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Abstract

We propose a unified framework in which the different constructions of cohomology groups for topo-
logical and Lie groups can all be treated on equal footings. In particular, we show that the cohomology
of “locally continuous” cochains (respectively “locally smooth” in the case of Lie groups) fits into this
framework, which provides an easily accessible cocycle model for topological and Lie group cohomology.
We illustrate the use of this unified framework and the relation between the different models in various
applications. This includes the construction of cohomology classes characterizing the string group and a
direct connection to Lie algebra cohomology.
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Introduction

It is a common pattern in mathematics that things that are easy to define are hard to compute and things
that are hard to define come with lots of machinery to compute them1. On the other hand, mathematics can
be very enjoyable if these different definitions can be shown to yield isomorphic objects. In the present article
we want to promote such a perspective towards topological group cohomology, along with its specialization to
Lie group cohomology.

It has become clear in the last decade that concretely accessible cocycle models for cohomology theories
(understood in a broader sense) are as important as abstract constructions. Examples for this are differential
cohomology theories (cocycle models come for instance from (bundle) gerbes, an important concept in topo-
logical and conformal field theory), elliptic cohomology (where cocycle models are yet conjectural but have
nevertheless already been quite influential) and Chas-Sullivan’s string topology operations (which are subject
to certain very well behaved representing cocycles). This article describes an easily accessible cocycle model for
the more complicated to define cohomology theories of topological and Lie groups [Seg70, Wig73, Del74, Bry00].
The cocycle model is a seemingly obscure mixture of (abstract) group cohomology, added in a continuity con-
dition only around the identity. Its smooth analogue has been used in the context of Lie group cohomology
and its relation to Lie algebra cohomology [TW87, WX91, Nee02, Nee04, Nee06, Nee07], which is where our
original motivation stems from. The basic message will be that all the above concepts of topological and
Lie group cohomology coincide for finite-dimensional Lie groups and coefficients modeled on quasi-complete
locally convex spaces. Beyond finite-dimensional Lie groups the smooth and the continuous concepts begin to
diverge, but still all continuous concepts agree.

There is a näıve notion of topological group cohomology for a topological group G and a continuous
G-module A. It is the cohomology of the complex of continuous cochains with respect to the usual group
differential. This is what we call “globally continuous” group cohomology and denote it by Hn

glob,c(G,A). It

cannot encode the topology of G appropriately, for instance H2
glob,c(G,A) can only describe abelian extensions

which are topologically trivial bundles. However, in case G is contractible it will turn out that the more
elaborate cohomology groups from above coincide with Hn

glob,c(G,A). In this sense, the deviation from the
above cohomology groups from being the globally continuous ones measures the non-triviality of the topology of

1Quote taken from a lecture by Janko Latschev.
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G. On the other hand, the comparison betweenHn
glob,c(G,A) and the other cohomology groups for topologically

trivial coefficients A will give rise to a comparison theorem between the other cohomology groups. It is this
circle of ideas that the present article is about.

The paper is organized as follows. In the first section we review the construction and provide the basic facts
of what we call locally continuous group cohomology Hn

loc,c(G,A) (respectively the locally smooth cohomology
Hn

loc,s(G,A) for G a Lie group and A a smooth G-module). Since it will become important in the sequel
we highlight in particular that for loop contractible coefficients these cohomology groups coincide with the
globally continuous (respectively smooth) cohomology groups Hn

glob,c(G,A) (respectively Hn
glob,s(G,A)). In the

second section we then introduce what we call simplicial continuous cohomology Hn
simp,c(G,A) and construct

a comparison morphism Hn
simp,c(G,A)→ Hn

loc,c(G,A). The third section explains how simplicial cohomology

may be computed in a way similar to computing sheaf cohomology via Čech cohomology (the fact that this
gives indeed Hn

simp,c(G,A) will have to wait until the next section).
The first main point of this paper comes in Section IV, where we give the following axiomatic characteri-

zation of what we call a cohomology theory for topological groups.

Theorem (Comparison Theorem). Let G be a compactly generated topological group and let G-Mod be
the category of locally contractible G-modules. Then there exists, up to isomorphism, exactly one sequence
of functors (Hn : G-Mod → Ab)n∈N0

admitting natural long exact sequences for short exact sequences in
G-Mod such that

1. H0(A) = AG is the invariants functor

2. Hn(A) = Hn
glob,c(G,A) for contractible A.

There is one other way of defining cohomology groups Hn
SM(G,A) which it due to Segal and Mitchison [Seg70].

This construction will turn out to be the one which is best suited for establishing the Comparison Theorem.
However, we then show that under some mild assumptions (guaranteed for instance by the metrizability ofG) all
cohomology theories that we had so far (except the globally continuous) obey these axiomatics. The rest of the
section in then devoted to showing that almost all other concepts of cohomology theories for topological groups
also fit into this scheme. This includes the ones considered by Flach in [Fla08], the measurable cohomology
of Moore from [Moo76] and the mixture of measurable an locally continuous cohomology of Khedekar and
Rajan from [KR10]. The only exception that we know not fitting into this scheme is the continuous bounded
cohomology (see [Mon01, Mon06]), which differs from the above concepts by design.

The second main point comes with Section V, where we exploit the interplay between the different con-
structions. For instance, we construct cohomology classes that deserve to be named string classes, and we
construct topological crossed modules associated to third cohomology classes. Moreover, we show how to ex-
tract the purely topological information contained in an element in Hn

loc,c(G,A) by relating an explicit formula
for this with a structure map for the spectral sequence associated to Hn

simp,c(G,A). Furthermore, Hn
loc,s(G,A)

maps naturally to Lie algebra cohomology and we use the previous result to identify situations where this map
becomes an isomorphism. Almost none of the consequences mentioned here could be drawn from one model
on its own, so this demonstrates the strength of the unified framework.

In the last two sections, which are independent from the rest of the paper, we provide some details on the
constructions that we use.
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Conventions

Since we will be working in the two different regimes of compactly generated Hausdorff spaces and infinite-
dimensional Lie groups we have to choose the setting with some care.

Unless further specified, G will throughout be a group in the category CGHaus of compactly gener-
ated Hausdorff spaces (cf. [Whi78, Mac98] or [Hov99]) and A will be a locally contractible G-module in this
category2. This means that the multiplication (respectively action) map is continuous with respect to the
compactly generated topology on the product. Note that the topology on the product may be finer than the
product topology, so this may not be a topological group (respectively module) as defined below. To avoid
confusion, we denote the compactly generated product by X ×k Y (X×

n
k for the n-fold product) and the

compactly generated topology on C(X,Y ) by Ck(X,Y ) for X,Y in CGHaus.
If X and Y are arbitrary topological spaces, then we refer to the product topology by X ×p Y . With

a topological group (respectively topological module) we shall mean a group (respectively module) in this
category, i.e., the multiplication (respectively action) is continuous for the product topology.

Frequently we will assume, in addition, that G is a (possibly infinite dimensional) Lie group and that A
is a smooth G-module3. With this we mean that G is a group in the category Man of manifolds, modeled
modeled on locally convex vector spaces (see [Ham82, Mil84, Nee06] or [GN11] for the precise setting) and A
is a G-modules in this category. This means in particular that the multiplication (respectively action) map
is smooth for the product smooth structure. To avoid confusion we refer to the product in Man by X ×m Y
(and X×

n
m).

Note that we set things up in such a way that the smooth setting is a specialization of the topological
one, which is in turn a specialization of the compactly generated one. This is true since smooth maps are in
particular continuous and since the product topology is coarser than the compactly generated one. Note also
that all topological properties on G (except the existence of good covers) that we will assume are satisfied for
metrizable G and all smoothness properties are satisfied for metrizable and smoothly paracompact G. The
existence of good cover (as well as metrizability and smooth paracompactness) is in turn satisfied for large
classes of infinite-dimensional Lie groups like mapping groups or diffeomorphism groups [KM97, SW10].

We shall sometimes have to impose topological conditions on the topological spaces underlying G and A.
We will do so by leisurely adding the corresponding adjective. For instance, a contractible G-module A is a
G-module such that A is contractible as a topological space.

I Locally continuous and locally smooth cohomology

One of our main objectives will be the relation of locally continuous and locally smooth cohomology for
topological or Lie groups to other concepts of topological group cohomology. In this section, we recall the basic
notions and properties of locally continuous and locally smooth cohomology. These concepts already appear
in the work of Tuynman-Wiegerinck [TW87], of Weinstein-Xu [WX91] and have been popularized recently by
Neeb [Nee02, Nee04, Nee06, Nee07]. There has also appeared a slight variation of this by measurable locally
smooth cohomology in [KR10].

Definition I.1. For any pointed topological space (X,x) and abelian topological group A we set

Cloc(X,A) := {f : X → A | f is continuous on some neighborhood of x}.

If, moreover, X is a smooth manifold and A a Lie group, then we set

C∞loc(X,A) := {f : X → A | f is smooth on some neighborhood of x}.

With this we set Cnloc,c(G,A) := Cloc(G
×n

k , A), where we choose the identity in Gn as base-point. We call these

2From the beginning of Section IV we will also assume that A is locally contractible.
3This assumption seems to be quite restrictive for either side, but it is the natural playground on which homotopy theory and

(infinite-dimensional) Lie theory interacts.
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functions (by some abuse of language) locally continuous group cochains. The ordinary group differential

(dgp f)(g0, . . . , gn) = g0.f(g1, . . . , gn) +

+

n∑
j=1

(−1)jf(g0, . . . , gj−1gj , . . . , gn) + (−1)n+1f(g0, . . . , gn−1) (1)

turns (Cnloc,c(G,A), dgp) into a cochain complex. Its cohomology will be denoted by Hn
loc,c(G,A) and be called

the locally continuous group cohomology.
If G is a Lie group and A a smooth G-module, then we also consider the sub complex Cnloc,s(G,A) :=

C∞loc(G
×n

m , A) and call its cohomology Hn
loc,s(G,A) the locally smooth group cohomology.

These two concepts should not be confused with the continuous local cohomology (respectively the smooth
local cohomology) of G, which is given by the complex of germs of continuous (respectively smooth) A-valued
functions at the identity (which is isomorphic to the Lie algebra cohomology for a finite-dimensional Lie group
G, see Remark V.14). It is crucial that the cocycles in the locally continuous cohomology actually are extensions
of locally defined cocycles and this extension is extra information they come along with. Note for instance,
that not all locally defined homomorphisms of a topological groups extend to global homomorphisms and that
not all locally defined 2-cocycles extend to globally defined cocycles [Smi51a, Smi51b, Est62a, Est62b].

Remark I.2. (cf. [Nee04, App. E]) Let

A
α−→ B

β−→ C (2)

be a short exact sequence of G-modules in CGHaus, i.e., the underlying sequence of abstract abelian groups
is exact and β (or equivalently α) has a continuous local section. The latter is equivalent to demanding that
(2) is a locally trivial principal A-bundle. Then composition with α and β induces a sequence

Cnloc,c(G,A)
α∗−−→ Cnloc,c(G,B)

β∗−→ Cnloc,c(G,C), (3)

which we claim to be a short exact sequence of chain complexes. Injectivity of α∗ and im(α∗) ⊆ ker(β∗) is clear.
Since a local trivialization of the bundle induces a continuous left inverse to α on some neighborhood of ker(β),
we also have ker(β∗) ⊆ im(α∗). To see that β∗ is surjective, we choose a local continuous section σ : U → B
which we extend to a global (but not necessarily continuous) section σ : C → B. Thus if f ∈ Cnloc,c(G,C),
then σ ◦ f ∈ Cnloc,c(G,B) with β∗(σ ◦ f) = β ◦σ ◦ f = f and β∗ is surjective. Since (3) is exact, it induces a
long exact sequence

· · · → Hn−1
loc,c(G,C)→ Hn

loc,c(G,A)→ Hn
loc,c(G,B)→ Hn

loc,c(G,C)→ Hn+1
loc,c(G,A)→ · · · (4)

in the locally continuous cohomology.
If, in addition, G is a Lie group and (2) is a short exact sequence of smooth G-modules, i.e., a smooth

locally trivial principal A-bundle, then the same argument shows that α∗ and β∗ induce a long exact sequence

· · · → Hn−1
loc,s(G,C)→ Hn

loc,s(G,A)→ Hn
loc,s(G,B)→ Hn

loc,s(G,C)→ Hn+1
loc,s(G,A)→ · · ·

in the locally smooth cohomology.

