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Abstract

We prove that, given a certain isometric action of a two-dimensional Abelian group
A on a quaternionic Kähler manifold M which preserves a submanifold N ⊂ M , the
quotient M ′ = N/A has a natural Kähler structure. We verify that the assumptions
on the group action and on the submanifold N ⊂ M are satisfied for a large class
of examples obtained from the supergravity c-map. In particular, we find that all
quaternionic Kähler manifolds M in the image of the c-map admit an integrable
complex structure compatible with the quaternionic structure, such that N ⊂ M
is a complex submanifold. Finally, we discuss how the existence of the Kähler
structure on M ′ is required by the consistency of spontaneous N = 2 to N = 1
supersymmetry breaking.
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Introduction

Since the work of Galicki and Lawson [GL] it has been known that a quaternionic ana-

logue of the well-known symplectic reduction exists. In fact, as shown in [ACDV], any

isometric action of a Lie group G on a quaternionic Kähler manifold (M, g,Q) of nonzero

scalar curvature gives rise to a g∗-valued section P ∈ Γ(Q ⊗ g∗) of the quaternionic

structure Q ⊂ End (TM). P is called the moment map and by taking the quotient

{P = 0}/G one obtains a new quaternionic Kähler manifold, provided that the usual

regularity assumptions are fulfilled.

In this paper, however, we are interested in constructing Kähler manifolds out of

quaternionic Kähler manifolds. Such a procedure is needed in order to break supersym-

metry from N = 2 to N = 1 in supersymmetric theories of gravity in four spacetime

dimensions [FGP, L, LST1, LST2]. The reason is that quaternionic Kähler manifolds

of negative scalar curvature occur as scalar manifolds of N = 2 supergravity, whereas

N = 1 supergravity requires the scalar manifold to be Kähler. A natural but rather

restrictive way to relate quaternionic Kähler manifolds to Kähler manifolds of lower di-

mension is to consider Kähler submanifolds (N, gN , JN) ⊂ (M, g,Q), such that gN = g|N

and JN ∈ Γ(Q|N). It is shown in [AM] that the dimension of such a submanifold cannot

exceed 2n if M has nonzero scalar curvature, where dimM = 4n.

Our new idea is to drop the Kähler condition on (N, gN , JN) still maintaining the inte-

grability of JN ∈ Γ(Q|N). The final Kähler manifoldM ′ is then obtained as an appropriate

quotient M ′ = N/A of N . To define the quotient we make use of two commuting Killing

vector fields ξ1, ξ2, which generate a free proper isometric action of a two-dimensional

Lie group A. The necessary technical assumptions on ξ1, ξ2 for our construction are for-

mulated in terms of the corresponding moment maps P1, P2 ∈ Γ(Q), see Theorem 5 and

Corollary 1. The main result can be summarized as follows.

Theorem 1 Let M be a quaternionic Kähler manifold of nonzero scalar curvature,

N ⊂ M a submanifold and ξ1, ξ2 Killing vector fields of M which satisfy the assumptions

of Theorem 5 and Corollary 1. Then M ′ = N/A carries an induced Kähler structure,

where A is the transformation group generated by ξ1, ξ2.

The main body of the article is devoted to the investigation of several classes of

examples. As a first and simplest example we take N = M = H4
R
= H1

H
the real hyperbolic

four-space (which coincides with quaternionic hyperbolic line) and obtainM ′ = H1
C
. Then

we study the quaternionic Kähler manifolds (M, g,Q) in the image of the c-map [CFG, FS].

These manifolds have negative scalar curvature and are associated with a (projective)
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special Kähler domain Msk, the geometry of which can be encoded in a holomorphic

prepotential F (Z) = F (Z1, . . . , Zn). As a first step in the study of the c-map examples

we obtain the following general result, see Proposition 1 and 2.

Theorem 2 Let (M, g,Q) be a quaternionic Kähler manifold in the image of the c-map.

Then the quaternionic structure Q of M admits a global orthonormal frame (J1, J2, J3)

such that the almost complex structure J3 ∈ Γ(Q) is integrable. (M,J3) is the total

space of a holomorphic submersion M → Msk with all fibers biholomorphic to the domain

Rn+1 + iV ⊂ Cn+1, where dimM = 4n and

V = {(x0, x1, . . . , xn) ∈ R
n+1|x0 >

n−1
∑

i=1

x2
i − x2

n}. (0.1)

This should be contrasted with the situation for complete quaternionic Kähler mani-

folds of positive scalar curvature, which do not even admit an almost complex structure

compatible1 with the quaternionic structure [AMP]. Some interesting properties of the

complex structure J3 are described in Proposition 1 and Proposition 2. We then define a

complex submanifold

N ⊂ (M,J3),

see Proposition 4, associated with a choice of a null vector v0 ∈ TMask, where Mask → Msk

is the affine special Kähler manifold associated with Msk. The complex codimension of

N ⊂ M is r + 1, where r is the rank of a certain complex matrix (GAB), which depends

on the choice of v0, see equation2 (3.16) and the remark on page 16. The structure of the

complex manifold N is described in Proposition 5. In particular, we find that N is always

the total space of a holomorphic submersion

N → M∧
sk,

where M∧
sk ⊂ Msk is a complex submanifold and the fibers are biholomorphic to Bn−1

C
×C.

The inclusion N ⊂ M maps the fibers of N → M∧
sk into the fibers of M → Msk. Next we

define two Killing vector fields ξ1, ξ2 on M , which depend on the choice of v0. We show

in Proposition 6 that they are tangent to N ⊂ M and generate a holomorphic, free and

proper action of the additive group A = C on N . We then have the following result, cf.

Theorem 6.

1Note that the complex Grassmannians Gr2(C
n) (n ≥ 3) do admit a complex structure which is

even Kähler for the quaternionic Kähler metric but it does not belong to the quaternionic structure.
It is known that these complex Grassmannians are the only complete quaternionic Kähler manifolds of
positive scalar curvature which admit an almost complex structure [GMS].

2Note that v0 =
∑

DA∂/∂ZA|Z0
+ c.c. .
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Theorem 3 The resulting quotient M ′ = N/A is always the total space of a holomorphic

submersion

M ′ → M∧
sk,

where the fibers are isomorphic to the complex ball Bn−1
C

∼= CHn−1 with its standard

complex hyperbolic metric of constant holomorphic sectional curvature −4. The projection

N → M ′ = N/A maps the fibers of N → M∧
sk to the fibers of M ′ → M∧

sk.

We also show that M ′ is complete if and only if the base manifold M∧
sk is complete, see

Remark on page 23. Let us emphasize a subtle but crucial point in the construction. The

fibers Mp = π−1(p) of π : (M, g, J3) → Msk consist of a solvable Lie group G endowed

with a family of left-invariant metrics gG(p) and left-invariant skew-symmetric complex

structures JG(p):

(Mp, g|Mp
, J3|Mp

) = (G, gG(p), JG(p)), p ∈ Msk.

The group G is precisely the Iwasawa subgroup of SU(1, n + 1), which is the group of

holomorphic isometries of the complex hyperbolic space CHn+1 = U(1, n + 1)/(U(1) ×

U(n+1)) = SU(1, n+1)/S(U(1)×U(n+1)). Since G acts simply transitively on CHn+1,

we can identify the Kähler manifold CHn+1 with (G, gcan, Jcan), where (gcan, Jcan) is a

left-invariant Kähler structure on G:

CHn+1 = (G, gcan, Jcan).

From the Riemannian point of view, the fibers (Mp, g|Mp
) = (G, gG(p)) are as nice as

possible. They are all isometric to (G, gcan) ∼= CHn+1, although the metric gG(p) is never

independent of p ∈ Msk. However, in view of the above discussion, the Hermitian manifold

(G, gG(p), JG(p)) cannot be Kähler, since 2n + 2 = dimG > 1
2
dimM = 2n. This means

that JG(p) does not coincide with the canonical (parallel) complex structure Jcan(p) on

(G, gG(p))H
n+1, for which (G, gG(p), Jcan(p)) ∼= CHn+1 = (G, gcan, Jcan). One can show

that (G, JG(p)) is not even biholomorphic3 to CHn+1. This is related to the non-positivity

of the quadratic form on the right-hand side of the inequality defining the complex domain

Rn+1 + iV ⊂ Cn+1 ∼= (G, JG(p)), see (0.1). Summarizing, we have that

(G, gG(p)) ∼= (G, gcan) ∼= CHn+1 but (G, JG(p)) 6∼= (G, Jcan) ∼= CHn+1.

It turns out that when passing to the quotient M ′, the fibers M ′
p, p ∈ M∧

sk, become

all isometric and biholomorphic to CHn−1. In fact, we show that by considering the

submanifold Np := N ∩Mp ⊂ Mp, which is biholomorphic to CHn−1×C, and its quotient

3A proof of this fact can be found in [CH], which includes the classification of skew-symmetric left-
invariant complex structures on (G, gcan) = CHn+1.
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M ′
p = Np/A we reduce the domain Mp

∼= Rn+1 + iV 6∼= CHn+1 to M ′
p
∼= (Rn+1 + iV ) ∩

Cn−1 = Rn−1 + iV ′, where now

V ′ = {(x0, x1, . . . , xn−2) ∈ R
n−1|x0 >

n−2
∑

i=1

x2
i }

is defined by a positive definite quadratic form. Therefore, Rn−1 + iV ′ is biholomorphic

to CHn−1.

More detailed information is obtained in Section 3.2.1 and Section 3.2.2 when the

prepotential is either quadratic or of the form F = h(Z1,...,Zn−1)
Zn , where h is a homogeneous

cubic polynomial with real coefficients. As usual in the physics literature, the latter class

will be simply referred to as having cubic prepotential. It is particularly interesting for

string theory compactifications and contains a wealth of homogeneous as well as inho-

mogeneous examples. We show that in the case of cubic prepotential the dimension of

M ′ can be as large as dimM − 8 with dimM arbitrarily big. In the case of quadratic

prepotential the structure of M ′ is completely determined as follows, cf. Theorem 7.

Theorem 4 The Kähler manifolds M ′ obtained from the above quotient construction

applied to the quaternionic Kähler manifold M = U(2,n)
U(2)×U(n)

→ Msk = Hn−1
C

are always

isomorphic to Hn−1
C

× Hn−1
C

, provided that M∧
sk ⊂ Msk is complete. In this case, the

holomorphic submersion M ′ → M∧
sk is trivial and M∧

sk = Msk.

So in this case, dimM ′ = dimM − 4.

