One way to determine the relation betwcen g, g', and thereby de-

termine 6, is to corapute the effective action P (F) in the small

coupling, slowly varying weak F approximation

(10)

(- OU1 J

with "X an IR cutoff and

Q I O = f- i

Given two lattice actions r(F) should be the same in the physical

continuum limit and thus

3 12 )

Comparing with Eq. (2)wecan relate the 1. coefficients to the

ratio and the quantity 6, viz

A,.
C

and



(14 ]

The easiest way to calculate the effective action is to use the
t R}

background field method . The plaquette variable in the action

u,

with F , f related to the covariant curls of the background
UV' uv ,

and quantum fields respectively °' . Expanding, wo obtain den-

?L -l i
a'- l t „5

+ ̂ r
•* . >ti

c!- 1 d F ",, J ^^Aet r-

where b, c , d ... are functions of g ( regulär at u = 0 and

b(0) = 1. These coefficients depend on the lattice action uscd and

those we need are tabulated in Table 2 for the Hixed Wilson, the

Manton and the Villain actions for which the action densities are,

(16)

The effective action has a diagrammatic loop expansion

L
< t

with

(17]

(18)v
T was effectively first calculated by Hasenfratz and Hasenfratz

and checked by various authors^"•^°' . Here we reproduce only the

contribution from Fig. 1 arising from vertices in the lattice

action (151 not present in the classical cnntlnuum action. It is

the only diagram which contributes to the A|-/A,_ ratic (when b = 'l

and moreover gives a significant contribution to tne ratio At/AL^i

in the case of Standard Wilson action. One finds

i if,.]l) 19)

where

>->, (20)

: : .

w c

-5X L *-*> V., r 1 *.x*. ̂  VA

ir L., \.t T'- T1- V T'v v ct t, T* T1- T^ r A

(21

t IN (22)

The matrices T in (21) (generators in the fundamental represen-

tation) are normalized by tr T T = 76 ,.

It turns out that the contribution to 6 in Eq. 14 from the 1-loop

diagram Fig. 1 is of the opposite sign from that required to im-

prove the discrepances of Table 1. Thus 2-loop contributions must

be included.



A füll 2-loop calculation requires much labor and we are not yet

in a position to present the complete result. Here we present partial

results, easily calculable, to obtain an order of magnitude estimate.

The contributions to F2 that we calculated are given in Fig. 2. That

is to say we consider diagrams arising from vertices not contained

in the classical continuum action, and neglected non-abelian parts

of f . Ghost and measure terms are also not considered. Experience

from the 1-loop calculation considered above suggests that we get

the right order of magnitude. Moreover most of the neglected diagrams

cancel in the evaluation of 6 ,. The contributions from Figs. 2a, b, c
ijj_i

are given by:

lb (23)

a- f li iJ l ~
_ 5 c b

t V

where

(24)

i i) (il

and S^the only nontrivial integral appearing in our expressions

is given by,

-n u-R-r -, i u r
(25)

where

(26)

Stehr has estimated S using a non-sophisticated MC programme and

obtained

(27)

For

t t. T T l

I ^w T'-TT1- K TATaT( t-1 W

~i ScAt.-T** T* T* T' - H-^t WT1-

(28)

IS..»

one obtains

\ ^

(29)

.
IbN

Collecting the pieces together (Table 3) and using the fact that

b = l for Wilson and Manton actions we have

t- -03T- v -113 ) - l, - -035

V -OS"

(30)



The sign in (30) means that "experimental value" of VA,

expected to be greater than the theoretical value, which is in
2

fact the case (see Table 1). Taking g, s 2 our correction factor

would be * • 9. Although this is not quite big enough to account

for the results of Table 1 , it is reassuring that it is of the correct

order of magnitude.

1 2For the Villain action, b = 1 - =- g One then obtains

(31

There are no two-loop contributions to the difference

in our crude approximation- The differenco arises solely from the

1-loop contribution and the fact that coefficients b, c, , c-, are

nontrivial functions of g (Table 2 ). We obtain

From (31), (32) we estimate

'-i.1- J i- <-i foi t
J «-.U

(32)

(33)

This gives a satisfactory account for the discrepancy between

Hanton and Villain results in Table 1.

The Wilson action with ~S / 0 whose phase structure has been widely

studied , has been proposed by Lüscher to be used in studies

of the topological Charge on the lattice. The danger is that for K

too large the correction factors may swamp the expected asymptotic

freedorn behaviour for reasonable values of g.

- 9 -

In conclusion our results for the actions used so far in Monte

Carlo analyses of SU<2) Y.M. theory indicate that perturbative

effects are indeed of the expected order of magnitude to explain

observed discrepances. A serious MC determination of /A values

should take these effects into account

finite size effects.

äs well äs intermingled

Acknowledgement We are indebted to J. Stehr for performing the

numerical Integration.
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Figure Captions

Fig. 1: 1-loop contribution to the effective action (quadratic part)

Fig. 2: 2-loop contributions to the quadratic part of the effective

action corning from vertices in the lattice action not

present in the continuum action.
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