Remark I.3. The low-dimensional cohomology groups H0
loc,c(G,A), H1

loc,c(G,A) and H2
loc,c(G,A) have the

usual interpretations. H0
loc,c(G,A) = AG are the G-invariants of A, H1

loc,c(G,A) (respectively H1
loc,s(G,A)) is

the group of equivalence classes of continuous (respectively smooth) crossed homomorphisms modulo principal
crossed homomorphisms. If G is connected, then H2

loc,c(G,A) (respectively H2
loc,s(G,A)) is the group of

equivalence classes of abelian extensions
A→ Ĝ→ G (5)

which are continuous (respectively smooth) locally trivial principal A-bundles over G [Nee04, Sect. 2].
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Remark I.4. The cohomology groups Hn
loc,c(G,A) and Hn

loc,s(G,A) are variations of the more näıve globally
continuous cohomology groups Hn

glob,c(G,A) and globally smooth cohomology groups Hn
glob,s(G,A), which are

the cohomology groups of the chain complexes

Cnglob,c(G,A) := C(G×
n
k , A) and Cnglob,s(G,A) := C∞(G×

n
m , A),

endowed with the differential (1). We obviously have

H0
loc,c(G,A) = H0

glob,c(G,A) and H0
loc,s(G,A) = H0

glob,s(G,A).

Since crossed homomorphisms are continuous (respectively smooth) if and only if they are so on some identity
neighborhood (see for example [Nee04, Lemma III.1]), we also have

H1
loc,c(G,A) = H1

glob,c(G,A) and H1
loc,s(G,A) = H1

glob,s(G,A).

Moreover, the argument from Remark I.2 also shows that we have a long exact sequence

· · · → Hn−1
glob,c(G,C)→ Hn

glob,c(G,A)→ Hn
glob,c(G,B)→ Hn

glob,c(G,C)→ Hn+1
glob,c(G,A)→ · · ·

if the exact sequence A
α−→ B

β−→ C has a global continuous section (and respectively for the globally smooth

cohomology if A
α−→ B

β−→ C has a global smooth section).
Now assume that A is contractible (respectively smoothly contractible) and that G is connected and

paracompact (respectively smoothly paracompact). In this case, the bundle (5) has a global continuous
(respectively smooth) section and thus the extension (5) has a representative in H2

glob,c(G,A) (respectively

H2
glob,s(G,A)), cf. [Nee04, Prop. 6.2]. Moreover, the argument in [Nee04, Prop. 6.2] also shows that two

extensions of the form (5) are in this case equivalent if and only if the representing globally continuous
(respectively smooth) cocycles differ by a globally continuous (respectively smooth) coboundary, and thus the
canonical homomorphisms

H2
glob,c(G,A)→ H2

loc,c(G,A) and H2
glob,s(G,A)→ H2

loc,s(G,A)

are isomorphisms in this case.

It will be crucial in the following that the latter observation also holds for a large class of contractible
coefficients in arbitrary dimension (and in the topological case also for not necessarily paracompact G). For
this, recall that A is called loop-contractible if there exists a contracting homotopy ρ : [0, 1] × A → A such
that ρt : A → A is a group homomorphism for each t ∈ [0, 1]. If A is a Lie group, then it is called smoothly
loop-contractible if ρ is, in addition, smooth. In particular, vector spaces are smoothly loop-contractible, but
in the topological case there exist more elaborate and important examples (see Section IV).

Proposition I.5. If A is loop-contractible, and the product topology on all Gn is compactly generated, then
the inclusion Cnglob,c(G,A) ↪→ Cnloc,c(G,A) induces an isomorphism Hn

glob,c(G,A) ∼= Hn
loc,c(G,A).

If G is a Lie group such that all G×
n
m are smoothly paracompact and A is a smooth G-module which

is smoothly loop-contractible, then Cnglob,s(G,A) ↪→ Cnloc,s(G,A) induces an isomorphism Hn
glob,s(G,A) ∼=

Hn
loc,s(G,A).

Proof. This is [FW11, Prop. III.6, Prop. IV.6].

In the case of discrete A we note that there is no difference between the locally continuous and locally
smooth cohomology groups. This is immediate since continuous and smooth maps into discrete spaces are
both the same thing as constant maps on connected components.

Lemma I.6. If G is a Lie group and A is a discrete G-module, then the inclusion Cnloc,s(G,A) ↪→ Cnloc,c(G,A)
induces an isomorphism in cohomology Hn

loc,s(G,A)→ Hn
loc,c(G,A).

In the finite-dimensional case, we also note that there is no difference between the locally continuous and
locally smooth cohomology groups.
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Proposition I.7. Let G be a finite-dimensional Lie group, a be a quasi-complete locally convex space4 on
which G acts smoothly, Γ ⊆ a be a discrete submodule and set A = a/Γ. Then the inclusion Cnloc,s(G,A) ↪→
Cnloc,c(G,A) induces an isomorphism Hn

loc,s(G,A) ∼= Hn
loc,c(G,A).

Proof. (cf. [FW11, Cor. V.3]) If Γ = {0}, then this is implied by Proposition I.5 and [HM62, Thm. 5.1].
The general case then follows from the previous lemma, the short exact sequence for the coefficient sequence
Γ→ a→ A and the Five Lemma.

Remark I.8. Proposition I.7 does not remain valid in infinite dimensions. In fact, the group of continuous
free loops G = C(S1,K) into a simple compact 1-connected Lie group K provides a counterexample. The
group G is a Banach Lie group in the compact-open topology modeled on its Lie algebra g = C(S1, k) where k
is the Lie algebra of K.

On the one hand, H2
loc,s(G,U(1)) vanishes. This is true, for instance, since its Lie algebra g has trivial

second continuous Lie algebra cohomology H2
Lie,c(g,R) [Mai02, Cor. 13, Thm. 16] and the sequence

Hom(π1(G), U(1))→ H2
loc,s(G,U(1))→ H2

Lie,c(g,R)

is exact [Nee02, Thm. 7.12]. Since π1(G) ∼= π2(K)⊕ π1(K) = 0 this shows that H2
loc,s(G,U(1)) vanishes.

On the other hand, the 2-connected space G〈2〉 (second step in the Whitehead tower) gives rise to a
non-trivial element in H2

loc,c(G,U(1)), since it may be realized as a central extension

U(1)→ G〈2〉 → G (6)

of topological groups which is a locally trivial principal U(1)-bundle. In order to verify this, we note that a
bundle U(1) → Q → G admits on Q the structure of a topological group turning it into a central extension
if and only if it is multiplicative, i.e., if pr∗2(Q) ⊗ m∗(Q) ⊗ pr∗1(Q) is trivial as a bundle on G × G [Gro72,
Prop. VII.1.3.5]. The inclusion C∞(S1,K) ↪→ G is a homotopy equivalence [Nee02, Remark A.3.8] and thus
the universal central extension of C∞(S1,K) gives rise to a multiplicative bundle U(1) → P → G, which
carries the structure of central extension of topological groups. Since π2(G) → π1(U(1)) is an isomorphism,
this cannot not be trivial, and thus H2

loc,c(G,U(1)) does not vanish. This phenomenon might be related to the
missing smooth paracompactness of G or to the lack of “automatic smoothness” in infinite dimensions (see for
example [Glö05]).

Remark I.9. For a topological group G and a topological G-module A there also exists a variation of the lo-
cally continuous group cohomology, which are the cohomology groups of the cochain complex (Cloc,c(G

×n
p , A), dgp)

(note the difference in the topology that we put on Gn). We denote this by Hn
loc,top(G,A). The same argument

as above yields long exact sequences from short exact sequences of topological G-modules that are locally triv-
ial principal bundles. Moreover, they coincide with the corresponding globally continuous cohomology groups
Hn

glob,top(G,A) of (C(G×
n
p , A), dgp) if A is loop contractible [FW11, Cor. II.8]. We will use these cohomology

groups very seldom.

II Simplicial group cohomology

The cohomology groups that we introduce in this section date back to [Wig73, Sect. 3] and have also been
worked with for instance in [Del74, Fri82, Bry00, Con03]. Since the simplicial cohomology groups are defined
in terms of sheaves on simplicial space, we first recall some facts about it. The material is largely taken from
[Del74, Fri82] and [Con03].

Definition II.1. Let X• : ∆op → Top be a simplicial space, i.e., a collection of topological spaces (Xk)k∈N0
,

together with continuous face maps maps dik : Xk → Xk−1 for i = 0, . . . , k and continuous degeneracy maps

4A locally convex space is said to be quasi-complete if each bounded Cauchy net converges.
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sik : Xk → Xk+1 for i = 0, . . . , k satisfying the simplicial identities

dik ◦ djk+1 = dj−1k ◦ dik+1 if i < j

dik+1 ◦ sjk = sj−1k−1 ◦ dik if i < j

dik+1 ◦ sjk = idXk
if i = j or i = j + 1

dik+1 ◦ sjk = sjk−1 ◦ di−1k if i > j + 1

sik+1 ◦ sjk = sj+1
k+1 ◦ sik if i ≤ j.

(cf. [GJ99]). Then a sheaf E• on X• consists of sheaves Ek of abelian groups on each space Xk and a collection
of morphisms Dk

i : dik
∗
Ek−1 → Ek (for k ≥ 1) and Ski : sik

∗
Ek+1 → Ek, obeying the simplicial identities

Dk
j ◦ djk

∗
Dk+1
i =Dk

i ◦ dik
∗
Dk+1
j−1 if i < j

Sk+1
j ◦ sjk+1

∗
Dk
i =Di

k+1 ◦ dik+1
∗
Sk+2
j−1 if i < j

Sk+1
j ◦ sjk+1

∗
Dk
i = idEk if i = j or i = j + 1

Sk+1
j ◦ sjk+1

∗
Dk
i =Di−1

k+1 ◦ di−1k+1

∗
Sjk if i > j + 1

Sk+1
j ◦ sjk

∗
Ski =Sk+1

i ◦ sik+1
∗
Skj+1 if i ≤ j.

A morphism of sheaves u : E• → F • consists of morphisms uk : Ek → F k compatible with Dk
i and Ski (cf.

[Del74, 5.1]).

Note that E• is not what one usually would call a simplicial sheaf since the latter usually refers to a sheaf
(on some arbitrary site) with values in simplicial sets or, equivalently, to a simplicial object in the category of
sheaves (again, on some arbitrary site). However, one can interpret sheaves on X• as sheaves on a certain site
[Del74, 5.1.8], [Con03, Def. 6.1].

Remark II.2. Sheaves on X• and their morphisms constitute a category Sh(X•). Since morphisms in Sh(X•)
consist of morphisms of sheaves on each Xk, Sh(X•) has naturally the structure of an abelian category (sums
of morphisms, kernels and cokernels are simply taken space-wise). Moreover, Sh(X•) has enough injectives,
since simplicial sheaves on sites do so [Mil80, Prop. II.1.1, 2nd proof], [Con03, p. 36].

Definition II.3. ([Del74, 5.1.13.1]) The section functor is the functor

Γ: Sh(X•)→ Ab, F • 7→ ker(D1
0 −D1

1),

where D1
i denotes the homomorphism of the groups of global sections Γ(E0) → Γ(E1), induced from the

morphisms of sheaves D1
i : di1

∗
E0 → E1.

Lemma II.4. The functor Γ is left exact.

Definition II.5. ([Del74, 5.2.2]) The cohomology groups Hn(X•, E
•) are the right derived functors of the

section functor Γ.

Since injective (or acyclic) resolutions in Sh(X•) are not easily dealt with (cf. [Con03, p. 36] or the explicit
construction in [Fri82, Prop. 2.2]), the groups Hn(X•, E

•) are notoriously hard to access. However, the
following proposition provides an important link to cohomology groups of the sheaves on each single space of
X•.

Proposition II.6. ([Del74, 5.2.3.2], [Fri82, Prop. 2.4]) If E• is a sheaf on X•, then there is a first quadrant
spectral sequence with

Ep,q1 = Hq
Sh(Xp, E

p)⇒ Hp+q(X•, E
•). (7)
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Remark II.7. We will need the crucial step from the proof of this proposition, so we repeat it here. It is the
fact that the spectral sequence arises from a double complex

F •2

...

Γ(F 0
2 )

d02 //

...

Γ(F 1
2 )

d12 //

...

Γ(F 2
2 ) · · ·

...

F •1 Γ(F 0
1 )

OO

d01 // Γ(F 1
1 )

OO

d11 // Γ(F 2
1 ) · · ·

OO

E• Γ(E0)

OO

d0 // Γ(E1)

OO

d1 // Γ(E2)

OO

· · ·

X0 X1 X2 · · ·

OO

OO

oo
oo
oo

oo
oo

//

OO

where each F •q is a sheaf on X•, E
q → F q• is an injective resolution in Sh(Xq) [Con03, Lemma 6.4] and dpq

is the alternating sum of morphisms induced from the Dp
i , respectively for each sheaf F •q . Now taking the

vertical differential first gives the above form of the E1-term of the spectral sequence.