The mathematical results obtained in this paper are motivated by the consistency

of spontaneous N = 2 to N = 1 supersymmetry breaking [FGP, L, LST1, LST2] and in

Section 4 we briefly discuss this relation. Quaternionic Kähler manifolds appear naturally

in N = 2 supergravity theories as part of the scalar field space. The Higgs mechanism

responsible for the supersymmetry breaking requires two massive vector fields coupled

to two Killing vector fields that fulfill the assumptions of Theorem 5. Furthermore, an

N = 1 effective action can be defined below the scale of supersymmetry breaking and is

obtained by integrating out all massive degrees of freedom. Integrating out massive scalars

corresponds to taking a submanifold N ⊂ M , while integrating out two massive vector

fields corresponds to taking the quotient with respect to the two-dimensional Abelian Lie

group A generated by the two Killing vectors, as specified in Theorem 1. Consistency

with N = 1 supersymmetry implies that the resulting scalar field space M ′ = N/A should

be Kähler.
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1 Basic results about quaternionic Kähler manifolds

In this section we recall some known facts about quaternionic Kähler manifolds, see e.g.

[ACDV] for more details.

Definition 1 A quaternionic Kähler manifold (M, g,Q) is a Riemannian manifold (M, g)

which is endowed with a parallel skew-symmetric quaternionic structure Q ⊂ End TM .

If dimM = 4 we require, in addition, that Q · R = 0. (This condition is automatically

satisfied if dimM > 4.)

Let (Jα)α=1,2,3 be an orthonormal local frame of Q such that J3 = J1J2. Then

∇Jα = −(ωβ ⊗ Jγ − ωγ ⊗ Jβ), (1.1)

for some triplet of connection forms ωα, where (α, β, γ) is always a cyclic permutation of

(1, 2, 3). These one-forms are related to the fundamental two-forms ϕα = g(·, Jα) by the

following structure equations:

νϕα = dωα + ωβ ∧ ωγ, (1.2)

where ν = scal
4n(n+2)

stands for the reduced scalar curvature, the quotient of the scalar

curvature of (M, g) by that of HP n, with 4n = dimM . Quaternionic Kähler manifolds

are Einstein; in particular, ν is a constant.

Now let ξ be a Killing vector field on a quaternionic Kähler manifold of nonzero scalar

curvature, i.e. ν 6= 0. Then Q is invariant under the flow of ξ, as well as under parallel

transport. This implies that the endomorphism field ∇ξ is a section of the normaliser

N(Q) = Q⊕ Z(Q)

of Q in so(TM). Here Z(Q) stands for the centraliser of Q. Note that

N(Q)p ∼= sp(1)⊕ sp(n) ∀p ∈ M,

where sp(n) is the Lie algebra of the compact symplectic group Sp(n), which is usually

denoted by USp(2n) in the physics literature. Let us use

P := (∇ξ)Q ∈ Γ(Q) (1.3)

to denote the projection of ∇ξ onto Q. The section P : M → Q is called the moment

map associated with ξ. Its covariant derivative is given by:

∇P =
ν

2

∑

ϕα(·, ξ)⊗ Jα. (1.4)

For the last formula, see [ACDV] Proposition 2.
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2 The new quotient construction

Theorem 5 Let (M, g,Q) be a quaternionic Kähler manifold of nonzero scalar curva-

ture, ξ1, ξ2 two Killing vector fields with corresponding moment maps Pi ∈ Γ(Q), i = 1, 2,

N ⊂ M a submanifold and X(N) the space of smooth vector fields on N such that:

(i) ξ1|N , ξ2|N ∈ X(N), [ξ1, ξ2]|N = 0 and |ξ1| = |ξ2| 6= 0 on N ,

(ii) P1P2|N is a section of Q|N which preserves TN and maps ξ1|N to fξ2|N , where

f ∈ C∞(N) is some nowhere vanishing function.

Then the integrable distribution D ⊂ TN spanned by ξ1|N , ξ2|N has an induced transversal

Kähler structure (h, J). The complex structure J is induced by I := 1
f
P1P2|N ∈ Γ(N,Q),

which defines an integrable complex structure on N .

Remarks: 1) We will show below that for the quaternionic Kähler manifolds (M, g,Q)

in the image of the c-map there exists a global orthonormal frame (J1, J2, J3) of Q such

that the almost complex structure J3 is integrable. The above construction will then be

applied to an appropriate complex submanifold N of (M,J3).

2) The quaternionic Kähler manifolds in the image of the c-map include all the known ho-

mogeneous quaternionic Kähler manifolds of negative scalar curvature with the exception

of the quaternionic hyperbolic spaces Hn
H
, n ≥ 2.

Proof: Let us use N = D⊥ ∼= TN/D to denote the Riemannian normal bundle of D in

N . We then define the transversal metric h ∈ Γ(S2N∗) as the restriction

h := g|N×N.

It follows from (i-ii) that I := 1
f
P1P2 ∈ Γ(N,Q) is an almost complex structure. We can

choose an orthonormal local frame (Jα)α=1,2,3 of Q such that J3 = I on N and J3 = J1J2.

Since I preserves D ⊂ TN , TN and therefore N = D⊥ ⊂ TN , we can define

J := I|N ∈ Γ(N,End N).

Clearly, Jp is a skew-symmetric complex structure on the Euclidian vector space (Np, hp),

for all p ∈ M . We claim that (h, J) defines a transversal Kähler structure for the foliation

of N defined by the integral surfaces of the distribution D. This means that (h, J)

induces a Kähler structure on any submanifold S ⊂ N transversal to D and that the

Kähler structures on a pair of such submanifolds S, S ′ ⊂ M intersecting the same leaves
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are related by the corresponding holonomy transformation of the foliation. To prove this

it suffices to check that

Lξig = 0, (2.1)

LξiI = 0, (2.2)

[X, Y ] ∈ Γ(T 1,0
I N), for all X, Y ∈ Γ(T 1,0

I N), (2.3)

dϕ̃ = 0, (2.4)

where ϕ̃ is the pull back of the fundamental form ϕ = h(·, J ·) to a two-form on N .

Explicitly,

ϕ̃|D∧TN = 0, ϕ̃|∧2N = ϕ.

The equation (2.1) holds because the ξi are Killing fields. The Lie derivative LξiI of

I ∈ Γ(N,Q) is again a section of Q|N , since any isometry of a quaternionic Kähler

manifold of nonzero scalar curvature preserves the quaternionic structure Q. In order to

prove (2.2), it thus suffices to check that:

(LξiI)ξ1 = Lξi(Iξ1)− ILξiξ1 = Lξi(ξ2) = 0.

The equation (2.2) implies that on N we have

Pi = (∇ξi)
Q = (∇ξi − Lξi)

Q ≡
1

2
ω1(ξi)J1 +

1

2
ω2(ξi)J2 (mod RJ3).

Combining this with the equation P1P2|N = fJ3|N we obtain that, on N ,

Pi =
1

2
ω1(ξi)J1 +

1

2
ω2(ξi)J2, (2.5)

where the vectors vi := (ω1(ξi), ω2(ξi)) ∈ R2 satisfy

v1 ⊥ v2, |v1||v2| = 4f (2.6)

on N . This shows that the one-forms ω1, ω2 are pointwise linearly independent on N . In

fact, their restrictions to D are linearly independent. Hence,

K := kerω1|N ∩ kerω2|N ⊂ TN

is a distribution complementary to D. We will now show that K = N. To see this, we

calculate the covariant derivative of Pi on N :

∇Pi =
1

2
(∇ω1(ξi))⊗ J1 +

1

2
(∇ω2(ξi))⊗ J2

−
1

2
ω1(ξi)(ω2 ⊗ J3 − ω3 ⊗ J2)−

1

2
ω2(ξi)(ω3 ⊗ J1 − ω1 ⊗ J3)

≡ −
1

2
(ω1(ξi)ω2 − ω2(ξi)ω1)⊗ J3 (mod T ∗M ⊗ (RJ1 ⊕ RJ2)).
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Comparing with (1.4), we obtain

νϕ3(ξi, ·) = ω1(ξi)ω2 − ω2(ξi)ω1

along N . This implies that K = N. It also shows that the two-form νϕ3−ω1∧ω2 vanishes

on D ∧ TM along N and coincides with νϕ3 on N. This means that

νϕ̃ = (νϕ3 − ω1 ∧ ω2)|N
(1.2)
= dω3|N ,

proving (2.4). It remains to check the integrability condition (2.3), which shows that

I defines a complex structure on N . The equation (1.1) implies that ∇XI = 0, for all

X ∈ N = K. Using the symmetry of the Levi-Civita connection and the fact that IN = N,

we can easily check that

[X − iIX, Y − iIY ] = [X, Y ]− [IX, IY ]− i([X, IY ] + [IX, Y ])

= [X, Y ]− [IX, IY ]− iI([X, Y ]− [IX, IY ]),

for all X, Y ∈ Γ(N). It remains to calculate [ξ1 − iξ2, Y − iIY ] for any Y ∈ X(N):

[ξ1 − iξ2, Y − iIY ]
(2.2)
= [ξ1 − iξ2, Y ]− iI[ξ1 − iξ2, Y ] ∈ T 1,0

I M.

This proves (2.3).

Corollary 1 If, in addition to the assumptions of Theorem 5, the vector fields ξ1|N ,

ξ2|N generate a free and proper action of a two-dimensional Abelian Lie group A on the

submanifold N ⊂ M , then the quotient M ′ := N/A is a smooth manifold, which inherits

a Kähler structure (h, J) from the transversal geometry of the integrable distribution D.

The projection (N, g) → (M ′, h) is a Riemannian submersion and a principal fiber bundle

with structure group A. Moreover, (N, I) → (M ′, J) is holomorphic, where I ∈ Γ(N,Q)

is the (integrable) almost complex structure which maps ξ1|N to ξ2|N . If, more generally,

the proper action of A is only locally free with finite stabilisers, then (M ′, h, J) is a Kähler

orbifold.

3 Examples

3.1 Hyperbolic 4-space

As a first example, let us consider the four-dimensional hyperbolic space

M = H4
R =

SO0(1, 4)

SO(4)
.
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The solvable Iwasawa subgroup L of SO0(1, 4) = Isom0(M) acts simply transitively on M

and we can identify M with the group manifold L endowed with a left-invariant metric g

of constant curvature −1. (M, g) is a quaternionic Kähler manifold with the quaternionic

structure Q spanned by three left-invariant complex structures Jα, α = 1, 2, 3. The Lie

algebra

l := LieL = a+ n

is the orthogonal sum of a three-dimensional Abelian nilradical n = span{Xα = JαX0|α =

1, 2, 3} and a one-dimensional subalgebra a = RX0, where X0 is a unit vector such that

adX0
|n = Id. Decomposing the Levi-Civita connection

∇XY =
1

2

∑

ωα(X)JαY + ∇̄XY, X, Y ∈ l,

such that ∇̄XJα = 0, one can easily compute ωα = −X∗
α, where (X∗

a) is the dual basis of

l∗.

Let us use ka, a = 0, 1, 2, 3, to denote the (right-invariant) Killing vector field which

coincides with the left-invariant vector field Xa at e ∈ L. A straightforward calculation

shows that

k0(p) = X0(p)−
e−x0

− 1

x0

∑

xαXα(p)

kα = e−x0

Xα,

at p = exp(x) ∈ L = M , where x =
∑

xαXα. This allows us to compute the moment

maps Pα of the three commuting Killing vector fields κα:

P1 = (∇k1)
Q = −(Lk1)

Q +∇Q
k1

=
1

2

∑

ωα(k1)J1 = −
1

2
e−x0

J1,

since (Lk)
Q = 0 for any right-invariant Killing vector field k and ωα = −X∗

α. Summarising,

we have shown that

Pα = −
1

2
e−x0

Jα , (3.1)

in accordance with [FGP]. Thus we have

P1P2k1 = fk2 , 4f = |k1|
2 = |k2|

2 = e−2x0

> 0, (3.2)

and we can choose ξi = ki, i = 1, 2, in agreement with conditions (i − ii) in Theorem 5.

The Killing vector fields k1, k2 generate the left-action of the normal subgroup A2 =

exp a2 ⊂ L, a2 = span{X1, X2}. Therefore, we can apply Theorem 5 and Corollary 1

to N = M . The quotient M ′ = M/A2 is the complex hyperbolic line M ′ ∼= H1
C
, which

again has constant curvature −1 and admits the simply transitive solvable group L/A2 of

holomorphic isometries.
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3.2 Quaternionic Kähler manifolds in the image of the c-map

There is a class of quaternionic Kähler manifolds of negative scalar curvature of the form

M = Msk × G, where Msk is a (projective) special Kähler manifold of dimension 2n − 2

and G is the solvable Iwasawa subgroup of SU(1, n + 1), which is a semidirect product

of a (2n + 1)-dimensional Heisenberg group with R. For simplicity we will assume from

now on that Msk admits a global system of special coordinates. Such manifolds are called

(projective) special Kähler domains. Note that the quaternionic Kähler metric on M

cannot be a product metric, since quaternionic Kähler manifolds are irreducible. The

construction of these manifolds out of the special Kähler base is called the (supergravity)

c-map [CFG, FS]. It has been recently shown that the quaternionic Kähler manifold

M is complete if Msk is complete [CMX]. As we will show, the class of quaternionic

Kähler manifolds in the image of the c-map gives numerous examples for the quotient

construction introduced in Theorem 5.

In the following we will briefly describe the construction of the c-map, see [CFG, FS,

CMX] for more detailed information. Any (projective) special Kähler manifold Msk can

be realised as the base of a holomorphic C∗-principal bundle Mask → Msk. The total

space Mask has the structure of an affine special Kähler manifold, which admits special

holomorphic local coordinates ZA, A = 1, . . . , n, such that the geometric data of Mask are

encoded in a holomorphic function F (Z1, . . . , Zn) called the holomorphic prepotential.4

The functions za = Za/Zn, a = 1, . . . , n − 1, induce local coordinates on Msk and the

Kähler potential K(z) of Msk can be explicitly expressed in terms of the prepotential F .

In fact, K(z) = K(z, 1), where

K(Z) = − ln(2ZANABZ̄
B), NAB = ImFAB, (3.3)

where the subscripts on F denote derivatives with respect to ZA e.g. FA = ∂F/∂ZA.

The solvable Lie group G admits a natural system of global coordinates 5 (φ, φ̃, aA, bA),

A = 1, . . . , n. A basis for the right-invariant vector fields on G is given in these coordinates

4Readers familiar with the supergravity literature might prefer to label the coordinates by I =
0, 1, . . . , n− 1, as is done from Section 3.2.2 onwards.

5In supergravity theories arising as effective theories of type II compactifications the scalar mani-
fold Msk is spanned by deformations of the metric and the Neveu-Schwarz B-field, while (φ, φ̃, aA, bA)
correspond to the dilaton, the axion and the 2n real Ramond-Ramond scalars, respectively.
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by

kφ = 1
2

∂

∂φ
− φ̃

∂

∂φ̃
− 1

2
aA

∂

∂aA
− 1

2
bA

∂

∂bA
,

kφ̃ = − 2
∂

∂φ̃
,

kA =
∂

∂aA
+ bA

∂

∂φ̃
,

k̃A =
∂

∂bA
− aA

∂

∂φ̃
.

(3.4)

These vector fields obey the commutation relations

[kφ, kφ̃] =kφ̃ , [kφ, kA] = 1
2
kA ,

[kφ, k̃
A] =1

2
k̃A , [kA, k̃

B] = δBAkφ̃ ,
(3.5)

with all other commutators vanishing.

Recall that a quaternionic vielbein on a quaternionic Kähler manifold (or, more gener-

ally, on an almost quaternionic Hermitian manifold) (M, g,Q) is a coframe which belongs

to the Sp(n)Sp(1)-structure defined by (g,Q), cf. [ACDGV]. More explicitly, it is a system

of complex-valued one-forms UAm, A = 1, 2, m = 1, . . . , 2n, such that the metric takes the

form

g =
∑

ǫABǫlmU
Al ⊗ U

Bm (3.6)

and such that the quaternionic structure Q on TM corresponds to the standard quater-

nionic structure on the first factor C2 of the tensor product C2⊗C2n. Here ǫ =

(

0 1
−1 0

)

.

Note that the metric and quaternionic structure are completely determined by specifying

a quaternionic vielbein.

In [FS] it was proven that

U
Am = 1√

2

(

ū ē −v −E

v̄ Ē u e

)

(3.7)

is a quaternionic vielbein of a quaternionic Kähler structure (g,Q) on a domain M if the

one-forms UAm are defined by

u = i eK/2+φZA(dbA − FABda
B) ,

v = 1
2
e2φ
[

de−2φ − i(dφ̃+ bAda
A − aAdbA)

]

,

E b = − i
2
eφ−K/2Π b

A NAB(dbB − F̄BCda
C) ,

e b = Π b
A dZA = e b

adz
a .

(3.8)

Here (ZA), A = 1, . . . , n, are the homogeneous coordinates of Msk, which are functions

on the affine special Kähler domain Mask,

Π b
A = (e b

a ,−zae b
a )

12



is defined using the vielbein e b
a on Msk. In the above formulas one may simply put

(ZA) = (za, 1) to obtain differential forms which are manifestly defined on M = Msk ×G,

rather than horizontal C∗-invariant forms on Mask × G → Msk × G. It is shown in

[CMX] that, although the prepotential F and the vielbeins are coordinate dependent,

the quaternionic Kähler structure does not depend (up to isomorphism) on the choice of

special coordinates.

Remark: It is also shown in [CMX] that a global quaternionic Kähler structure can be

defined even if Msk cannot be covered by a single system of special coordinates. In that

case one has to replace M = Msk × G by the total space of a possibly nontrivial bundle

over Msk.

Using the quaternionic vielbein given in (3.7) we can define three almost complex

structures Jα on M by

U
Am ◦ Jα = − i(σα)

A

B
U

Bm , (3.9)

where (σα)
A

B
are the su(2) generators

(σ1)
A

B
=

(

0 1

1 0

)

, (σ2)
A

B
=

(

0 − i

i 0

)

, (σ3)
A

B
=

(

1 0

0 −1

)

.

Then Q = span{Jα|α = 1, 2, 3} is a skew-symmetric parallel quaternionic structure with

respect to the quaternionic Kähler metric

g = uū+ vv̄ +
∑

(e bē b + E bĒ b) (3.10)

on M defined by (3.6). (Recall that uū = ūu = 1
2
(u⊗ ū+ ū⊗ u).)

Proposition 1 The almost complex structure J3 is integrable for any quaternionic

Kähler manifold (M = Msk × G, g,Q) in the image of the c-map. Moreover, the fac-

tors of the product Msk × G are complex submanifolds of the complex manifold (M,J3).

The restriction of J3 to the first factor coincides (at any point of M) with the original

complex structure J on the Kähler manifold Msk, whereas the submanifold G = {p}×G ⊂

Msk × G = M with the Hermitian structure induced by (g, J3) is not Kähler. Neverthe-

less, the submanifold G ⊂ M with its induced metric is isometric to the complex hyperbolic

space Hn+1
C

with the Kähler metric of constant holomorphic sectional curvature −4.

Proof: According to (3.7) and (3.9), the one-forms u, v̄, e b, Ē b constitute a basis for the

13



space of (1, 0)-forms of J3. We can compute their exterior derivative to be [FS]

du =

(

−1
2
(v + v̄) +

Z̄ANABdZ
B − ZANABdZ̄

B

2Z̄ANABZB

)

∧ u− Ē ∧ e ,

dv̄ =− v ∧ v̄ + ū ∧ u− E ∧ Ē ,

dea =− ωa
b ∧ eb ,

dĒa =

(

−ω̄a
b −

1
2
(v + v̄)δab +

Z̄ANABdZ
B − ZANABdZ̄

B

2Z̄ANABZB
δab

)

∧ Ēb

+ ē ∧ u+ 1
4
(Z̄ANABZ

B)ΠbAN
ABNCDΠa

DE
b ∧ dFBC ,

where ω is the connection one-form of Msk and the index b is lowered by means of the

Kronecker symbol. Since there is no (0, 2)-form appearing on the right-hand side, J3 is

integrable in virtue of the Newlander-Nirenberg theorem. The two distributions tangent to

the factors of the product manifold Msk×G are defined by u = v = E b = ū = v̄ = Ē b = 0

and e b = ē b = 0, respectively. This shows that both distributions are J3-invariant and,

hence, that the leaves are complex submanifolds. The formula e b = e b
adz

a implies that

the complex structures J3|Msk
and J coincide. It is known that a Kähler submanifold

S ⊂ M of a quaternionic Kähler manifold M , such that the complex structure of S is

subordinate to the quaternionic structure, has at most dimension 1
2
dimM [AM]. Since

dimG = 2n+2, 2n = 1
2
dimM , G ⊂ M cannot be a Kähler submanifold with the complex

structure induced by J3. Alternatively, one may check by a direct calculation that the

fundamental two-form ϕ3 = g(·, J3) is not closed. For a proof of the last statement of the

proposition see [CMX].

In the next proposition we give more detailed information about the complex structure

J3.