Corollary II.8. If E• is a sheaf on X• such that each Ek is acyclic on Xk, then Hn(X•, E
•) is the cohomology

of the Moore complex of the cosimplicial group of sections of E•. More precisely, it is the cohomology of the
complex (Γ(Xk, E

k), d) with differential given by

dkγ =

k∑
i=0

(−1)iDk
i d
i
k

∗
(γ) for γ ∈ Γ(Xk, E

k).

Proof. The E1-term of the spectral sequence from the previous proposition is concentrated in the first column
due to the acyclicity of Ek and yields the described cochain complex.

Remark II.9. The simplicial space that we will work with is the classifying space5 BG•, associated to G. It is
given by setting BGn := G×

n
k for n ≥ 1 and BG0 = pt and the standard simplicial maps given by multiplying

adjacent elements (respectively dropping the outermost off) and inserting identities.
On BG• we consider the sheaf A•glob,c, given on BGn = Gn as the sheaf of continuous A-valued functions

AcGn . We turn this into a sheaf on BG• by introducing the following morphisms Dn
i and Sni . The structure

maps on BG• are in this case given by inclusions and projections. Indeed, the face maps factor through
projections

Gn

din

77

∼= // Gn−1×kG
pr

// Gn−1 .

Thus din
∗
AcGn(U) = C(din(U), A) and we may set

(Dn
i f)(g0, . . . , gn) =

{
f(din(g0, . . . , gn)) if i > 0

g0.f(g1, . . . , gn) if i = 0
.

Similarly,
sin
∗
AcGn+1(U) = lim−−→

V

C(V,A),

where V ranges through all open neighborhoods of sin(U), has a natural homomorphism Sni to AcGn(U) =
C(U,A), given by precomposition with sin.

If, in addition, G is a Lie group, then we also consider the slightly different simplicial space BG∞• with
BG∞n = G×

n
m and the same maps. If A is a smooth G-module, we obtain in the same way the sheaf A•glob,s

on BG∞• by considering on each BG∞n the sheaf AsGn of smooth A-valued functions (in order to make sense
out of the latter we have to consider BG∞• instead of BG•).

5The geometric realization of BG• yields a model for the (topological) classifying space of G [Seg68], whence the name.
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Definition II.10. The continuous simplicial group cohomology of G with coefficients in A is defined to be
Hn

simp,c(G,A) := Hn(BG•, A
•
glob,c). If G is a Lie group and A a smooth G-module, then the smooth simplicial

group cohomology of G with coefficients in A is defined to be Hn
simp,s(G,A) := Hn(BG∞• , A

•
glob,s).

Lemma II.11. If A
α−→ B

β−→ C is a short exact sequence of G-modules in CGHaus, then composition with
α and β induces a long exact sequence

· · · → Hn−1
simp,c(G,C)→ Hn

simp,c(G,A)→ Hn
simp,c(G,B)→ Hn

simp,c(G,C)→ Hn+1
simp,c(G,A)→ · · · .

If, moreover G is a Lie group and A
α−→ B

β−→ C is a short exact sequence of smooth G-modules, then α and β
induce a long exact sequence

· · · → Hn−1
simp,s(G,C)→ Hn

simp,s(G,A)→ Hn
simp,s(G,B)→ Hn

simp,s(G,C)→ Hn+1
simp,s(G,A)→ · · ·

Proof. Since kernels and cokernels of a sheaf E• are simply the kernels and cokernels of Ek, this follows from
the exactness of the sequences of sheaves of continuous functions Ac → Bc → Cc (and similarly for the smooth
case).

Proposition II.12. If G×
n
k is paracompact for each n ≥ 1 and A is contractible, then

Hn
simp,c(G,A) ∼= Hn

glob,c(G,A).

If, moreover, G is a Lie group, A is a smoothly contractible6 smooth G-module and if G×
n
m is smoothly

paracompact for each n ≥ 1, then
Hn

simp,s(G,A) ∼= Hn
glob,s(G,A).

Proof. In the case of contractible A the sheaves A are soft and thus acyclic on paracompact spaces [Bre97,
Thm. II.9.11]. The first claim thus follows from Corollary II.8. In the smooth case, the requirements are
necessary to have the softness of the sheaf of smooth A-valued functions on each Gk as well, since we then can
extend sections from closed subsets (cf. (8)) by making use of smooth partitions of unity.

Remark II.13. The requirement on G×
n
k to be paracompact for each n ≥ 1 is for instance fulfilled if G

is metrizable, since then G×
n
k = G×

n
p is so and metrizable spaces are paracompact. If G is, in addition, a

smoothly paracompact Lie group, then [KM97, Cor. 16.17] shows that G×
n
m is also smoothly paracompact.

However, metrizable topological groups are not the most general compactly generated topological groups
that can be of interest. Any G that is a CW-complex has the property that G×

n
k is a CW-complex and thus

is in particular paracompact.

We now introduce a second important sheaf on BG•.

Remark II.14. For an arbitrary pointed topological space (X,x) and an abelian topological group A, we

denote by Aloc,c
X the sheaf

U 7→
{
Cloc(U,A) if x ∈ U
Map(U,A) if x /∈ U

and call it the locally continuous sheaf on X. If X is a manifold and A an abelian Lie group, then we similarly
set

Aloc,s
X (U) =

{
C∞loc(U,A) if x ∈ U
Map(U,A) if x /∈ U.

Obviously, these sheaves have the sheaves of continuous functions A and of smooth functions As as sub sheaves.
As in Remark II.9, the sheaves Aloc,c

Gk assemble into a sheaf A•loc,c on BG•. Likewise, if G is a Lie group

and A is smooth, the sheaves Aloc,s
Gk assemble into a sheaf A•loc,s on BG∞• .

6By this we mean that there exists a contraction of A which is smooth as a map [0, 1]×m A→ A
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We learned the importance of the following fact from [SP09].

Proposition II.15. If X is regular, then Aloc,c
X and Aloc,s

X are soft sheaves. In particular, these both sheaves
are acyclic if X is paracompact.

Proof. In order to show that Aloc,c
X is soft we have to show that sections extend from closed subsets. Let

C ⊆ X be closed and
[f ] ∈ Aloc,c

X (C) = lim−−→
U

Aloc,c
X (U) (8)

be a section over C, where the limit runs over all open neighborhoods of C (cf. [Bre97, Th. II.9.5]). Thus [f ]
is represented by some f : U → A for U an open neighborhood of C. The argument now distinguishes the
relative position of the base point x which enters the definition of Aloc,c

X with respect to U .
If x ∈ U , then we may extend f arbitrarily to obtain a section on X which restricts to [f ]. If x /∈ U ,

then we choose V ⊆ X open with C ⊆ V and x /∈ V and define f̃ to coincide with f on U ∩ V and to vanish
elsewhere. This defines a section on X restricting to [f ]. This argument works for Aloc,s

X as well. Since soft
sheaves on paracompact spaces are acyclic [Bre97, Thm. II.9.11], this finishes the proof.

Together with Corollary II.8, this now implies

Corollary II.16. If G×
n
k is paracompact for all n ≥ 1, then

Hn(BG•, A
•
loc,c)

∼= Hn
loc,c(G,A). (9)

If G is a Lie group and G×
n
p is paracompact for all n ≥ 1, then

Hn(BG•, A
•
loc,s)

∼= Hn
loc,s(G,A).

Note that the second of the previous assertions does not require each G×
n
m to be smoothly paracompact,

plain paracompactness of the underlying topological space suffices.

Remark II.17. From the isomorphisms (9) we also obtain natural morphisms

Hn
simp,c(G,A)→ Hn

loc,c(G,A) and Hn
simp,s(G,A)→ Hn

loc,s(G,A),

induced from the morphisms of sheaves A•glob,c → A•loc,c and A•glob,s → A•loc,s on BG• and BG∞• .

III Čech cohomology

In this section, we will explain how to compute the cohomology groups introduced in the previous section in
terms of Čech cocycles. This will also serve as a first touching point to the locally continuous (respectively
smooth) cohomology from the first section in degree 2. The proof that all these cohomology theories are
isomorphic in all degrees (under some technical conditions) will have to wait until Section IV.

Definition III.1. Let X• be a semi-simplicial space, i.e., a collection of topological spaces (Xk)k∈N0 , together
with continuous face maps maps dik : Xk → Xk−1 for i = 0, . . . , k such that dik−1 ◦ djk = dj−1k−1 ◦ dik if i < j.
Then a semi-simplicial cover (or simply a cover) of X• is a semi-simplicial space U•, together with a morphism
f• : U• → X• of semi-simplicial spaces such that

Uk =
∐
j∈Jk

U jk

for (U jk)j∈Jk an open cover of Xk and fk|Uj
k

is the inclusion U jk ↪→ Xk. The cover is called good if each (U jk)j∈Jk

is a good cover, i.e., all intersections U j0k ∩ . . . ∩ U
jl
k are contractible.
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Remark III.2. It is easy to construct semi-simplicial covers from covers of the Xk. In particular, we can
construct good covers in the case that each Xk admits good cover, i.e., each cover has a refinement which is a
good cover. Indeed, given an arbitrary cover (U i)i∈I of X0, denote I by J0 and the cover by (U j0 )j∈J0 . We then

obtain a cover of X1 by pulling the cover (U j0 )j∈J0 back along d01, d11, d21 and take a common refinement (U j1 )j∈J1

of the three covers. By definition, J1 comes equipped with maps ε1,2,31 : J1 → J0 such that di1(U j1 ) ⊆ U
εi1(j)
0 .

We may thus define the face maps of

U1 :=
∐
j∈J1

U j1

to coincide with di1. In this way we then proceed to arbitrary k. In the case that each Xk admits good covers,
we may refine the cover on each Xk before constructing the cover on Xk+1 and thus obtain a good cover of
X•.

The previous construction can be made more canonical in the case that X• = BG• for a compact Lie group
G. In this case, there exists a bi-invariant metric on G, and we let r be the injectivity radius of the exponential
map at the identity (and thus at each g ∈ G). Then (Ug,r)g∈G is a good open cover of G, where Ug,r denotes
the open ball of radius r around g. Now the triangle inequality shows that Ug1,r/2 · Ug2,r/2 = Ug1g2,r, which
is obviously true for g1 = g2 = e and thus for arbitrary g1 and g2 by the bi-invariance of the metric. Thus
(Ug1,r/2 × Ug2,r/2)(g1,g2)∈G2 gives a cover of G2 compatible with the face maps di1 : G2 → G. Likewise,

(Ug1,r/2
k × . . .× Ugk,r/2k)(g1,...,gk)∈Gk

gives a cover of Gk compatible with the face maps dik : Gk → Gk−1. Since each cover of Gk consists of
geodesically convex open balls in the product metric, this consequently comprises a canonical good open cover
of BG•.

Definition III.3. Let U• be a cover of the semi-simplicial space X• and E• be a sheaf on X•
7. Then the

Čech complex associated to U• and E• is the double complex

Čp,q(U•, E•) :=
∏

i0,...,iq∈Ip

Ep(Ui0,...,iq ),

where we set, as usual, Ui0,...,iq := Ui0 ∩ . . . ∩ Uiq . The two differentials

dh :=

p∑
i=0

(−1)i+qDp
i ◦ dip

∗
: Čp,q(U•, E•)→ Čp+1,q(U•, E•) and dv := δ̌ : Čp,q(U•, E•)→ Čp,q+1(U•, E•)

turn Čp,q(U•, E•) into a double complex. We denote by Ȟn(U•, E•) the cohomology of the associated total
complex and call it the Čech Cohomology of E• with respect to U•.

Proposition III.4. Suppose G×
n
k is paracompact for each n ≥ 1 and that U• is a good cover of BG•

8. If

A
α−→ B

β−→ C is a short exact sequence of G-modules in CGHaus, then composition with α and β induces a
long exact sequence

· · · → Ȟn−1(U•, C•glob,c)→ Ȟn(U•, A•glob,c)→ Ȟn(U•, B•glob,c)→ Ȟn(U•, C•glob,c)→ Ȟn+1(U•, A•glob,c)→ · · · .

Moreover, for each sheaf E• on BG• there is a first quadrant spectral sequence with

Ep,q1
∼= Ȟq(G×

p
k , Ep)⇒ Ȟp+q(U•, E•).

In particular, if A is contractible, then

Ȟn(U•, A•glob,c) ∼= Hn
glob,c(G,A).

7Sheaves on semi-simplicial spaces are defined likewise by omitting the degeneracy morphisms.
8We may also interpret BG• as a semi-simplicial space by forgetting the degeneracy maps.
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Proof. Each short exact sequence A → B → C induces a short exact sequence of the associated double
complexes and thus a long exact sequence between the cohomologies of the total complexes. The columns of
the double complex Čp,q(U•, E•) are just the Čech complexes of the sheaf Ep on Gp for the open cover Up.
Since the latter is good by assumption, the cohomology of the columns is isomorphic to the Čech cohomology
of Gp with coefficients in the sheaf A.

If A is contractible, then the sheaf A is soft on each G×
n
k and thus acyclic. Hence the E1-term of the

spectral sequence is concentrated in the first column. Since E0,q
1 = C(Gq, A) and the horizontal differential is

just the standard group differential, this shows the claim.

Remark III.5. For a connected topological group G and a topological G-module A we will now explain how
to construct an isomorphism H2

loc,top(G,A) ∼= Ȟ2(U•, A•glob,c) in quite explicit terms (where U• now is a good

cover of the semi simplicial space (G×
n
p )n∈N0). To a cocycle f ∈ Cloc,c(G×pG,A) with dgp f = 0 we associate

the group A×f G with underlying set A×G and multiplication (a, g) ·(b, h) = (a+g.b+f(g, h), gh). Assuming
that U ⊆ G is such that f |U×U is continuous and V ⊆ U is an open identity neighborhood with V = V −1

and V 2 ⊆ U , there exists a unique topology on A ×f G such that A × V ↪→ A ×f G is an open embedding.
In particular, pr2 : A ×f G → G is a continuous homomorphism and x 7→ (0, x) defines a continuous section
thereof on V . Consequently, A×f G→ G is a continuous principal A-bundle.

The topological type of this principal bundle is classified by a Čech cocycle τ(f), which can be obtained
from the system of continuous sections

σg : gV → A×f G, x 7→ (0, g) · σ(g−1x) = (f(g, g−1x), x),

the associated trivializations A × gV 3 (a, x) 7→ σg(x) · (a, e) = (f(g, g−1x) + x.a, x) ∈ pr−12 (gV ) and is thus
given on the cover (gV )g∈G by

τ(f)g1,g2 : g1V ∩ g2V → A, x 7→ f(g2, g
−1
2 x)− f(g1, g

−1
1 x) = g1.f(g−11 g2, g

−1
2 x)− f(g1, g

−1
1 g2).

The multiplication µ : (A×f G)× (A×f G)→ A×f G may be expressed in terms of these local trivializations
(although it might not be a bundle map in the case of non-trivial coefficients). For this, we pull back the
cover (gV )g∈G via the multiplication to G × G and take a common refinement of this with the cover (gV ×
hV )(g,h)∈G×G, over which the bundle (A ×f G) × (A ×f G) → G × G trivializes. A direct verification shows
that (Vg,h)(g,h)∈g×G with

Vg,h := {(x, y) ∈ G×G : x ∈ gV, y ∈ hV, xy ∈ ghV }

and the obvious maps does the job. Expressing µ in terms of these local trivializations, we obtain the repre-
sentation

((a, x), (b, y)) 7→
(
(xy)−1.

[
f(g, g−1x) + a.x+ x.f(h, h−1y) + xy.b+ f(x, y)− f(gh, (gh)−1xy)

]
, xy
)

for (x, y) ∈ V(g,h). Since this is a continuous map A2 × V(g,h) → A× Vgh and since G acts continuously on A
it follows that

µ(f)g,h : Vg,h → A, (x, y) 7→ f(g, g−1x) + x.f(h, h−1y) + f(x, y)− f(gh, (gh)−1xy)

is indeed a continuous map. A straight forward computation with the definitions of dv, dh from Definition
III.3 and the definitions of Dk

i from Remark II.9 shows that dh(τ(f)) = dv(µ(f)) in this case. Moreover, the
cocycle identity for f shows that dh(µ(f)) = 0. Thus (µ(f), τ(v)) comprise a cocycle in the total complex of
Čp,q(U•, E•) if we extend (gV )g∈G and (Vg,h)(g,h∈G×G) to a cover of BG• as described in Remark III.2.

The reverse direction is more elementary. One associates to a cocycle (Φ, τ) in the total complex of
Čp,q(U•, E•) a principal bundle A → Pτ → G clutched from the Čech cocycle τ . Then Φ defines a map
Pτ × Pτ → Pτ (not necessarily a bundle map, if G acts non-trivially on A) whose continuity and associativity
may be checked directly in local coordinates. Thus Pτ → G is an abelian extension given by an element in
H2

loc,c(G,A). By making the appropriate choices, one sees that these constructions are inverse to each other
on the nose.
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IV The Comparison Theorem via soft modules

We now describe a method for deciding whether certain cohomology groups are the same. The usual, and
frequently used technique for this is to invoke Buchsbaum’s criterion [Buc55], which also runs under the name
universal δ-functor or “satellites” [CE56, Gro57, Wei94]. The point of this section is that a more natural
requirement on the various cohomology groups, which can often be checked right away for different definitions,
implies this criterion. The reader who is unfamiliar with these techniques might wish to consult the independent
Section VI before continuing.

In order to make the comparison accessible, we have to introduce yet another definition of cohomology
groups Hn

SM(G,A) for a G-module A in CGHaus due to Segal and Mitchison [Seg70]. We give some detail
on this in Section VII; for the moment it is only important to recall that A 7→ Hn

SM(G,A) is a δ-functor for
exact sequences of locally contractible G-modules that are principal bundles [Seg70, Prop. 2.3] and that for
contractible A, one has natural isomorphisms Hn

SM(G,A) ∼= Hn
glob,c(G,A) [Seg70, Prop. 3.1].

Remark IV.1. In what follows, we will consider a special kind of classifying space functor, introduced by
Segal in [Seg68]. The classifying space BG and the universal bundle EG are constructed by taking BG =
|BG•| (where | · | denotes geometric realization), and EG = |EG•|, where EG• denotes the simplicial space
obtained from the nerve of the pair groupoid of G. The resulting EG is contractible. The nice thing about
this construction of BG is that it is functorial and that the natural map E(G×kG) → EG×k EG is a
homeomorphism. In particular, EG and BG are again abelian groups in CGHaus provided that G is so.

Definition IV.2. (cf. [Seg70]) On Ck(G,A), we consider the G-action (g.f)(x) := g.(f(g−1 ·x))9, which obvi-
ously turns Ck(G,A) into aG-module in CGHaus. If A is contractible, then we call the module Ck(G,A) a soft
module. Moreover, for arbitrary A we set EG(A) := Ck(G,EA) and BG(A) := EG(A)/iA(A), where iA : A ↪→
Ck(G,EA) is the closed embedding A ↪→ EA, composed with the closed embedding EA ↪→ Ck(G,EA) of
constant functions.

Lemma IV.3. The sequence A→ EG(A)→ BG(A) has a local continuous section. If A is contractible, then
it has a global continuous section.

Proof. The first claim is contained in [Seg70, Prop. 2.1], the second follows from [Seg70, App. (B)].

Proposition IV.4. Soft modules are acyclic for the globally continuous group cohomology, i.e., Hn
glob,c(G,Ck(G,A))

vanishes for contractible A and n ≥ 1.

Proof. This is already implicitly contained in [Seg70, Prop. 2.2]. See also [SP09, Prop. 17] and Section VII.

The following theorem now shows that all cohomology theories considered so far are in fact isomorphic, at
least if the topology of G is sufficiently well-behaved.

Theorem IV.5 (Comparison Theorem). Let G-Mod be the category of locally contractible G-modules in

CGHaus. We call a sequence A
α−→ B

β−→ C in G-Mod short exact if the underlying exact sequence of abelian
groups is short exact and α (or equivalently β) has a local continuous section. If (Hn : G-Mod → Ab)n∈N0

is a δ-functor such that

1. H0(A) = AG is the invariants functor

2. Hn(A) = Hn
glob,c(G,A) for contractible A,

then (Hn)n∈N0
is equivalent to (Hn

SM(G, · ))n∈N0
as δ-functor. Moreover, each morphism between δ-functors

with properties 1. and 2. that is an isomorphism for n = 0 is automatically an isomorphism of δ-functors.

Proof. The functors I(A) := EG(A) and U(A) := BG(A) make Theorem VI.2 applicable. In order to check
the requirements of the first part, we have to show that Hn≥1(EG(A)) vanishes, which in turn follows from
property 2. and Proposition IV.4.

9This really is the action one wants to consider, as one sees in [Seg70, Prop. 3.1]. Some calculations in [Seg70, Ex. 2.4] seem
to use the action (g.f)(x) = f(g−1 · x), we clarify this in Section VII.
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To check the requirements of the second part of Theorem VI.2 we observe that if f : A → B is a closed
embedding with a local continuous section, then f(A) is also closed in EG(B) and thus we may set Qf :=
EG(B)/f(A). The local sections of f : A→ B and B → EG(B) then also provide a section of the composition
A → EG(B), and A → EG(B) → Qf is short exact. The morphism BG(A) → Qf can now be taken to be
induced by f∗ : EG(A) → EG(B), since it maps A to f(A) by definition. Likewise, ιB maps f(A) ⊆ B into
f(A) ⊆ EG(B), so induces a morphism γf : B/f(A) ∼= C → Qf = EG(B)/f(A). The diagrams (17) thus
commute by construction.

The property of G-modules to be locally contractible is essential in order to provide a local section of the
embedding A→ EG(A) [Seg70, Prop. A.1]. We will assume this from now on without any further reference.

Remark IV.6. Property 2. of the Comparison Theorem may be weakened to

Hn(A) = Hn
glob,c(G,A) for loop contractible A,

where loop contractible means that there exists a contracting homotopy ρ : [0, 1]×A→ A such that each ρt is
a group homomorphisms.

If this is the case, then one may still apply Theorem VI.2: Since EA is loop contractible ([Fuc11a, Ex. 5.5.]
and [BM78, Rem. on p. 217]) so is EG = Ck(G,EA) and thus Hn≥1(EG(A)) still vanishes. In this case, it is
then a consequence of Theorem VI.2 that Hn(A) = Hn

glob,c(G,A) for all contractible modules A.

Corollary IV.7. If G×
n
k is paracompact for each n ≥ 1, then Hn

SM(G,A) ∼= Hn
simp,c(G,A).

Corollary IV.8. If G×
n
p is compactly generated for each n ≥ 1, then we have Hn

loc,c(G,A) ∼= Hn
SM(G,A)10.

If, moreover each G×
n
p is paracompact, then the morphisms

Hn
simp,c(G,A)→ Hn

loc,c(G,A),

from Remark II.17 are isomorphisms.

Corollary IV.9. Let G be a finite-dimensional Lie group, a be a quasi-complete locally convex space on which
G acts smoothly, Γ ⊆ a be a discrete submodule and set A = a/Γ. Then the natural morphisms

Hn
simp,s(G,A)→ Hn

loc,s(G,A)→ Hn
loc,c(G,A)← Hn

simp,c(G,A) (10)

are all isomorphisms.

Proof. The second is an isomorphism by Proposition I.7 and the third by the preceding corollary. Since
Hn

simp,s(G,Γ)→ Hn
simp,c(G,Γ) is an isomorphism by definition and Hn

simp,s(G, a)→ Hn
simp,c(G, a) is an isomor-

phism by Proposition II.12 and [HM62], the fist one in (10) is an isomorphism by the Five Lemma.

Corollary IV.10. If G×
n
k is paracompact for each n ≥ 1, and U• is a good cover of BG•, then Hn

SM(G,A) ∼=
Ȟn(U•, A•glob,c).

Remark IV.11. Analogous to Corollary II.8 one sees that if each G×
n
k is paracompact, U• is a good cover

of BG• and E• is a sheaf on BG• with each En is acyclic, then Ȟn(U•, E•) is the cohomology of the first
column of the E1-term. This shows in particular that Ȟn(U•, A•loc,c) ∼= Hn

loc,c(G,A). Moreover, the morphism
of sheaves A•glob,c → A•loc,c induces a morphism

Ȟn(U•, A•glob,c)→ Ȟn(U•, A•loc,c)
∼=−→ Hn

loc,c(G,A). (11)

This morphism can be constructed in (more or less) explicit terms by the standard staircase argument for
double complexes with acyclic rows (note that by the acyclicity of Anloc,c we may choose for each locally

smooth Čech q-cocycle γi0,...,iq : Ui0 ∩ . . . ∩ Uiq → A on Gp a locally smooth Čech cochain ηi0,...,iq−1 such

that δ̌(η) = γ). It is obvious that (11) defines a morphism of δ-functors. From the previous results and the
uniqueness assertion of Theorem VI.2 it now follows that (11) is in fact an isomorphism provided G×

n
p is

compactly generated and paracompact for each n ≥ 1.