Proposition 2

(i) The complex structure J3 on the quaternionic Kähler manifold M = Msk × G is of

the form J3 = J + JG, where J is the complex structure of the projective special

Kähler domain Msk and (JG(p))p∈Msk
is a smooth family of left-invariant complex

structures JG(p) on G.

(ii) The projection π : M → Msk is a holomorphic submersion with fibers (G, JG(p))

biholomorphic to the domain

F (n+ 1) := {(w0, w1, . . . , wn) ∈ C
n+1|Rew0 >

n−1
∑

A=1

(ImwA)
2 − (Imwn)

2} ⊂ C
n+1,

for all p ∈ Msk. The total space (M,J3) admits a fiber preserving open holomorphic

embedding into the trivial holomorphic bundle Msk × Cn+1.
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Proof: (i) By Proposition 1, the complex structure J3 on M = Msk × G is the sum of

the complex structure J on the base and a family of complex structures JG(p) on the

fibers {p} × G ∼= G. To prove that JG(p) is left-invariant it suffices to check that the

Lie derivative of the one-forms (3.8) with respect to the right-invariant vector fields (3.4)

vanishes. That is a straightforward calculation.

(ii) We define a fiber preserving holomorphic embedding Ψ : M → Msk × Cn+1 by Ψ =

(π, w0, wA), where

w0 := e−2φ + i(φ̃+ aA(bA − FABa
B)), wA := bA − FABa

B. (3.11)

One can easily check that the functions w0, wA are J3-holomorphic, cf. [LST2]. We claim

that Ψ maps M biholomorphically onto the domain defined by the inequality

Rew0 > −NAB ImwA ImwB. (3.12)

In fact, for fixed p ∈ Msk, the linear map

R
2n ∋ (aA, bB) 7→ (wA) ∈ C

n

is an isomorphism, whereas the variable w0 = e−2φ + i(φ̃ + aAwA) is constrained by the

inequality Rew0 > aA ImwA. Expressing (aA) by (wA) yields

aA = −NAB ImwB

and thus (3.12). For fixed p ∈ Msk we can choose the special coordinates such that

(NAB(p)) = diag(−1, . . . ,−1, 1). This shows that π is a holomorphic submersion with

fibers biholomorphic to F (n+ 1).

Given the explicit form of the vielbein (3.7) the SU(2) connection ωx reads [FS]

ω1 = i(ū− u) , ω2 = u+ ū ,

ω3 = i
2
(v − v̄)− i eK

(

ZANABdZ̄
B − Z̄ANABdZ

B
)

.
(3.13)

It can be checked that the natural action of G on M = Msk × G preserves the Ferrara-

Sabharwal metric g [CMX]. The moment maps Pλ of the Killing vectors kλ given in (3.4)

take the following simple form

Pλ =
1

2

∑

ωα(kλ)Jα . (3.14)

This follows from ∇kλ = ∇kλ − Lkλ , since LkλJα = 0.6

6Note that the formula (3.14) differs by a factor 1/2 from that of [M], since our definition (1.3) of the
moment map differs from that of [M] by the same factor. This can be easily checked with the help of
formula (1.4).

15



In order to define the submanifold N ⊂ M to which we will apply the quotient

construction of Theorem 5, we choose constant complex vectors (CA) and (DA) 6= 0 and

a constant C̃, where DA obeys

n
∑

A,B=1

NAB(Z0)D
AD̄B = 0 (3.15)

at some point Z0 = (Z1
0 , . . . , Z

n
0 ) ∈ Mask. Here Mask is identified with a domain in Cn by

means of the special coordinates. Since the affine special Kähler metric
∑

NAB(Z0)dZ
AdZ̄B

is indefinite, such a vector (DA) does always exist. We will assume that the rank of the

matrix

GAB(Z) =
∑

C

DCFABC(Z) (3.16)

is constant in a neighborhood of Z0. Then, by restricting to that neighborhood, we can

assume that the rank is constant on Mask. That implies that the system of equations

∑

A

DAFAB(Z) = CB :=
∑

A

DAFAB(Z0) (3.17)

defines a complex submanifold M∧
ask ⊂ Mask of complex dimension n − r, where r =

rk(GAB).

Proposition 3 r ≤ n − 1 and M∧
ask fibers over a complex submanifold M∧

sk ⊂ Msk of

dimension n− 1− r. In particular, Msk is of dimension zero if (GAB) has maximal rank.

Proof: Since FAB is homogeneous of degree zero, the vector (ZA) is in the kernel of the

matrix (GAB), which implies r ≤ n − 1. Due to the homogeneity of the equation (3.17),

M∧
ask is a cone over a complex submanifold M∧

sk ⊂ Msk.

Remark: More generally, for the smoothness of M∧
ask it is sufficient to assume that the

rank of (GAB) is constant on a complex submanifold containing (a neighborhood of Z0

in) the analytic set defined by (3.17).

Now we define a subset N ⊂ M by the system

DAFAB(Z) = CB , DA(bA − FABa
B) = C̃ . (3.18)

We claim that N ⊂ M is submanifold of codimension 2r + 2. More precisely, it is a

subbundle of M∧
sk × G with fibers of codimension 2. To see this it suffices to recall that

the first equation of (3.18) defines the submanifold M∧
sk ⊂ Msk and to note that over

points of M∧
sk the second equation reduces to

DAbA − CBa
B = C̃,
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which is a system of two real affine equations. The two real equations are independent

if and only if the vector (DA, CB) is not a complex multiple of a real vector. The latter

property follows from the fact that that vector belongs to the tangent space L = TdF (Z0)C

of the Lagrangian cone C = {dF (Z)|Z ∈ Mask ⊂ Cn} ⊂ T ∗Cn ∼= C2n, which satisfies

L ∩ L̄ = 0, see [ACD].

Proposition 4 Under the above assumptions, N ⊂ M is a complex submanifold with

respect to the complex structure J3. More precisely, the homogeneous equation

DAbA − CAa
A = 0 (3.19)

defines a subgroup G∧ ⊂ G of codimension 2 and N = M∧
sk × S is the product of the

complex submanifold M∧
sk ⊂ Msk and a submanifold S ⊂ G, which is a left-translate,

S = xG∧, of the subgroup G∧ ⊂ G by an element x ∈ G satisfying the inhomogeneous

equation

DAbA − CAa
A = C̃. (3.20)

The fibers {p} × S ⊂ {p} × G, p ∈ M∧
sk, are complex hypersurfaces with respect to the

complex structure on {p} ×G ⊂ M induced by J3.

Proof: In order to prove that N ⊂ M and the fibers of N → M∧
sk are a complex subman-

ifolds, it suffices to show that the one-form

d(DA(bA − FABa
B)) = DA(dbA − FABda

B) +DAaBdFAB

is of type (1, 0). This is obvious for the second term. In order to analyse the first term,

we decompose

DA = cZA +HA,

where H̄ANABZ
B = 0 and c ∈ C. Then

DA(dbA − FABda
B) = −cie−K/2−φu+ c bĒ

b,

where the coefficients c b ∈ C are determined by the equation − i c̄ b

2
eφ−K/2Π b

A NAB = H̄B.

This proves that DA(dbA − FABda
B) is of type (1, 0).

To check that (3.19) defines a subgroup G∧ ⊂ G, we recall7 [CMX] that in the coor-

dinates (φ, φ̃, aA, bB) the group multiplication in G is given by:

(φ, φ̃, a, b)·(φ′, φ̃′, a′, b′) = (φ+φ′, φ̃+e−2φφ̃′+e−φ(aAb′A−a′AbA), a+e−φa′, b+e−φb′). (3.21)

7Our additive variable φ is related to the corresponding variable λ in [CMX] by λ = −2φ.
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From this formula we see that the set of solutions of (3.19) is closed under multiplication

and contains the neutral element and the inverse

(φ, φ̃, a, b)−1 = (−φ,−e2φφ̃,−eφa,−eφb)

of any element (φ, φ̃, a, b) satisfying (3.19). Let x ∈ G be any element satisfying (3.20).

Using the multiplication law (3.21) we can easily check that xG∧ is a subset of the solution

space of (3.20), which we know is an affine subspace of G ∼= R2n+2 of codimension 2. This

proves that xG∧ coincides with the set of solutions of (3.20), that is, with the fiber of

N → M∧
sk.

In the next proposition we give more detailed information about the complex subman-

ifold N ⊂ (M,J3).

Proposition 5

(i) The complex structure induced by J3 on N = M∧
sk×S is of the form J+JS, where J

is the complex structure on M∧
sk and (JS(p))p∈M∧

sk
is a smooth family of left-invariant

complex structures on S = xG∧ ∼= G∧.

(ii) The projection πN : N → M∧
sk is a holomorphic submersion with fibers (S, JS(p))

biholomorphic to Bn−1
C

× C, for all p ∈ M∧
sk. The total space (N, J3) admits a fiber

preserving open holomorphic embedding into the trivial holomorphic bundleM∧
sk×Cn.

Proof: (i) It follows from Proposition 2 and Proposition 4 that the complex structure of

N is of the form J + JS, where JS = JG|S. Identifying S = xG∧ with the group G∧ ⊂ G

by means of the left-translation with x−1, we can consider JS as a complex structure on

the group G∧. Then the left-invariance of JS follows from that of JG.

(ii) Using the fiber preserving open holomorphic embedding Ψ of π : M → Msk into Msk×

Cn+1 defined in (3.11), we see that πN : N → M∧
sk is embedded into π|M∧

sk
by one complex

affine equation DAwA = C̃, which reduces the trivial bundle M∧
sk×Cn+1 ⊂ Msk×Cn+1 to

a trivial bundle ∼= M∧
sk×Cn and the fiber F (n+1) of π to F ′(n−1)×C. In fact, for fixed

p ∈ M∧
sk we can choose special coordinates such that (NAB(p)) = diag(−1, . . . ,−1, 1) and

D = (0, . . . , 0, 1, 1). Then the fiber is defined by

Rew0 >

n−1
∑

A=1

(ImwA)
2 − (Imwn)

2, wn + wn−1 = C̃.

Elimination of wn yields the domain

{(w0, . . . , wn−1) ∈ C
n|Rew0 − 2 Im C̃ Imwn−1 + (Im C̃)2 >

n−2
∑

A=1

(ImwA)
2} ⊂ C

n,
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which is biholomorphic to F ′(n−1)×C by the affine transformation (w0, w1, . . . , wn−1) 7→

(w0 − 2 Im C̃ Imwn−1 + (Im C̃)2, w1, . . . , wn−1), where

F ′(n− 1) := {(w0, w1, . . . , wn−2) ∈ C
n|Rew0 >

n−2
∑

A=1

(ImwA)
2} ⊂ C

n−1.