10This is also the main theorem in [SP09], whose proof remains unfortunately incomplete.
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Remark IV.12. In [Fla08, Prop. 5.1] it is shown that for G a topological group and A a G-module, such
that the sheaf of continuous functions has no cohomology, the cohomology group of [Fla08] coincide with
Hn

glob,c(G,A). By [Fla08, Lem. 6] we also have long exact sequences, so the cohomology groups from [Fla08,
Sect. 3] (which are anyway very similar to Hn

simp,c(G,A), see also [Lic09]) also agree with Hn
SM(G,A).

There is a slight variation of the latter cohomology groups by Schreiber [Sch11] in the smooth setting and
over the big topos of all cartesian smooth spaces. The advantage of this approach is that it is embedded in
a general setting of differential cohomology. In the case that G is compact and A is discrete or A = a/Γ for
a finite-dimensional, Γ ⊆ a discrete and G acts trivially on A it has been shown in [Sch11, Prop. 3.3.12] that
the cohomology groups Hn

Smooth∞Grpd(BG,A) from [Sch11] are isomorphic to11 Ȟn(U•, A•glob,s) (where U• is
a good cover of BG∞• ).

Remark IV.13. We now compare Hn
loc,c(G,A) with the cohomology groups from [Moo76]. For this we

assume that G is a second countable locally compact group of finite covering dimension. A Polish G-module
is a separable complete metrizable12 abelian topological group A together with a jointly continuous action
G×A→ A. Morphisms of Polish G-modules are continuous group homomorphisms intertwining the G-action.
If G is a locally compact group and A is a Polish G-module, then Hn

Moore(G,A) denotes the cohomology of
the cochain complex

Cnµ (G,A) := {f : Gn → A : f is Borel measurable}

with the group differential dgp from (1). It has already been remarked in [Wig73] that these are isomorphic
to Hn

simp,c(G,A), we give here a detailed proof of this and extend the result slightly.

On the category of Polish G-modules we consider as short exact sequences those sequences A
α−→ B

β−→ C for
which the underlying sequence of abstract abelian groups is exact, α is an (automatically closed) embedding
and β is open. From [Moo76, Prop. 11] it follows that from this we obtain natural long exact sequences, i.e.,
Hn

Moore(G, · ) is a δ-functor. Moreover, it follows from [Wig73, Prop. 3] and from the remarks before [Wig73,
Thm. 2] that each locally continuous cochain f : G×

n
p → C can be lifted to a locally continuous cochain

f̃ : G×
n
p → B. This is due to the assumption on G to be finite-dimensional. From this it follows as in Remark

I.2 that A
α−→ B

β−→ C also induces a long exact sequence for Hn
loc,c(G, · ) (this is the reason why we chose

Hn
loc,c(G,A) for this comparison).

On the category of Polish G-modules we now consider the functors

A 7→ EG(A) := C(G,U(I, A)),

where U(I, A) is the group of Borel functions from the unit interval I to A. Moreover, U(I, A) is a Polish
G-module [Moo76, Sect. 2] and coincides with the completion of the metric abelian topological group A-valued
step-functions on the right-open unit interval [0, 1), endowed with the metric

d(f, g) :=

∫ 1

0

dA(f(t)g(t)) dt,

see also [BM78, Kee73, HM58]. In particular, U(I, A) inherits the structure of a G-module and so does EG(A).
Moreover, it is contractible and thus EG(A) is soft. Since G is σ-compact we also have that C(G,U(I, A)) is
completely metrizable.

Now A embeds as a closed submodule into EG(A) and we set BG(A) := EG(A)/A. Thus

A→ EG(A)→ BG(A)

becomes short exact since orbit projection of continuous group actions are automatically open. In virtue of
Theorem VI.2 and the fact that the locally continuous cohomology vanishes for soft modules this furnishes a
morphism of δ-functors from Hn

loc,c(G, · ) to Hn
Moore(G, · ) (the constructions of Qf , βf and γf from Theorem

IV.5 carry over to the present setting). Moreover, the functors A 7→ I(A) and A 7→ U(A) that Moore constructs

11This assertion is not stated explicitly but follows from [Sch11, Prop. 3.3.12] by the vanishing of Hn
glob,s(G, a) [Est55, Thm. 1]

and the long exact coefficient sequence.
12We will throughout assume that the metric is bounded. This is no lose of generality since we may replace each invariant

metric d(x, y) with the topologically equivalent bounded invariant metric
d(x,y)

1+d(x,y)
.
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in [Moo76, Sect. 2] satisfy Hn
Moore(I(A)) = 0 [Moo76, Thm. 4]. Thus Remark VI.3 shows that Hn

loc,c(G, · )
and Hn

Moore(G, · ) are isomorphic (even as δ-functors) on the category of Polish G-modules. This also extends
[Aus10, Thm. C] to arbitrary locally contractible coefficients.

In addition, this shows that the mixture of measurable and locally continuous cohomology groupsHn
lcm(G,A)

from [KR10] does also coincide with Hn
Moore(G,A). Indeed, the morphism Hn

lcm(G,A) → Hn
Moore(G,A) of δ-

functors [KR10, Cor. 1] is surjective for each n and contractible A (since then Hn
glob,c(G,A) → Hn

Moore(G,A)
is surjective) and also injective (since Hn

glob,c(G,A)→ Hn
lcm(G,A)→ Hn

loc,c(G,A) is so). Thus Hn
lcm(G,A) ∼=

Hn
Moore(G,A) ∼= Hn

glob,c(G,A) for each n and contractible A and the Comparison Theorem shows that
Hn
lcm(G, · ) is isomorphic to Hn

loc,c(G, · ), also as δ-functor.

Remark IV.14. Whereas all preceding cohomology theories fit into the framework of the Comparison The-
orem, bounded continuous cohomology [Mon01, Mon06] does not. First of all, this concept considers lo-
cally compact G and Banach space coefficients A, whence all of the above cohomology theories agree to
give Hn

glob,c(G,A). The bounded continuous cohomology Hn
bc(G,A) is the cohomology of the sub complex of

bounded continuous functions (Cbc(G
n, A), dgp). Thus there is a natural comparison map

Hn
bc(G,A)→ Hn

glob,c(G,A)

which is obviously an isomorphism for compact G. However, bounded cohomology unfolds its strength not
before considering non-compact groups, where the above map is in general not an isomorphism [Mon01, Ch.
9], even not for Lie groups [Mon01, Ex. 9.3.11]. In fact, bounded cohomology is designed to make the above
map not into an isomorphism in order to measure the deviation of G from being compact.

Despite the last example, the properties of the Comparison Theorem seem to be the essential ones for a
large class of important concepts of cohomology groups for topological groups. We thus give it the following
name.

Definition IV.15. A cohomology theory for G is a δ-functor (Fn : G-Mod → Ab)n∈N satisfying conditions
1. and 2. of the Comparison Theorem.

Remark IV.16. We end this section with listing properties that any cohomology theory for G has. We will
always indicate the concrete model that we are using, the isomorphisms of the models are then due to the
corollaries of this section. Parts of these facts have already been established for the various models in the
respective references.

1. If A is discrete and each G×
n
k is paracompact, then Hn

SM(G,A) ∼= Hn
π1(BG)(BG,A) is the cohomology of

the topological classifying space twisted by the π1(BG) ∼= π0(G)-action on A (note that G0 acts trivially
since A is discrete). This follows from [Seg70, Prop. 3.3], cf. also [Del74, 6.1.4.2]. If, moreover, G is
(n− 1)-connected, then Hn+1

SM (G,A) ∼= Hom(πn(G), A).

2. IfG is contractible and eachG×
n
p is compactly generated, thenHn

SM(G,A) ∼= Hn
loc,c(G,A) ∼= Hn

glob,c(G,A).
This follows from [Fuc11b, Thm. 5.16].

3. If G is compact and A = a/Γ for a a quasi-complete locally convex space which is a continuous G-module
and Γ a discrete submodule, then Hn

SM(G,A) ∼= Hn+1
π1(BG)(BG,Γ). This follows from the vanishing of

Hn
SM(G, a) ∼= Hn

glob,c(G, a) (cf. [Hu52, Thm. 2.8] or [BW00, Lem. IX.1.10]) and the long exact sequence
induced from the short exact sequence Γ→ a→ A. In particular, if G is a compact Lie group and A is
finite-dimensional, then

Hn
loc,c(G,A) ∼= Hn

loc,s(G,A) ∼= Hn+1
π1(BG)(BG,Γ).

V Examples and applications

The main motivation for this paper is that locally continuous and locally smooth cohomology are somewhat
easy to handle, but lacked so far a conceptual framework. On the other hand, the simplicial cohomology
groups or the ones introduced by Segal and Mitchison are hard to handle in degrees ≥ 3. We will give some
results that one can derive from the interaction of these different concepts.
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Example V.1. There is a bunch of cocycles which (or, more precisely, whose cohomology classes) deserve
to be named “String Cocycle” (or, more precisely, “String Class”). For this example, we assume that G is a
compact simple and 1-connected Lie group (which is thus automatically 2-connected). There exists for each
g ∈ G a path αg ∈ C∞([0, 1], G) with αg(0) = e, αg(1) = g and for each g, h ∈ G a filler13 βg,h ∈ C∞(∆2, G)
for the triangle (dgp α)(g, h, k) = g.αh − αgh + αg (Figure 1).

e

g

gh

α
g

g.αh

α gh

(dgp α)(g, h) = g.αh − αgh + αg =
βg,h

Figure 1: βg,h fills (dgp α)(g, h)

Moreover, (dgp β)(g, h, k) = g.βh,k − βgh,k + βg,hk − βg,h bounds a tetrahedron which can be filled with
γg,h,k ∈ C∞(∆3, G) (Figure 2).

g.βh,k

βg,hk

e

g

gh

ghk

β
g
,h

β
g
h
,k

(dgp β)(g, h, k) = g.βh,k − βgh,k + βg,hk − βg,h =

Figure 2: γg,h,k fills (dgp β)(g, h, k)

In addition, α, β and γ, interpreted as maps Gn → C∞(∆n, G) for n = 1, 2, 3, can be chosen to be smooth
on some identity neighborhood. From these choices we can now construct the following cohomology classes
(which in turn are independent of the above choices as a straight-forward check shows, cf. [Woc11, Rem. 1.12]).

1. Since ∂ dgp(γ) = dgp(∂γ) = dgp
2 β = 0, the map

(g, h, k, l) 7→ (dgp γ)(g, h, k, l)

takes values in the singular 3-cycles on G and thus gives rise to map θ3 : G4 → H3(G) ∼= π3(G) ∼= Z (see
also Example V.2). This map is locally smooth since γ was assumed to be so and it is a cocycle since
dgp(dgp(γ)) = 0 (note that it is not a coboundary since γ does not take values in the singular cycles but
only in the singular chains).

2. The cocycle σ3 : G3 → U(1) from [Woc11, Ex. 4.10] obtained by setting

σ3(g, h, k) := exp

(∫
γg,h,k

ω

)
,

13From the 2-connectedness of G is only follows that there exist continuous fillers, that these can chosen to be smooth follows
from the density of C∞(∆n, G) in C(∆n, G) [Woc09, Cor. 14].
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where ω is the left-invariant 3-from on G with ω(e) = 〈[· , ·], ·〉 normalized such that [ω] ∈ H3
dR(G) gives

a generator of H3
dR(G,Z) ∼= Z and exp: R → U(1) is the exponential function of U(1) with kernel Z.

Since ω is in particular an integral 3-form, this implies that σ3 is a cocycle because dgp(γ)(g, h, k, l) is a
piece-wise smooth singular cycle and thus

dgp σ3(g, h, k, l) = exp

(∫
dgp γ(g,h,k,l)

ω

)
= 1.

Since γ is smooth on some identity neighborhood, σ3 is so as well. Now

σ̃3(g, h, k) :=

∫
γ(g,h,k)

ω

provides a locally smooth lift of σ3 to R. Thus the homomorphism δ : H3
loc,s(G,U(1)) → H4

loc,s(G,Z)
maps [σ3] to [θ3] since

dgp σ̃3 =

∫
dgp γ

ω

and integration of piece-wise smooth representatives along ω provides the isomorphism π3(G) ∼= Z. We
will justify calling σ3 a sting cocycle in Remark V.13.