Now it suffices to note that F ′(n− 1) is biholomorphic to the ball Bn−1
C

.

Before we go on, let us summarize what we found so far by the following commutative

diagram consisting of holomorphic fiber preserving embeddings:

M = Msk ×G
Ψ
−֒→ Msk × Cn+1

∪ ∪

N = M∧
sk × S

Ψ|N
−֒−→ M∧

sk × Cn,

where the horizontal embeddings are open and the vertical ones are of complex codimen-

sion r+1. Recall that r is the complex codimension of M∧
sk ⊂ Msk, S is a left-translate of

a subgroup G∧ ⊂ G and Cn ⊂ Cn+1 is an affine hyperplane (which is linear if S = G∧).

The fibers of M → Msk are biholomorphic to F (n + 1), whereas the fibers of N → M∧
sk

are biholomorphic to Bn−1
C

× C.

Let us now define two Killing vectors ξi, i = 1, 2, on M by

ξ1 = ReDAkA + ReCAk̃
A + Re C̃kφ̃ ,

ξ2 = ImDAkA + ImCAk̃
A + Im C̃kφ̃ .

(3.22)

From (3.14), (3.13), (3.8) and (3.18) we see that both P1 and P2 lie in the plane spanned

by J1 and J2. Therefore, we find P1P2 = fJ3 for some function f . Furthermore, there

is J3k1 = k2. Hence we can apply Theorem 5 and Corollary 1, provided that ξ1, ξ2 are

tangent to N and generate a free and proper action. This is shown in the next proposition.

Proposition 6 The vector fields ξ1, ξ2 generate a free and proper holomorphic action

of a vector group R2 ∼= C on the submanifold N ⊂ M . In the coordinates (za, φ, φ̃, aA, bA)

the action of (λ1, λ2) ∈ R2 is given by (z, φ, φ̃, a, b) 7→ (z, φ, φ̃′, a′, b′), where

φ̃′ = φ̃− λ1Re C̃ − λ2 Im C̃, (3.23)

aA
′

= aA + λ1ReD
A + λ2 ImDA,

b′A = bA + λ1ReCA + λ2 ImCA.

In the holomorphic coordinates (za, w0, wA) the action of λ = λ1 + iλ2 ∈ C is given by

(za, w0, wA) 7→ (za, ζ0, ζA), where

ζ0 = w0 + iλD̄AwA − iλC̃ + i
λ2

4
D̄A(C̄A − FABD̄

B), (3.24)

ζA = wA +
λ

2
(C̄A − FABD̄

B). (3.25)
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Proof: First Note that

ξ1|N = ReDA ∂

∂aA
+ ReCA

∂

∂bA
− Re C̃

∂

∂φ
,

ξ2|N = ImDA ∂

∂aA
+ ImCA

∂

∂bA
− Im C̃

∂

∂φ
.

(3.26)

We can easily check that ξ1, ξ2 are tangent to N = {DAbA − CAa
A = C̃}. In fact,

this is a consequence of the two equations DACA − CAD
A = 0 and DAC̄A − CAD̄

A =

−2iDANABD̄
B = 0. Let us use ϕt

j to denote the flow of the vector field ξj and put

ϕλ := ϕλ1

1 ◦ ϕλ2

2 , λ = λ1 + iλ2.

Then (3.26) shows that ϕλ|N is given by (3.23). We see that in these coordinates the action

consists of translations along a plane. In particular, it is free and proper. Expressing ϕλ in

holomorphic coordinates yields (3.24)-(3.25), which shows that the action is C×N → N

is holomorphic.

The Kähler manifold M ′ = N/A constructed from Corollary 1 is of real dimension

4(n − 1) − 2r, where r was the complex codimension of M∧
sk ⊂ Msk. Thus the minimal

dimension of M ′ is 2(n − 1), which is attained when the base manifold M∧
sk is discrete.

The maximal dimension 4(n− 1) is attained, when M∧
sk = Msk.

Theorem 6 Let (M ′, h) be the Kähler manifold obtained as above from the quotient

construction of Corollary 1 applied to a quaternionic Kähler manifold (M = Msk ×G, g)

in the image of the c-map. Then M ′ is the total space of a holomorphic submersion over

the complex submanifold M∧
sk ⊂ Msk with fibers biholomorphic to Bn−1

C
. The metric of the

fiber is given by

hfib =1
4
e4φ|dx0 + 2 i((Im x)aδ

ab)dxb|
2 + 1

2
e2φdx̄aδ

abdxb , (3.27)

with respect to some global system of holomorphic coordinates (x0, x1, . . . , xn−2) on the

fiber. As a consequence, the fiber is isometric (but not biholomorphic, unless n ≤ 2) to

Hn−1
C

with its metric of constant holomorphic sectional curvature −4.

Proof: Since the action onN generated by ξ1 and ξ2 is holomorphic, see Proposition 6, and

preserves the fibers of the holomorphic submersion πN : N → M∧
sk, we have an induced

holomorphic submersion π′ : M ′ → M∧
sk. We know already (see the proof of Proposition

5) that πN : N → M∧
sk is holomorphically embedded into π|M∧

sk
: π−1(M∧

sk) → M∧
sk

with fibers of complex codimension one and that π−1(M∧
sk) is an open subset of the

trivial bundle M∧
sk × Cn+1. The fiber S = xG∧ of πN is the intersection of the fiber

G ∼= F (n + 1) of π|M∧

sk
with the complex affine hyperplane defined by the equation
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DAwA = C̃ in the holomorphic fiber coordinates (w0, wA). Let V A be any vector such

that V A(C̄A − FABD̄
B) 6= 0 holds on some neighborhood U ⊂ M∧

sk. Such a vector

exists, since C̄A − FABD̄
B = (F̄AB − FAB)D̄

B = −2iNABD̄
B and D 6= 0. Consider the

subgroup G′ ⊂ G defined by the homogeneous equations DAwA = V AwA = 0. One

can check that G′ is isomorphic to the Iwasawa subgroup of SU(1, n− 1). The reason is

that the canonical symplectic form ω on R2n is nondegenerate on the real subspace Π′ of

R2n which corresponds to the complex subspace of Cn defined by DAwA = V AwA = 0

under the isomorphism (aA, bB) 7→ (wA). In fact, Π′ is complementary in Π⊥,ω to the

plane Π ⊂ Π⊥,ω ⊂ R2n spanned by the real and imaginary part of the complex vector

(DA, CB). The plane Π is precisely the kernel of ω on Π⊥,ω. (Note that for the same reason

G∧ is not isomorphic to the Iwasawa subgroup of SU(1, n).) The complex submanifold

S ′ := xG′ ⊂ S = xG∧ intersects all the orbits of the vector group A generated by the

two Killing vector fields ξ1 and ξ2 transversally and exactly in one point, as follows from

(3.25). Therefore, it is biholomorphic to the quotient A \ S, which is the fiber of the

holomorphic submersion π′ : M ′ → M∧
sk. This proves that the fiber is biholomorphic

to G′ endowed with a left-invariant complex structure J ′ = J ′(p), p ∈ M∧
sk. Using the

fact that G∧ and, hence, G′ ⊂ G∧ normalizes A in G, one can show that the fiber

metric corresponds to a left-invariant metric g′ = g′(p) on G′. Since NABdwAdw̄B < 0 on

{DAwA = V AwA} ∼= Cn−2 ⊂ Cn we get that (G′, J ′, g′) ∼= CHn−1.

In order to make the above argument more explicit, let us compute the Kähler metric of

the fiber of M ′ → M∧
sk in holomorphic coordinates and show that it is indeed the complex

hyperbolic metric of constant holomorphic sectional curvature −4. The metric of M is

given by (3.10). Let us recall that (Πb
A) is the matrix which represents the projection

TMask → TMsk with respect to the special holomorphic coordinate frame on Mask and a

unitary frame on Msk. By the definition of the projective special Kähler metric, we have

NAB

ZNZ̄
= −δabΠ

a
AΠ

b
B +

NACZ̄
CNBDZ

D

(ZNZ̄)2
, (3.28)

where ZNZ̄ =
∑

ZANABZ̄
B = e−K

2
, cf. (3.3). Multiplying (3.28) with the inverse matrix

of the left hand side yields

δBA = −1
2
e−KΠAbΠ̄

b
CN

−1CB + 2eKNACZ̄
CZB . (3.29)

Restricting to the fiber over a point p ∈ M∧
sk and using the identity (3.29) we find

gfib =dφ2 + 1
4
e4φ|dφ̃+ bAda

A − aAdbA|
2 − 1

2
e2φ(dbA − F̄ACda

C)N−1AB(dbB − FBDda
D)

+ 2eK+2φ|ZA(dbA − FABda
B)|2 ,

which is the canonical metric of F (n + 1). Using the coordinates (3.11) the fiber metric
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gfib := g|π−1(p) takes the following form:

gfib = 1
4
e4φ|dw0 − 2 i(Imw)AN

−1ABdwB|
2 − 1

2
e2φdw̄AN

−1ABdwB + 2eK+2φ|ZAdwA|
2 .

(3.30)

The metric hfib := h|M ′
p
of the fiber M ′

p := (π′)−1(p) of π′ : M ′ → M∧
sk is obtained by first

restricting gfib to the submanifold Np := π−1
N (p) ⊂ π−1(p) defined by DAwA = C̃ and then

taking the quotient by the isometric R2-action generated by the Killing vector fields ξ1

and ξ2. These vector fields can be combined in the holomorphic vector field

k := ξ2 + iξ1 = −i(ξ1 − iξ2) = D̄ANAB
∂

∂wB
− 2 i D̄A(Imw)A

∂

∂w0
,

see (3.24)–(3.25). Since the quotient map τ : N → M ′ = N/A is a Riemannian submer-

sion, as is its restriction τp : Np → M ′
p, the metric hfib on M ′

p
∼= F (n − 1) is determined

by the degenerate symmetric tensor field

(τp)
∗hfib =g̃fib −

g̃fib(k, ·)g̃fib(k̄, ·) + g̃fib(k̄, ·)g̃fib(k, ·)

g̃fib(k, k̄)
,

where g̃fib = g|Np
= gfib|Np

. Since
∑

ZANABZ̄
B = e−K

2
> 0 and therefore

∑

ZANABD̄
B 6=

0, we see as above that the equivalence classes [w0, wA] corresponding to the holomorphic

C-action generated by k each contain exactly one representative which fulfills

ZAwA = 0 .