3. The locally smooth cocycles arising as characteristic cocycles [Nee07, Lem. 3.6.] from the strict models
[BCSS07, NSW11] of the string 2-group. In the case of the model from [BCSS07] this gives precisely σ3.

Suppose U• is a good cover of BG•. The model from [SP11] is constructed by showing that Ȟ3(U•, U(1)•glob,s)
classifies central extensions of finite-dimensional group stacks

[∗/U(1)]→ [Γ]→ G

and then taking the isomorphism

Ȟ3(U•, U(1)•glob,s)
∼= H3

SM(G,U(1)) ∼= H4(BG,Z) ∼= Z

(cf. Remark IV.16), yielding for each generator a model for the string group. We will see below that the
classes from above are also generators in the respective cohomology groups and thus represent the various
properties of the string group. For instance, we expect that the class [σ3] will be the characteristic class for
representations of the string group.

The previous construction can be generalized as follows.

Example V.2. Let G be a (n−1)-connected Lie group and denote by C∞∗ (∆k, G) the group of based smooth
k-simplices in G (the same construction works for locally contractible topological groups and the continuous
k-simplices). Then we may choose for each 1 ≤ k ≤ n maps

αk : Gk → C∞∗ (∆k, G),

such that each αk is smooth on some identity neighborhood and that

∂αk(g1, . . . , gk) = dgp(αk−1)(g1, . . . , gk).

In the latter formula, we interpret C∞∗ (∆k, G) as a subset of the group 〈C(∆k, G)〉Z of singular k-chains in
G, which becomes a G-module if we let G act by left multiplication. Since G is (n − 1)-connected, we can
inductively choose αk, starting with α0 ≡ e.

Now consider the map
θn := dgp(αn) : Gn+1 → 〈C(∆n, G)〉Z.

Since
∂θn = ∂ dgp(αn) = dgp(∂αn) = dgp

2(αn−1) = 0, (12)
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θn takes values in the singular n-cycles on G and thus gives rise to a map θn : Gn+1 → Hn(G) ∼= πn(G).
Moreover, θn is a group cocycle and it is locally smooth since αn is so. Of course, this means here that θn
even vanishes on some identity neighborhood (in the product topology). It is straight forward to show that
different choices for αk yield equivalent cocycles.

These are the characteristic cocycles for the n-fold extension

πn(G)→ Ω̃nG→ PeΩ
n−1G→ · · · → PeΩG→ PeG→ G, (13)

(Pe denoted pointed paths and Ω pointed loops) of topological groups spliced together from the short exact
sequences

πn(G)→ Ω̃nG→ ΩnG and ΩnG→ PeΩ
n−1G→ Ωn−1G for n ≥ 0.

Moreover, the exact sequence

Ω̃nG→ Ωn−1G→ · · · → ΩG→ PeG

gives rise to a simplicial topological group Πn(G) and we have canonical morphisms

Bnπn(G)→ Πn(G)→ G.

Here, Bnπn(G) is the nerve of the (n − 1)-groupoid with only trivial morphisms up to (n − 2) and πn(G) as
(n − 1)-morphisms and G is the nerve of the groupoid with objects G and only identity morphisms. Taking
the geometric realization | · | gives (at least for metrizable G) now an extension of groups in CGHaus

K(n, πn(G)) ' |Bnπn(G)| → |Πn(G)| → |G| = G,

which can be shown to be an n-connected cover G〈n〉 → G with the same methods as in [BCSS07].

Remark V.3. Recall that a crossed module µ : M → N is a group homomorphism together with an action
by automorphisms of N on M such that µ is equivariant and such that for all m,m′ ∈M , the Peiffer identity

µ(m).m′ = mm′m−1

holds. Taking into account topology, we suppose that M and N are groups in CGHaus, µ continuous and
(n,m) 7→ n.m is continuous. We call a closed subgroup H of a group in CGHaus split if the multiplication
map G×kH → G defines a topological H-principal bundle (see [Nee07, Def. 2.1]). We will throughout use the
constructions in the smooth setting from [Nee07], which carry over to the present topological setting. In this
case, we have in particular that G→ G/H has a continuous local section. In order to avoid extensions coming
from non-complemented topological vector spaces, we suppose that all our crossed modules are topologically
split, i.e., we suppose that ker(µ) is a split topological subgroup of M , that im(µ) is a split topological
subgroup of N , and that µ induces a homeomorphism M/ ker(µ) ∼= im(µ). In case M and N are (possibly
infinite dimensional) Lie groups, this implies that the corresponding sequence of Lie algebras is topologically
split as a sequence of topological vector spaces.

Using the above methods, we can now show the following:

Theorem V.4. If each G×
n
p is compactly generated, then the set of equivalence classes of crossed modules

with cokernel G and kernel A is in bijection with the cohomology space H3
loc,c(G,A).

Proof. It is standard to associate to a (topologically split) crossed module a locally continuous 3-cocycle (see
[Nee07, Lem. 3.6]). To show that this defines an injection of the set of equivalence classes into H3

loc,c(G,A), we

use the continuous version of [Nee07, Th. 3.8]. Namely, the existence of an extension A→ N̂
q−→ N such that

M is N -equivariantly isomorphic to q−1(im(µ)) provides two morphisms of four term exact sequences linking

A→M → N → G to the trivial crossed module A→ A
0−→ G→ G.

Therefore we focus here on surjectivity, i.e. we reconstruct a crossed module from a given locally continuous
3-cocycle. For this, embed the G-module A in a soft G-module:

0→ A→ EG(A)→ BG(A)→ 0
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. Observe that Hn
SM(G,EG(A)) ∼= Hn

glob,c(G,EG(A)) vanishes for n ≥ 1 (Proposition IV.4). The vanishing
shows now that the connecting homomorphism of the associated long exact sequence induces an isomorphism

δ : H2
loc,c(G,BG(A)) ∼= H3

loc,c(G,A),

where we have used the isomorphism of Hn
SM and Hn

loc,c. Thus for the given 3-cocycle γ, there exists a locally
continuous 2-cocycle α with values in BG(A) such that δ[α] = [γ]. Using α, we can form an abelian extension

0→ BG(A)→ BG(A)×α G→ G→ 1.

Now splicing together this abelian extension with the short exact coefficient sequence

0→ A→ EG(A)→ BG(A)→ 0

gives rise to a crossed module µ : EG(A)→ BG(A)×αG which is topologically split in the above sense. Indeed,
the coefficient sequence is topologically split by assumption, and the abelian extension has a continuous local
section by construction.

Finally, the fact that the 3-class associated to this crossed module is [γ] follows from δ[α] = [γ]. Some
details for this kind of construction can also be found in [Wag06].

Remark V.5. In the case of locally compact second countable G and metrizable A the module EA is metriz-
able [BM78] and since G is in particular σ-compact C(G,EA) = EG(A) is also metrizable. Thus the above
crossed module is a crossed module of metrizable topological groups. In particular, if we take a generator
[α] ∈ H3

SM (G,U(1)) ∼= H4(G,Z) ∼= Z for G a simple compact 1-connected Lie group, then the crossed module

U(1)→ EG(U(1))→ BG(U(1))×α G→ G

gives yet another (topological) model for the string 2-group.

Remark V.6. (cf. [SP09, Def. 19]) The locally continuous cohomology can be topologized as follows. For an
open identity neighborhood U ⊆ G×n

k we have the bijection

CnU (G,A) := {f : Gn → A : f |U is continuous} ∼= C(U,A)×AGn\U .

This carries a natural topology coming from Ck(U,A)×kA
Gn\U , when first endowing AG

n\U with the product
topology and then taking the induced compactly generated topology. If U ⊆ V , then the inclusion CnU (G,A) ↪→
CnV (G,A) is continuous so that the direct limit

lim−−−→
U∈U

CnU (G,A) ∼= Cnloc,c(G,A)

carries a natural topology. The differential dgp is continuous and the cohomology groups Hn
loc,c(G,A) inherits

the corresponding quotient topology.

Remark V.7. There is a classical way of constructing products for some of the cohomology theories which
we have considered here. Let us recall these definitions. The easiest product is the usual cup product for the
locally continuous (respectively the locally smooth) group cohomology Hn

loc,c(G,A) (respectively Hn
loc,s(G,A))

[Mac63, Ch. VIII.9]. In the following, we will stick to Hn
loc,c(G,A), noting that all constructions carry over

word by word to Hn
loc,s(G,A) for a Lie group G and a smooth G-module A.

Suppose that the two G-modules A and A′ have a tensor product in CGHaus. The simplicial cup product
(see [Mac63] equation (9.7) p. 246) in group cohomology yields a homomorphism

∪ : Hp
loc,c(G,A)⊗Hq

loc,c(G,A
′)→ Hp+q

loc,c(G,A⊗A′),

where the G-module A⊗A′ is given the diagonal action.
In case the G-module A has its tensor product A⊗A in CGHaus and has a product, i.e. a homomorphism

of G-modules α : A⊗A→ A, we obtain an internal cup product

∪ : Hp
loc,c(G,A)⊗Hq

loc,c(G,A)→ Hp+q
loc,c(G,A)
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by post composing with α. The product reads then explicitly for cochains c ∈ Cploc,c(G,A) and c′ ∈ Cqloc,c(G,A)

c ∪ c′(g0, . . . , gp+q) = α(c(g0, . . . , gp), c
′(gp, . . . , gp+q)).

On the other hand, Segal-Mitchison cohomology Hn
SM(G,A) is a (relative) derived functor, and therefore

the setting of [Mac63, Sect. XII.10] is adapted. Observe that our choice of exact sequences does not satisfy
all the demands of a proper class of exact sequences [Mac63, Sect. XII.4] (it does not satisfy the last two
demands) and we neither have automatically enough proper injectives or projectives. Nevertheless, we have
explicit acyclic resolutions for each module in CGHaus which are exact sequences in our sense. We have the
universality property for the functor Hn

SM(G,A) [Mac63, Sect. XII.8] by Theorem VI.2. Therefore we obtain
products for Segal-Mitchison cohomology by universality as in [Mac63, Th. XII.10.4] for two G-modules A and
A′ which have a tensor product in CGHaus.

By the uniqueness statement in [Mac63, Th. XII.10.4], the isomorphism Hn
SM(G,A) ∼= Hn

loc,c(G,A) respects
products. Note also that the differentiation homomorphism Dn : Hn

loc,s(G,A)→ Hn
Lie,c that we will turn to in

Remark V.14 is compatible with products.

We now give an explicit description of the purely topological information contained in a locally continuous
cohomology class. If G is a connected topological group and A is a topological G-module, then there is an
exact sequence

0→ H2
glob,top(G,A)→ H2

loc,top(G,A)
τ2−→ Ȟ1(G,A) (14)

[Woc10, Sect. 2], where τ2 assigns to an abelian extension A→ Ĝ→ G the characteristic class of the underlying
principal A-bundle. By definition, we have that im(τ2) are those classes in Ȟ1(G,A) whose associated principal
A-bundles admit a compatible group structure. These are precisely the bundles A → P → G for which the
bundle pr∗1(P )⊗ µ∗(P )⊗ pr∗2(P ) on G×G is trivial [Gro72, Prop. VII.1.3.5].

We will now establish a similar behavior of the map τn for arbitrary n.

Proposition V.8. Let G be a connected topological group and A be a topological G-module. Suppose that the
cocycle f ∈ Cnloc,top(G,A) is continuous on the identity neighborhood U ⊆ Gn and let V ⊆ G be open such that

e ∈ V and V 2 × . . .× V 2 ⊆ U . Then the map

τ(f)g1,...,gn : g1V ∩ . . . ∩ gnV → A, x 7→ g1.f(g−11 g2, . . . , g
−1
n−1gn, g

−1
n x)− (−1)nf(g1, g

−1
1 g2, . . . , g

−1
n−1gn)

defines a continuous Čech (n − 1)-cocycle on the open cover (gV )g∈G. Moreover, this induces a well-defined
map

τn : Hn
loc,top(G,A)→ Ȟn−1(G,A), [f ] 7→ [τ(f)]

which is a morphism of δ-functors.

Proof. We first note that τ(f)g1,...,gn depends continuously on x. Indeed, the first term depends continuously
on x since g1V ∩ . . .∩ gnV 6= ∅ implies that g−1k−1gk ∈ V 2 and f is continuous on V 2× . . .×V 2 by assumption.
Since the second term does not depend on x, this shows continuity. Now the cocycle identity for f , evaluated
on (g1, g

−1
1 g2, . . . , g

−1
n−1gn, g

−1
n x), shows that τ(f)g1,...,gn(x) may also be written as (δ̌(κ(f)))g1,...,gn(x), where

κ(f)g2,...,gn(x) := f(g2, g
−1
2 g3, . . . , g

−1
n x).

Note that κ(f)g2,...,gn does not depend continuously on x and thus the above assertion does not imply that
τ(f) is a coboundary. However, δ̌2 = 0 now implies that τ(f) is a cocycle.

It is clear that the class [τ(f)] in Ȟn−1(G,A) does not depend on the choice of V since another such
choice V ′ yields a cocycle given by the same formula on the refined cover (g(V ∩ V ′))g∈G. Moreover, if f
is a coboundary, i.e., f = dgp b for b ∈ Cn−1loc,c(G,A) (where we assume w.l.o.g. that b is also continuous on

V 2 × . . .× V 2), then we set

ρ(b)g1,...,gn−1
(x) := g1.b(g

−1
1 g2, . . . , g

−1
n−1x) + (−1)nb(g1, g

−1
1 g2, . . . , g

−1
n−2gn−1).
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As above, this defines a continuous function on g1V ∩ . . . ∩ gn−1V 6= ∅ and thus a Čech cochain. A direct
calculation shows that δ̌(ρ(f)) = τ(f) and thus that the class [τ(f)] only depends on the class of f .

We now turn to the second claim, for which we have to check that for each exact sequence A ↪→ B
q−→ C of

topological G-modules the diagram

Hn
loc,c(G,C)

δn //

τn

��

Hn+1
loc,c(G,A)

τn+1

��

Ȟn−1(G,C)
δn−1

// Ȟn(G,A)

commutes. For this, we recall that δn is constructed by choosing for [f ] ∈ Hn
loc,c(G,C) a lift f̃ : Gn → B and

then setting δn([f ]) = [dgp f̃ ]. After possibly shrinking V , we can assume that f is continuous on V 2× . . .×V 2

(n factors) and that dgp f̃ is continuous on V 2 × . . .× V 2 (n+ 1 factors).

Since q is a homomorphism, f̃ also gives rise to lifts

τ̃(f)g1,...,gn(x) := g1.f̃(g−11 g2, . . . , g
−1
n−1gn, g

−1
n x)− (−1)nf̃(g1, g

−1
1 g2, . . . , g

−1
n−1gn)

of τ(f)g1,...,gn , which obviously depends continuously on x on g1V ∩ . . .∩gnV . Thus we have that δn−1(τn([f ]))
is represented by the Čech cocycle

δ̌(τ̃(f))g0,...,gn .

On the other hand, τn+1(δn([f ])) is represented by τ(dgp f̃)g0,...,gn , whose value on x is given by

g0. dgp f̃(g−10 g1, . . . , g
−1
n−1gn, g

−1
n x)− (−1)n+1 dgp f̃(g0, g

−1
0 g1, . . . , g

−1
n−1gn) =

g0.
[
g−10 g1.f̃(g−11 g2, . . . , g

−1
n x)± . . .+(−1)kf̃(g−10 g1, . . . , g

−1
k−1gk+1, . . . , g

−1
n x)± . . .

+(−1)n+1f̃(g−10 g1, . . . , g
−1
n−1gn)

]
− (−1)n+1

[
g0.f̃(g−10 g1, . . . , g

−1
n−1gn)± . . .

−(−1)kf̃(g0, g
−1
0 g1, . . . , g

−1
k−1gk+1, . . . , g

−1
n−1gn)± . . .+ (−1)n+1f̃(g0, g

−1
0 g1, . . . , g

−1
n−2gn−1)

]
The underlined terms cancel and the sum of the dashed terms gives (−1)k τ̃(f)g0,...,ĝk,...,gn(x). This shows that

δ̌(τ̃(f))g1,...,gn(x) = τ(dgp f̃)g1,...,gn(x).

We will now identify the map τ with one of the edge homomorphisms in the spectral sequence associated
to Hn

simp,c(G,A).

Proposition V.9. For n ≥ 1 the edge homomorphism of the spectral sequence (7) induces a homomorphism

edgen+1 : H1+n
simp,c(G,A)→ H1+n

simp,c(G,A)/F2H2+n
simp,c(G,A) ∼= E1,n

∞ → E1,n
1
∼= Hn

Sh(G,A),

where F denotes the standard column filtration (cf. Remark II.7). If, moreover, G×
n
p is compactly generated,

paracompact and admits good covers for all n ≥ 1 and A is a topological G-module, then the diagram

Hn+1
simp,c(G,A)

∼=
��

edgen+1
// Hn

Sh(G,A)

∼=
��

Hn+1
loc,c(G,A)

τn+1
// Ȟn(G,A)

(15)

commutes.
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Proof. We first note that Hn
loc,top(G,A) = Hn

loc,c(G,A) under the above assumptions. Since BG0 = pt,

we have E0,q
1 = Hq

Sh(pt, A) = 0 for all q ≥ 1 and thus the edge homomorphism E1,p
∞ → E1,p

1 . Since we

have FpHp+q
simp,c(G,A) = Hp+q

simp,c(G,A) for p = 0, 1, q ≥ 1 this gives the desired form of edgeq+1. Since
this construction commutes with the connecting homomorphisms, it is a morphism of δ-functors. Moreover,
the isomorphism Hn

Sh(G, · ) ∼= Ȟn(G, · ) is even an isomorphism of δ-functors. By virtue of the uniqueness
assertion for morphisms of δ-functors from Theorem VI.2, it thus remains to verify that that (15) commutes
for n = 1.

The construction from Remark III.5 gives an isomorphism H2
loc,top(G,A) ∼= Ȟ2(U•, A•loc,c), where U• is a

good cover of BG• chosen such that Uk refines the covers of Gk constructed there. Since this construction
commutes with the connecting homomorphisms, the isomorphism H2

loc,top(G,A) ∼= Ȟ2(U•, A•loc,c) is indeed
the one from the unique isomorphism of the corresponding δ-functors. Now τ2 coincides with the morphism
H2

loc,top(G,A) ∼= Ȟ2(U•, A•loc,c) → Ȟ1(G,A), given by projecting the cocycle (µ, τ) in the total complex of

Čp,q(U•, E•) to the Čech cocycle τ . Since this is just the corresponding edge homomorphism, the diagram
(15) commutes for n = 1.

Remark V.10. In case the action of G on A is trivial, Proposition V.9 also holds for n = 0. Indeed, then the
differential A ∼= E0,0

1 → E1,0
1
∼= C∞(G,A), which is given by assigning the principal crossed homomorphism

to an element of A, vanishes. This shows commutativity of (15) also for n = 0.

Remark V.11. The other edge homomorphism is induced from the identification Cnglob,c(G,A) ∼= H0
Sh(Gn, A) ∼=

En,01 , which shows En,02
∼= Hn

glob,c(G,A). It coincides with the morphism Hn
glob,c(G,A)→ Hn

loc,c(G,A) induced
by the inclusion Cnglob,c(G,A) ↪→ Cnloc,c(G,A) (cf. also [Seg70, Remarks in §3]).

The following is a generalization of (14) in case A is discrete.

Corollary V.12. If n ≥ 1, G is (n−1)-connected and A is a discrete G-module, then τn+1 : Hn+1
loc,c(G,A)→ Ȟn(G,A)

is injective if G×
n
p is compactly generated, paracompact and admits good covers for all n ≥ 1.

Proof. If G is (n−1)-connected, and A is discrete, then Ep,q1 of the spectral sequence (7) vanishes if q ≤ n−1.
Thus E1,n−1

∞ = ker(d1,n−11 ) ⊆ E1,n−1
1

∼= Ȟn−1(G,A) and edgen coincides with the embedding

Hn
loc,c(G,A) ∼= Hn

simp,c(G,A) ∼= E1,n−1
∞ ↪→ E1,n−1

1
∼= Ȟn−1(G,A).

Remark V.13. An explicit analysis of the differentials of the spectral sequence (7) shows that for discrete A
with trivial G-action and (n − 1)-connected G the image of τn+1 : Hn+1

loc,c(G,A) → Ȟn(G,A) consists of those

cohomology classes c ∈ Ȟn(G,A) which are primitive, i.e., for which

pr∗1 c⊗ µ∗c⊗ pr∗2 c = 0.

Since the primitive elements generate the rational cohomology of a compact Lie group G [GHV73, p. 167,
Thm. IV], it follows that all non-torsion elements in the lowest cohomology degree are primitive in this case.

In particular, if G is a compact, simple and 1-connected (thus automatically 2-connected), the generator
of Ȟ2(G,U(1)) ∼= Ȟ3(G,Z) ∼= Z is primitive and thus τ4 : H4

loc,c(G,Z) → Ȟ3(G,Z) is an isomorphism. Since
the diagram

H4
loc,c(G,Z)

τZ
4 //

∼=
��

Ȟ3(G,Z)

∼=
��

H3
loc,c(G,U(1))

τ
U(1)
3 // Ȟ2(G,U(1))

commutes by Proposition V.8, this shows that τ
U(1)
3 is also an isomorphism. Since the string class [σ3]

from Example V.1 maps under τ3 to a generator [BM93], this shows that [σ3] gives indeed a generator of
H3

loc,c(G,U(1)), and [θ3] gives a generator of H4
loc,c(G,Z).
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Remark V.14. One reason for the importance of locally smooth cohomology is that it allows for a direct
connection to Lie algebra cohomology and thus may be computable in algebraic terms. This relation is
induced by the differentiation homomorphism

Hn
loc,s(G,A)

Dn−−→ Hn
Lie,c(g, a),

where Hn
Lie,c denotes the continuous Lie algebra cohomology, g is the Lie algebra of G and a the induced

infinitesimal topological g-module (cf. [Nee06, Thm. V.2.6]).
Suppose G is finite-dimensional. Then the kernel of Dn consists of those cohomology classes [f ] that are

represented by cocycles vanishing on some neighborhood of the identity. For Γ = {0} this follows directly
from [Świ71], where it is shown that the differentiation homomorphism from the cohomology of locally defined
smooth group cochains to Lie algebra cohomology is an isomorphism. Thus if [f ] ∈ ker(Dn), then there exists
a locally defined smooth map b with dgp b − f = 0 wherever defined. Since we can extend b arbitrarily to a
locally smooth cochain this shows the claim. In the case of non-trivial Γ one may deduce the claim from the
case of trivial Γ since a and A = a/Γ are isomorphic as local Lie groups so that A-valued local cochains can
always be lifted to a-valued local cochains. If Aδ denotes A with the discrete topology, then the isomorphism
Hn
π1(BG)(BG,A

δ) ∼= Hn
loc,s(G,A

δ) from Remark IV.16 induces an exact sequence

Hn
π1(BG)(BG,A

δ)→ Hn
loc,s(G,A)

Dn−−→ Hn
Lie,c(g, a)

(see also [Nee02, Nee04] for an exhaustive treatment of D2 for general infinite-dimensional G). From the van
Est spectral sequence [Est58] it follows that if G ist n-connected (more general G may be infinite-dimensional
with split de Rham complex [Beg87]), then differentiation induces an isomorphism

Hn
glob,s(G, a)→ Hn

Lie,c(g, a).

For G an (n− 1)-connected Lie group this is not true any more, for instance the Lie algebra 3-cocycle 〈[· , ·], ·〉
from Example V.1 is non-trivial but H3

glob,s(G,R) vanishes by [Est55, Thm. 1] for compact and connected G.
However, there exists integrating cocycles when considering locally smooth cohomology: If G is an (n− 1)-

connected finite-dimensional Lie group and A ∼= a/Γ is a finite-dimensional smooth module for a a finite-
dimensional G-module and Γ a discrete submodule, then Dn : Hn

loc,s(G,A) → Hn
Lie,c(g, a) is injective and

its image consists of those cohomology classes [ω] whose associated period homomorphism per[ω] [Nee06,

Def. V.2.12] has image in Γ. In fact, Hn
loc,s(G,A

δ) vanishes (by Corollary V.12), and thus Dn is injective.
Surjectivity of Dn may be seen from the following standard integration argument. If ω is a Lie algebra n-
cocycle, then the associated left-invariant n-form ωl is closed [Nee02, Lem. 3.10]. If we make the choices of αk
for 1 ≤ k ≤ n as in Example V.2, then

Ω(g1, . . . , gn) :=

∫
αn(g1,...,gn)

ωl

defines

• a locally smooth group cochain on G, since αn depends smoothly on (g1, . . . , gn) on an identity neigh-
borhood and the integral depends smoothly αn(g1, . . . , gn).

• a group cocycle, since

dgp Ω(g0, . . . , gn) =

∫
dgp α(g0,...,gn)

ωl ∈ perω(πn(G)) ⊆ Γ.