Recall that the index A runs from 1 to n. In particular, the n + 1 holomorphic fiber

coordinates are (w0, w1, . . . , wn). By a linear change of special coordinates (ZA), if neces-

sary, we can assume that at our base point p we have Z1 = 1. Because (ZA) always has

positive norm and (DA) is null, we know that Da 6= D1Za for some a ∈ {2, . . . , n}, let us

say for a = n. Therefore, we can find coordinates {x0, xa}, a = 2, . . . , n− 1, for the fiber

of M ′ → M∧
sk as follows. We put α = 1/(Dn −D1Zn) and observe that the map

(x0, xa) 7→ (w0, wA) =
(

x0, α((ZnDa − ZaDn)xa − ZnC̃), xa, α(C̃ − (Da −D1Za)xa)
)

,

(3.31)

is an affine isomorphism from Cn−1 onto the affine subspace E ⊂ Cn+1 defined by DAwA =

C̃ and ZAwA = 0. Therefore, it induces a biholomorphic map from an open subset of

Cn−1 onto M ′
p = Np/A ∼= E ∩ Np. On the complex hypersurface H := E ∩ Np ⊂ Np

(defined by ZAwA = 0) we have

ZAdwA = 0 , DAdwA = 0 .

From this one computes

g(k, ·)|H = g̃fib(k, ·)|H = 0 ,
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and therefore concludes that the projection Np → M ′
p restricts to a biholomorphic isome-

try H → M ′
p. Using this isomorphism, the metric hfib of M ′

p is identified with the metric

gH = g|H = gfib|H of the hypersurface H ⊂ Np, which is

gH =1
4
e4φ|dx0 − 2 i(Ñ b

0 + (Rex)aÑ
ab
1 + (Im x)aÑ

ab
2 )dxb|

2 − 1
2
e2φdx̄aÑ

abdxb ,

where

Ñab =N−1 ab + ᾱ(Z̄nD̄a − Z̄aD̄n)N−1 1b + αN−1 a1(ZnDb − ZbDn)

+ |α|2(Z̄nD̄a − Z̄aD̄n)N−1 11(ZnDb − ZbDn)− ᾱ(D̄a − D̄1Z̄a)N−1nb

− αN−1 an(Db −D1Zb) + |α|2(D̄a − D̄1Z̄a)N−1nn(Db −D1Zb)

− |α|2(Z̄nD̄a − Z̄aD̄n)N−1 1n(Db −D1Zb)

− |α|2(D̄a − D̄1Z̄a)N−1n1(ZnDb − ZbDn)

is Hermitian and negative definite and the other coefficients are given by

Ña
0 =Im(αC̃)

(

(N−1na − ZnN−1 1a) + α(N−1n1 − ZnN−1 11)(ZnDa − ZaDn)

+ α(N−1 1n −N−1nn)(Da −D1Za)
)

Ñab
1 =Im(α(ZnDa − ZaDn))(N−1 1b + αN−1 11(ZnDb − ZbDn)− αN−1 1n(Db −D1Zb))

− Im(α(Da −D1Za))(N−1nb + αN−1n1(ZnDb − ZbDn)− αN−1nn(Db −D1Zb))

Ñab
2 =Re(α(ZnDa − ZaDn))(N−1 1b + αN−1 11(ZnDb − ZbDn)− αN−1 1n(Db −D1Zb))

+ (N−1 ab + αN−1 a1(ZnDb − ZbDn)− αN−1 an(Db −D1Zb))

− Re(α(Da −D1Za))(N−1nb + αN−1n1(ZnDb − ZbDn)− αN−1nn(Db −D1Zb)) .

By a linear change of holomorphic coordinates we can assume that Ñab = −δab. Finally,

by changing the coordinate x0 into x0 − 2iÑa
0 xa − 2ixaÑ

ab
1 xb we obtain the form

gH =1
4
e4φ|dx0 − 2 i((Im x)aM

ab)dxb|
2 + 1

2
e2φdx̄aδ

abdxb ,

where Mab = Ñab
2 − iÑab

1 = Ñab = −δab. Note that this metric has the same form as the

fiber of M → Msk, which we already know has constant holomorphic sectional curvature.

To compare the metrics it suffices to put NAB = −ηAB (the Minkowski scalar product)

and (ZA) = (1, 0, · · · , 0) in (3.30), which yields

gfib =1
4
e4φ|dw0 − 2 i((Imw)Aη

AB)dwB|
2 + 1

2
e2φdw̄Aδ

ABdwB .

Changing the coordinate w1 to w̄1 brings this metric to the more standard form (3.27),

but in n+ 1 instead of n− 1 complex dimensions.

Remark: The above proof shows that the quotient Kähler manifold M ′ can be described

as follows. As a smooth manifold,

M ′ = M∧
sk ×G′,
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where G′ is the Iwasawa subgroup of SU(1, n− 1). The Kähler structure (JM ′, gM ′) of M ′

is of the form

JM ′ = JM∧

sk
+ J ′, gM ′ = gM∧

sk
+ g′,

where (J ′(p), g′(p))p∈M∧

sk
is a family of left-invariant Kähler structures on G′ such that

(G′, J ′(p), g′(p)) is isomorphic to CHn−1 with its standard Kähler structure for all p.

Applying Theorem 2 of [CMX], this shows, in particular, that M ′ is complete if the

submanifold M∧
sk ⊂ Msk is complete.

We shall now consider some explicit examples of the new quotient construction applied

to quaternionic Kähler manifolds in the image of the c-map.

3.2.1 Quadratic prepotential

Let us first analyze the case of a quadratic prepotential F , i.e. F (Z1, . . . , Zn) is a quadratic

polynomial such that the real symmetric matrix NAB = ImFAB is of signature (1, n −

1). The corresponding 4n-dimensional quaternionic Kähler manifold is the Hermitian

symmetric space

M =
U(2, n)

U(2)× U(n)
.

Proposition 7 In the case of quadratic prepotential, the holomorphic submersion π :

M → Msk = Hn−1
C

of Proposition 2 is a trivial holomorphic fiber bundle and (M,J3) is

biholomorphic to Hn−1
C

× F (n+ 1).

Proof: Since FAB is constant, the fiber preserving open embedding Ψ : M → Msk ×Cn+1

defined in (3.11) is a biholomorphic isomorphism onto its image Msk × F (n+ 1).

In this case, the first condition in (3.18) is automatically satisfied at every point of

M as soon as it is satisfied at one point. Hence, N is of dimension 4n − 2 and M ′ is of

dimension 4n− 4.

Proposition 8 In the case of quadratic prepotential, the holomorphic submersion πN :

N → M∧
sk = Msk of Proposition 5 is a trivial holomorphic fiber bundle and the complex

submanifold N ⊂ (M,J3) is biholomorphic to Msk×C×F ′(n−1) = Hn−1
C

×C×F ′(n−1),

for any choice of null vector (DA) ∈ C1,n−1 and any C̃ ∈ C.

Proof: Since NAB is now constant, it follows immediately from the proof of Proposition

5 that the submanifold N ⊂ M ∼= Msk × Cn+1 is biholomorphic to Msk × C× F ′(n− 1).
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Theorem 7 The Kähler manifolds M ′ obtained from the quotient construction of Corol-

lary 1 applied to the quaternionic Kähler manifold M = U(2,n)
U(2)×U(n)

are isomorphic to

Hn−1
C

×Hn−1
C

,

for any choice of null vector (DA) ∈ C1,n−1 and any C̃ ∈ C.

Proof: The holomorphic submersion M ′ → M∧
sk of Theorem 6 is, in this case, a trivial

holomorphic fiber bundle overM∧
sk = Msk = Hn−1

C
. This follows from the proof of Theorem

6, since the constructions are now independent of p ∈ Msk. For the same reason, the metric

is the product of the metric on the base and the metric on the fiber.

3.2.2 Cubic prepotential

Now let us turn to the case of a cubic prepotential, i.e.

F = 1
6
dijk

Z iZjZk

Z0
, (3.32)

where the lower case indices run from 1 to n − 1. Note that, from now on, the special

coordinates ZI run from Z0 to Zn−1. Putting zi = Z i/Z0, the first equation in (3.18)

turns into

CI =

(

dijk(
1
3
D0zi − 1

2
Di)zjzk

−dijk(
1
2
D0zj −Dj)zk

)

, (3.33)

which defines a Kähler submanifoldM∧
sk ofMsk under our general assumptions on the rank

of the matrix (3.16), see the remark on page 16. By means of the coordinates z1, . . . , zn−1

we will identify Msk with an open subset of Cn−1.

Proposition 9 Let z0 ∈ Msk ⊂ Cn−1 be a solution of the equation (3.33) and U ⊂ Msk

an open neighborhood of z0. Suppose that the rank of the matrix

mij := dijk(D
k −D0zk) (3.34)

is constant on U . Then M∧
sk ⊂ Msk is a complex submanifold of complex codimension

r = rk(mij). (More generally, it suffices to assume that the rank of (mij) is constant on

a complex submanifold containing the algebraic subset of U ⊂ Cn−1 defined by (3.33).)

Proof: The Jacobi matrix of the map z 7→ DJFIJ |Z=(1,z) is given by

(

−mjkz
k

mij

)

. (3.35)
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Since the first row is a linear combination of the other rows, the rank of that matrix

coincides with the rank of (mij).

Remark: Note that, as in the case of general prepotential, given a null vector (DI) at

Z = (1, z) ∈ Mask we can define (CI) such that (3.33) holds at z. Therefore, we can

always assume that M∧
sk 6= ∅. For generic (dijk), (D

I) and z the rank of mij is maximal

and so dimM∧
sk = 0. Let us also keep in mind the trivial fact that for any z0 = (zi0) ∈ Msk

there is always a nonzero vector (DI) which satisfies (3.15) at Z0 = (1, z0). The set

of all such vectors (the null cone without its origin) is a C∗-invariant real hypersurface

of TZ0
Mask = Cn. Finally, let us point out that the constant vector (DI) defining the

submanifold M∧
sk is a null vector not only at Z0 but at any point Z of M∧

ask, since

D̄INIJ(Z)D
J =

1

2i
(D̄ICI −DIC̄I) = D̄INIJ(Z0)D

J = 0 .

The following proposition can be used in explicit examples to obtain an upper bound

on the dimension of M∧
sk, which is defined by (3.33).

Proposition 10 Let z0 be any point of M∧
sk. A necessary condition for a vector α =

αi∂zi ∈ Tz0Msk to be tangent to M∧
sk is to satisfy the following equations:

dijk(D
j −D0zj0)α

k = 0 (3.36)

and

dijkα
iαjαk = 0 . (3.37)

Proof: Consider a complex analytic curve τ 7→ z(τ) = (zi(τ)) in M∧
sk through z0 = (zi0):

zi(τ) = zi0 + ταi + τ 2βi + τ 3γi + . . . .

Then the last n− 1 equations of (3.33) are satisfied up to cubic order in τ if and only if:

0 = dijk(D
j −D0zj0)α

k = 0 , (3.38)

0 = dijk(D
j −D0zj0)β

k − 1
2
D0dijkα

jαk and (3.39)

0 = dijk(D
j −D0zj0)γ

k −D0dijkα
jβk . (3.40)

The first equation already gives (3.36). Considering the τ 3-component of the first equation

of (3.33) we also obtain

−dijkz
i
0(D

j −D0zj0)γ
k + (2D0zi0 −Di)dijkα

jβk + 1
3
D0dijkα

iαjαk = 0 . (3.41)

Inserting (3.39)–(3.40) into (3.41), we find

dijkα
iαjαk = 0 .
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Remark: Note that one can always find DI s.t.

dijk(D
j −D0zj0)α

k = 0

is not fulfilled for any α 6= 0. On the other hand, depending on the particular form of

dijk, one can adjust DI in order to obtain examples for which dimN is large. We will

discuss such examples in the remainder of this paper.

A low-dimensional example

We shall now see that a simple low-dimensional example with a one-dimensional man-

ifold M∧
sk is provided by the STU model with two coordinates fixed. The corresponding

quaternionic Kähler manifold is the symmetric space

M =
SO0(4, 4)

SO(4)× SO(4)
,

which is the c-map image of the special Kähler manifold

Msk =

(

SU(1, 1)

U(1)

)3

.

Choosing appropriate inhomogeneous coordinates z = (z1 = S, z2 = T, z3 = U), the

prepotential (3.32) is determined by

F (z0 = 1, z) = STU .

The equation (3.33) defining the submanifold M∧
sk ⊂ Msk now reads

2D0STU −DSTU −DTSU −DUST = C0 , (3.42)

(D0T −DT )(D0U −DU) = DTDU −D0CS , (3.43)

(D0S −DS)(D0U −DU) = DSDU −D0CT , (3.44)

(D0S −DS)(D0T −DT ) = DSDT −D0CU , (3.45)

where (DS, DT , DU) = (D1, D2, D3) and we are assuming that D0 6= 0. From the last

three equations we already see that two of the three coordinates, say S and T , must be

fixed to the values 〈S〉 := DS

D0 and 〈T 〉 := DT

D0 in order to keep the third coordinate, here U ,

free. Note that this is not possible for arbitrary choices ofDS andDT since the coordinates

have to satisfy
∑3

I,J=0NIJz
I z̄J > 0. Therefore, we will assume that (1, 〈S〉, 〈T 〉) can be

extended to a vector (1, 〈S〉, 〈T 〉, 〈U〉) spanning a complex line which is positive definite

with respect to the pseudo-Hermitian metric (NIJ). We will call such vectors time-like.

One can check that all the above equations are solved for

CS = DU〈T 〉 , CT = DU〈S〉 , CU = D0〈S〉〈T 〉 , C0 = −DU〈S〉〈T 〉 ,
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with U remaining arbitrary. Therefore, the coordinate U parameterises M∧
sk. It is straight-

forward to check that for any choice of D0 6= 0, DS and DT as above, the null condition

(3.15) can be satisfied by appropriately choosing DU . This ensures D0U−DU 6= 0 on M∧
sk.

The latter inequality implies that the matrix (mij) of Proposition 9 has rank two, which

again proves that M∧
sk ⊂ Msk is a one-dimensional complex submanifold. The resulting

Kähler manifold M ′ has complex dimension 4.

We can also consider the quantum STU model, where the prepotential is given by

F (1, z) = STU + 1
3
T 3 ,

and the corresponding 6-dimensional special Kähler manifold Msk admits a 4-dimensional

group of automorphisms, which acts freely on Msk, as follows from [CMX], Example 3 in

Section 4.2.

Again we can try to fix the values of one or two of the variables and use the remaining

ones as parameters. In this case, Proposition 10 immediately implies that T cannot belong

to the remaining parameters. Comparing with the equations (3.42)–(3.45) for the STU

model, we see that only the conditions (3.42) and (3.44) are modified by the extra term

in the prepotential. The new version of (3.44) reads

(D0S −DS)(D0U −DU) + (D0T −DT )2 = DSDU + (DT )2 −D0CT ,

which together with (3.43) and (3.45) implies that T must be fixed to some value 〈T 〉. If

〈T 〉 = DT

D0 , then also S = 〈S〉 = DS

D0 and we come back to the solution for the STU model,

now with

CS = DU〈T 〉 , CT = DU〈S〉+DT 〈T 〉 ,

CU = D0〈S〉〈T 〉 , C0 = −DU〈S〉〈T 〉 − 1
3
DT 〈T 〉2 .

Again, U parameterises M∧
sk and we find again a 4-dimensional Kähler manifold M ′ as

in the STU model. If the constant 〈T 〉 is chosen to be real, then the term 1
3
T 3 in the

prepotential will not contribute to the metric of M ′ and so we get the same Kähler metric

as for the unperturbed STU model. Otherwise, the metric will change by a conformal

factor of the form e−2K0

e−2K = ( e−K0

e−K0+c
)2, where c = 8

3
(Im〈T 〉)3 and K0 is the Kähler potential

of the unperturbed STU model.

High-dimensional examples

We can construct examples M∧
sk with high dimension by extending the example above

to the manifold

M =
SO0(4, n)

SO(4)× SO(n)
, n ≥ 4 , (3.46)
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which is the c-map image of

Msk = ST [2, n− 2] :=
SU(1, 1)

U(1)
×

SO0(2, n− 2)

SO(2)× SO(n− 2)
.

The latter has complex dimension n − 1. By appropriately choosing inhomogeneous

coordinates the prepotential becomes

F (1, z) = STU + Syℓymδℓm , (3.47)

where now z = (S, T, U, y), y = (yℓ) and ℓ,m = 1, . . . , n−4. For this prepotential we find

from (3.33)

D0C0 =D0(D0S −DS)TU +D0S(D0T −DT )U −D0DUST − SDℓδℓmD
m

+D0(D0S −DS)yℓδℓmy
m + S(D0yℓ −Dℓ)δℓm(D

0ym −Dm) , (3.48)

D0CS =DℓδℓmD
m +DTDU − (D0T −DT )(D0U −DU)

− (D0yℓ −Dℓ)δℓm(D
0ym −Dm) , (3.49)

D0CT =− (D0S −DS)(D0U −DU) +DSDU , (3.50)

D0CU =− (D0S −DS)(D0T −DT ) +DSDT , (3.51)

D0Cℓ =− 2(D0S −DS)δℓm(D
0ym −Dm) + 2DSδℓmD

m . (3.52)

From the n = 4 example we expect that at least two directions should be fixed to a

constant. Indeed, we have to at least fix S to the value 〈S〉 = DS

D0 in order to solve the

equations (3.50)-(3.52). From (3.49) we then get an additional quadratic equation in the

remaining coordinates that can be solved by choosing

T =
DT

D0
−

δℓm(D
0yℓ − 2Dℓ)ym

D0U −DU

and (DU , Dℓ) as usual such that (3.15) holds at some base point Z0 = (1, z0) and D0U −

DU 6= 0 on Msk (one may have to replace Msk by a neighborhood of z0 for the latter).

The solution for CI is given by

CS =
DTDU

D0
, CT = DU〈S〉 , CU = 〈S〉DT ,

Cℓ = 2〈S〉δℓmD
m , C0 = −

DTDU

D0
〈S〉 .

Hence, the dimension of M∧
sk is 2(n − 3). The manifold M ′ therefore has dimension

4(n − 2), which is eight smaller than the dimension of M . Note that the dimension

of the submanifold M∧
sk ⊂ Msk is only so high because we are fixing the direction S,

which appears in both parts of the direct product manifold Msk, i.e. in both terms in

(3.47). This is already suggested by Proposition 10, which implies that in each monomial
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of
∑n−1

i=1 dijkz
izjzk at least one variable must be fixed. Also, it is known that the only

special Kähler manifolds which are decomposable as a product are the symmetric spaces

ST [2, ℓ], ℓ ≥ 1, [FVP]. The next step is to study special Kähler manifolds that are not

symmetric and, hence, are not decomposable.

Examples of homogeneous manifolds

Let us now discuss the case of a homogeneous quaternionic manifold of negative scalar

curvature that is not necessarily symmetric. These manifolds have been classified (under

certain assumptions) in [A, Ce, dWV, C]. One simple class is the one that is in the image

of the c ◦ r map8 of the hyperbolic spaces

Hn−2
R

=
SO0(n− 2, 1)

SO(n− 2)
, n ≥ 3 ,

which is defined by the holomorphic prepotential

F (1, z) = S(ST − xℓδℓmx
m) ,

where z = (S, T, x), x = (xℓ) and the indices ℓ,m run from 1 to n − 3. Thus, the

corresponding special Kähler manifold Msk is still of complex dimension n − 1. It is

known that the corresponding quaternionic Kähler manifold M can be presented as a

solvable Lie group T(p), p = n − 3, of rank 3 with a left invariant quaternionic Kähler

structure [C]. The only symmetric space in this series is T(0) = SO0(3,4)
SO(3)×SO(4)

. We will

consider the case p ≥ 1.

Inserting this prepotential into (3.33) gives

C0 =2(D0S −DS)ST −DTS2 − S(D0xℓ − 2Dℓ)δℓmx
m − (D0S −DS)xℓδℓmx

m , (3.53)

CS =− (D0S − 2DS)T − (D0T − 2DT )S + (D0xℓ − 2Dℓ)δℓmx
m , (3.54)

CT =− (D0S − 2DS)S , (3.55)

Cℓ =(D0S − 2DS)δℓmx
m + δℓm(D

0xm − 2Dm)S . (3.56)

From (3.55) we see that S is always fixed, i.e. locally constant on M∧
sk. If S is fixed to

some value 〈S〉 such that D0〈S〉 −DS 6= 0 one can conclude from (3.56) and (3.54) that

T and xm are also fixed. If D0〈S〉 −DS = 0, we find that (3.56) does not fix any further

coordinates but only determines the value of Cℓ. In contrast, (3.54) reads

DℓδℓmD
m +D0CS − 2D0DT 〈S〉 = (D0xℓ −Dℓ)δℓm(D

0xm −Dm) ,

which is a quadratic equation and fixes one of the complex degrees of freedom (which we

will simply call moduli). Therefore, the minimal number of fixed moduli is two in the

8The r-map is a construction of special Kähler manifolds, which was introduced by de Wit and Van
Proeyen in [dWV]. See [CMX] for a recent discussion of some of its mathematical properties.
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base space and two in the fiber. Now let us turn to the cubic equation (3.53). By using

D0〈S〉 −DS = 0, we can write it as

D0C0 +D0DT 〈S〉2 + 〈S〉DℓδℓmD
m = 〈S〉(D0xℓ −Dℓ)δℓm(D

0xm −Dm) ,

which reduces to the above quadratic equation if C0 is chosen properly. This shows that

we can construct examples such that the final Kähler manifold M ′ has complex dimension

2n− 4.

Now let us turn to a second series of homogeneous quaternionic Kähler manifolds

W(p, q), which is a generalization of (3.46) and has the prepotential

F (1, z) = F (1, S, T, U, x, y) = STU + Syℓδℓmy
m + Txaδabx

b ,

where x = (xℓ) ∈ Rp, y = (ya) ∈ Rq. The Alekseevsky spaces W(p, q) are of dimension

4n = 4(p + q + 4) and are symmetric only if p = 0 or q = 0. We will consider the case

p, q ≥ 1. The equation (3.33) now reads

D0C0 =D0(D0S −DS)TU +D0S(D0T −DT )U −D0DUST − SDℓδℓmD
m

+D0(D0S −DS)yℓδℓmy
m + S(D0yℓ −Dℓ)δℓm(D

0ym −Dm)

+D0(D0T −DT )xaδabx
b + T (D0xa −Da)δab(D

0xb −Db)− TDaδabD
b , (3.57)

D0CS =DℓδℓmD
m +DTDU − (D0T −DT )(D0U −DU)

− (D0yℓ −Dℓ)δℓm(D
0ym −Dm) , (3.58)

D0CT =DaδabD
b +DSDU − (D0S −DS)(D0U −DU)

− (D0xa −Da)δab(D
0xb −Db) , (3.59)

D0CU =− (D0S −DS)(D0T −DT ) +DSDT , (3.60)

D0Cℓ =− 2(D0S −DS)δℓm(D
0ym −Dm) + 2DSδℓmD

m , (3.61)

D0Ca =− 2(D0T −DT )δab(D
0xb −Db) + 2DT δabD

b . (3.62)

We see from (3.61) that the ym can only be free if S is fixed to the value 〈S〉 = DS

D0 .

However, from (3.59) we see that then the xa must fulfill a quadratic equation. Similarly,

if one does not want to fix all the moduli xa, one must fix 〈T 〉 = DT

D0 , cf. (3.62), and (3.58)

gives one quadratic equation for the yℓ.9 Let us now turn to the cubic equation (3.57).

We see that for 〈S〉 = DS

D0 and 〈T 〉 = DT

D0 , this equation reduces to the quadratic equations

encountered before, giving no new constraint on the remaining moduli. Therefore, four

moduli in the base space are fixed, which together with the two fiber directions make six

9Note that the alternative of fixing e.g. the yℓ to yℓ = Dℓ

D0 reduces the set of equations to those for
the case (3.46), with the same set of solutions. In that case only the fiber dimension differs from the M ′

obtained for (3.46).
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fixed moduli. The dimension of the resulting Kähler manifold M ′ is thus eight smaller

than that of the quaternionic manifold M .

General homogeneous manifolds

Finally, let us discuss the case of a general homogeneous space with cubic prepoten-

tial.10 The prepotential for the general cubic case is given by [dWV]

F = h1[(h2)2 − hµδµνh
ν ]− h2hℓδℓmh

m + hµγµℓmh
ℓhm .

Here, the index µ labels q + 1 fields while ℓ labels r fields that form representations of

the (q + 1)-dimensional Clifford algebra. Accordingly, the matrices γµ fulfill the Clifford

algebra. The special Kähler base ofM is therefore parameterised 3+q+r complex scalars.

Thus the dimension of M is 4(4 + q + r).

The analysis of possible dimensions of the Kähler quotient M ′ is done analogously to

the examples discussed above. Inserting the above prepotential into (3.33), one finds

D0C0 =2D0h1h2(D0h2 −D2)−D0D1((h2)2 − hµδµνh
ν)− 2D0h1hµδµν(D

0hν −Dν)

−D0(D0h2 −D2)hℓδℓmh
m − h2(D0hℓ −Dℓ)δℓm(D

0hm −Dm)

+D0γµℓm(D
0hµ −Dµ)hℓhm + γµℓmh

µ(D0hℓ −Dℓ)(D0hm −Dm)

+ h2DℓδℓmD
m − hµγµℓmD

ℓDm , (3.63)

D0C1 =(D2)2 −DµδµνD
ν − (D0h2 −D2)2 + (D0hµ −Dµ)δµν(D

0hν −Dν) , (3.64)

D0C2 =2D1D2 −DℓδℓmD
m − 2(D0h1 −D1)(D0h2 −D2)

+ (D0xℓ −Dℓ)δℓm(D
0xm −Dm) , (3.65)

D0Cµ =γµℓmD
ℓ2Dm − 2D1δµνD

ν + 2(D0h1 −D1)δµν(D
0hν −Dν)

− (D0hℓ −Dℓ)γµℓm(D
0hm −Dm) , (3.66)

D0Cℓ =2[(D0h2 −D2)δℓm − (D0hµ −Dµ)γµℓm](D
0hm −Dm)

− 2D2δℓmD
m + 2DµγµℓmD

m . (3.67)

From (3.67) we see that the only hℓ that can stay massless are those in the kernel of the

matrix

Mℓm(h
2, hµ) = [(D0h2 −D2)δℓm + (D0hµ −Dµ)γµℓm] .

On the other hand, a direction in the (h2, hµ)-plane can only remain unfixed ifD0hℓ−Dℓ =

0 holds for at least some of the scalars hℓ. In general, the minimal set of fixed scalars

consists of just (h2, hµ). If we fix these scalars to 〈h2〉 = D2

D0 and 〈hµ〉 = Dµ

D0 , then (3.64)

and (3.67) are fulfilled for all values of the hℓ. Furthermore, we find q + 1 quadratic

equations for the hℓ from (3.65) and (3.66), which also solve (3.63). In total, this gives

10The case of a quadratic prepotential has been discussed above.
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2q+2 fixed (complex) directions, leading to a Kähler quotient M ′ of (complex) dimension

2r + 4.11

4 Kähler quotients and spontaneous partial super-

symmetry breaking

The construction of the Kähler quotient of quaternionic-Kähler manifolds presented in

Section 2 first arose in the physics literature in the derivation of the low-energy effective

action of spontaneous N = 2 to N = 1 supersymmetry breaking in supergravity [L, LST1,

LST2]. Let us close this paper by linking the mathematical analysis of the previous

sections to the physical perspective of refs. [L, LST1, LST2].

The spectrum of N = 2 supergravity includes the gravitational multiplet together with

nv vector- and nh hypermultiplets. Each hypermultiplet contains four real scalars which

together span a 4nh-dimensional field space M that is constrained by N = 2 supersymme-

try to be quaternionic-Kähler. A necessary condition for a maximally-symmetric solution

of the N = 2 supergravity field equations to preserve only N = 1 supersymmetry is that

two isometries of the quaternionic-Kähler manifold are gauged [FGP, LST1]. The Higgs

mechanism then makes the corresponding two vector fields massive, with the charged

scalars providing the longitudinal degrees of freedom. Consistency with N = 1 supersym-

metry demands that these isometries satisfy the assumed properties of Theorem 5.

In order to derive an effective action valid below the scale of supersymmetry breaking

m3/2 one needs to integrate out all fields with masses of order m3/2. Integrating out

massive scalar fields corresponds to taking a submanifold N ⊂ M , while integrating out

the two massive vector fields corresponds to taking the quotient with respect to the two-

dimensional Abelian Lie group A generated by the two Killing vectors, as specified in

Theorem 1. The two charged scalars act as Goldstone bosons and are removed from the

scalar field space by the quotient construction described in Theorem 5. Consistency with

N = 1 supersymmetry implies that the resulting scalar field space M ′ = N/A should be

Kähler.

For generic quaternionic-Kähler manifolds M the precise identification of massive ver-

sus massless fields or, in other words the identification of the submanifold N , is difficult.

However, for the case of special quaternionic-Kähler manifolds, i.e. manifolds in the image

11Alternatively, one could choose to fix h1 and all hℓ, with one additional constraint coming from
(3.64), resulting in a Kähler quotient M ′ of complex dimension 4 + 2q + r. Depending on q and r, this
might be larger or smaller than 2r + 4. Since r must be a multiple of the dimension of the fundamental
representation of the q-dimensional Clifford algebra, generically r will be much larger than q. Note that
there is also the possibility of fixing some hℓ and some (h2, hµ), which we do not discuss any further here.
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of the c-map, N is determined by (3.18), which we repeat here for convenience:

DAFAB(Z) = CB , DA(bA − FABa
B) = C̃ . (4.1)

These equations give 2rF + 2 real conditions, where rF = rank(FABCD
C). From this one

can read off the dimension of the submanifold N to be 4nh − 2(rF + 1).

The dimension of the quotient M ′ is two less than that of the submanifold Nh. There-

fore, the specific dimensions of the quotient M ′
h is model-dependent and depends on the

number of hypermultiplet scalars which remain massless, i.e. on the dimension of N . The

maximal rank of FABCD
C is nh − 1 due to FABCX

A = 0, therefore for generic F and DA

the dimension of N is 2nh, cf. Proposition 3. In other words, generically all moduli in the

special Kähler base of the special quaternionic-Kähler manifold are fixed. However, only

two of the axionic scalars in the G-fiber are fixed. For special choices of the prepotential F

and fine-tuned DA one can increase the dimension of M ′, as discussed in detail in Section

3.

N = 2 gauged supergravities in four dimensions appear in the low-energy limit of

compactifications of string theory on Calabi-Yau and, more generally, SU(3) × SU(3)-

structure manifolds. In all these theories the quaternionic-Kähler manifold are of the

special form described in [CFG, FS]. In the limit of large volume the holomorphic pre-

potential simplifies to become cubic. In Section 3.2.2 we analysed a large class of special

quaternionic-Kähler manifolds with cubic prepotentials, including the examples of gen-

eral homogeneous manifolds classified in [dWV] and the inhomogeneous quantum STU

model. We found that it is possible to obtain both high- and low-dimensional moduli

spaces, with the latter being generic. From the perspective of string theory compactifi-

cations, the fact that we generically find low-dimensional moduli spaces is particularly

attractive as it suggests that moduli stabilisation can be easily implemented.
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