A straight forward calculation, similar to the ones in [Nee02] or [Nee04] now shows that Dn([Ω]) = [ω]. We
expect that large parts of this remark can be generalized to arbitrary infinite-dimensional G with techniques
similar to those of [Nee02, Nee02].
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VI δ-Functors

In this section we recall the basic setting of (cohomological) δ-functors (sometimes also called “satellites”), as
for instance exposed in [CE56, Chap. 3], [Buc55, Sect. III.5], [Gro57, Sect. 2] or [Moo76, Sect. 4]. It will be
important that the arguments work in more general categories than abelian ones, the only thing one needs is
a notion of short exact sequence.

Definition VI.1. A category with short exact sequences is a category C, together with a distinguished class
of composable morphisms A → B → C. The latter are called a short exact sequence. A morphisms between
A→ B → C and A′ → B′ → C ′ consists of morphisms A→ A′, B → B′ and C → C ′ such that the diagram

A //

��

B //

��

C

��

A′ // B′ // C ′

commutes.
A (cohomological) δ-functor on a category with short exact sequences is a sequence of functors

(Hn : C→ Ab)n∈N0

such that for each exact A→ B → C there exist morphisms δn : Hn(C)→ Hn+1(A) turning

H0(A)→ H0(B)→ H0(C)
δ0−→ · · · δn−1−−−→ Hn(A)→ Hn(B)→ Hn(C)

δn−→ · · ·

into an exact sequence14 and that for each morphism of exact sequences the diagram

Hn(C)
δn //

��

Hn+1(A)

��

Hn(C ′)
δn // Hn+1(A′)

(16)

commutes. A morphisms of δ-functors from (Hn)n∈N0
to (Gn)n∈N0

is a sequence of natural transformations
(ϕn : Hn ⇒ Gn)n∈N0 such that for each short exact A→ B → C the diagram

Hn(C)
δn //

ϕn
C

��

Hn+1(A)

ϕn+1
A

��

Gn(C)
δn // Gn+1(A)

(17)

commutes. An isomorphism of δ-functors is then a morphism for which all ϕn are natural isomorphisms of
functors.

Theorem VI.2. Let C be a category with short exact sequences. Let F : C→ Ab, I : C→ C and U : C→ C

be functors, ιA : A→ I(A) and ζA : I(A)→ U(A) be natural such that A
ιA−→ I(A)

ζA−−→ U(A) is short sequence
and let (Hn)n∈N0

and (Gn)n∈N0
be two δ-functors.

1. If α : H0 ⇒ G0 is a natural transformation and Hn(I(A)) = 0 for all A and all 1 ≤ n ≤ m, then there
exist natural transformations ϕn : Hn ⇒ Gn, uniquely determined by requiring that ϕ0 = α and that

Hn(U(A))
δn //

ϕn
U(A)

��

Hn+1(A)

ϕn+1
A

��

Gn(U(A))
δn // Gn+1(A)

14Note that we do not require H0 to be left exact.
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commutes for 0 ≤ n < m. In particular, if Hn(I(A)) = 0 = Gn(I(A)) for all n ≥ 0, then ϕn is an
isomorphism of functors for all n ∈ N if and only if it is so for n = 0.

2. Assume, moreover, that for any short exact sequence A
f−→ B → C the morphism A → I(B) can be

completed to a short exact sequence A→ I(B)→ Qf such that there exist morphisms U(A)
βf−→ Qf and

C
γf−→ Qf making

A
ιA // I(A)

ζA //

I(f)

��

U(A)

βf

��

A // I(B) // Qf

and

A
f

// B //

ιB

��

C

γf

��

A // I(B) // Qf

(18)

commute. Then the diagram

Hn(C)
δn //

ϕn
C

��

Hn+1(A)

ϕk
A

��

Gn(C)
δn // Gn+1(A)

also commutes for 0 ≤ m < m. In particular, if Hn(I(A)) = 0 for all A and all n ≥ 1, then (ϕn)n∈N0 is
a morphism of δ-functors.

Proof. The proof of [Buc55, Thm. II.5.1] (cf. also [Moo76, Thm. 2]) carries over to this more general setting.
The claims are shown by induction, so we assume that ϕn is constructed up to n ≥ 0. Then we consider for
arbitrary A the diagram (recall that Hn+1(I(A)) = 0)

Hn(I(A)) //

ϕn
I(A)

��

Hn(U(A))
δn //

ϕn
U(A)

��

Hn+1(A) // 0

Gn(I(A)) // Gn(U(A))
δn // Gn+1(A)

,

which shows that there is a unique ϕn+1
A : Hn+1(A) → Gn+1(A) making this diagram commute. To check

naturality take f : A → B. By the construction of ϕn+1
A , the induction hypothesis and the construction of

ϕn+1
B the diagrams

Hn(U(A))

ϕn
U(A)

��

δU(A)
n // Hn+1(A)

ϕn+1
A

��

Gn(U(A))
δ
U(A)
n // Gn+1(A)

and

Hn(U(A))

ϕn
U(A)

��

Hn(U(f))
// Hn(U(B))

ϕn
U(B)

��

δU(B)
n // Hn+1(B)

ϕn+1
B

��

Gn(U(A))
Gn(U(f))

// Gn(U(B))
δ
U(B)
n // Gn+1(B)

commute. Since (Hn)n∈N0
and (Gn)n∈N0

are δ-functors we know that Hn+1(f) ◦ δU(A)
n = δ

U(B)
n ◦Hn(U(f))

and that Gn+1(f) ◦ δU(A)

n = δ
U(B)

n ◦Gn(U(f)). We thus conclude that

ϕn+1
B ◦Hn+1(f) ◦ δU(A)

n = Gn+1(f) ◦ϕn+1
A ◦ δU(A)

n

holds. Since δ
U(A)
n is an epimorphism this shows naturality of ϕn+1 and finishes the proof of the first claim.
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To show the second claim we note that the first diagram of (18) gives rise to a diagram

Hn(U(A))

ϕn
U(A)

��

Hn(βf )

''OOOOOOO
δU(A)
n

##

Hn(Qf )
δ
Qf
n //

ϕn
Qf

��

Hn+1(A) //

ϕn+1
A��

0

Gn(Qf )
δ
Qf
n // Gn+1(A)

Gn(U(A))

Gn(βf )

77ooooooo

δ
U(A)
n

;;

.

The outer diagram commutes by construction of ϕn+1
A (see above), the already shown naturality of ϕn shows

that the trapezoid on the left commutes and the two triangles are commutative because H and G are δ-functors.

This implies that the whole diagram commutes. In particular, we have ϕn+1
A ◦ δQf

n = δ
Qf

n ◦ϕnQf
. The latter

now implies that

Hn(C)

δCn
��

Hn(γf )
// Hn(Qf )

δ
Qf
n

��

ϕn
Qf

// Gn(Qf )

δ
Qf
n

��

Gn(C)

δ
C
n

��

Gn(γf )
oo

Hn+1(A) Hn+1(A)
ϕn+1

A // Gn+1(A) Gn(A)

commutes and since Gn(γf ) ◦ϕnC = ϕnQf
◦Hn(γf ) we eventually conclude that

δ
C

n ◦ϕnC = δ
Qf

n ◦Gn(γf ) ◦ϕnC = δ
Qf

n ◦ϕnQf
◦Hn(γf ) = ϕn+1

A ◦ δQf
n ◦Hn(γf ) = ϕn+1

A ◦ δCn .

Remark VI.3. The preceding theorem also shows the following slightly stronger statement. Assume that we
have for each δ-functor H = (Hn)n∈N0

and G = (Gn)n∈N0
(defined on the same category with short exact

sequences) different functors I, U and I ′, U ′ such that Hn(I(A)) = 0 = Gn(I ′(A)) for all n ≥ 1 and all A.
Suppose that the assumptions of Theorem VI.2 (2.) are fulfilled for one of the functors I or I ′.

If α : H0 → G0 is an isomorphism, then the natural transformations ϕn : Hn ⇒ Gn (resulting from
extending α) and ψn : Gn ⇒ Hn (resulting from extending α−1) are in fact isomorphisms of δ-functors. This
follows immediately from the uniqueness assertion since the diagrams

Hn(U(A))
δn //

ϕn
U(A)

��

Hn+1(A)

ϕk
A

��

Gn(U(A))
δn // Gn+1(A)

Gn(U(A))
δn //

ψn
U(A)

��

Gn+1(A)

ψk
A

��

Hn(U(A))
δn // Hn+1(A)

(and likewise for U ′) commute for arbitrary A due to the property of being a δ-functor.

Remark VI.4. Usually, one would impose some additional conditions on a category with short exact se-
quences, for instance that it is additive (with zero object), that for a short exact sequences A → B → C the
square

A //

��

0

��

B // C

is a pull-back and a push-out, that short exact sequences are closed under isomorphisms and that certain
pull-backs and push-outs exist [Bue09]. These assumptions will then help in constructing δ-functors. However,
the above setting does not require this, all the assumptions are put into the requirements on the δ-functor.



Supplements on Segal-Mitchison cohomology 28

Example VI.5. Suppose G is paracompact. On the category of G-modules in CGHaus, we consider the

short exact sequences A
α−→ B

β−→ C such that β (or equivalently α) has a continuous local section and the
functor A 7→ Ȟn(G,A) (or equivalently A 7→ Hn

Sh(G,A)). Then the functors A 7→ EG(A) and A 7→ BG(A)
from Definition IV.2 satisfy Ȟn(G,EG(A)) = 0 since EG(A) is contractible.

Remark VI.6. The argument given in the proof of [Tu06, Prop. 6.1(b)] in order to draw the conclusion of
the first part of Theorem VI.2 from weaker assumptions is false as one can see as follows. First note that the
proof only uses I(U(A)) ∼= U(I(A)), the more restrictive assumptions on the categories to be abelian and on
the natural inclusion A ↪→ I(A) to satisfy I(iA) = iI(A) may be replaced by this.

The requirements of [Tu06, Prop. 6.1(b)] are satisfied if we set I(A) = EG(A), U(A) = BG(A) and iA as
in Definition IV.2. In fact, the exactness of the functor E shows that

0→ EA→ ECk(G,EA)→ EBG(A)→ 0

is exact and since this sequence has a continuous section by [Seg70, Thm. B.2], we also have that

0→ Ck(G,EA)→ Ck(G,ECk(G,EA))→ Ck(G,EBG(A))→ 0

is exact. Consequently, we have

EG(BG(A)) = Ck(G,EBG(A)) ∼= Ck(G,ECk(G,EA))/Ck(G,EA) = BG(EG(A)).

However, the two sequences of functors A 7→ Hn
SM(G,A) ∼= Hn

loc,c(G,A) and A 7→ Hn
glob,c(G,A) vanish on

EG(A) for n = 1, but are different:

• H2
glob,c(G,A) is not isomorphic to H2

loc,c(G,A), for instance for G = C∞(S1,K) (K compact, simple and
1-connected) and A = U(1).

• For non-simply connected G, the universal cover gives rise to a an element in H2
loc,c(G, π1(G)), not

contained in the image of H2
glob,c(G, π1(G)).

• The string classes from Example V.1 gives an element in H3
loc,c(K,U(1)), not contained in the image of

H3
glob,c(K,U(1)).

VII Supplements on Segal-Mitchison cohomology

We shortly recall the definition of the cohomology groups due to Segal and Mitchison from [Seg70]. Moreover,
we also establish the acyclicity of the soft modules from above for the globally continuous group cohomology
and show Hn

SM(G,A′) ∼= Hn
glob,c(G,A

′) for contractible A′. Consider the long exact sequence

A→ EGA→ EG(BGA)→ EG(B2
GA)→ EG(B3

GA) · · · . (19)

This serves as a resolution of A for the invariants functor A 7→ AG and the cohomology groups Hn
SM(G,A) are

the cohomology groups of the complex

(EGA)G → (EG(BGA))G → (EG(B2
GA))G → (EG(B3

GA))G · · · . (20)

We now make the following observations:

1. [Seg70, Ex. 2.4] For an arbitrary short exact sequence Ck(G,A)→ B → C, the sequence

Ck(G,A)G → BG → CG



Supplements on Segal-Mitchison cohomology 29

is exact, i.e., BG → CG is surjective. Indeed, for y ∈ CG choose an inverse image x ∈ B and observe
that g.x− x may be interpreted as an element of Ck(G,A) for each g ∈ G. If we define

ψ(g, h) := (g.x− x)(h) and ξ(h) := h.ψ(h−1, e)15,

then we have g.ξ − ξ = g.x− x since

(g.ξ − ξ)(h) =g.(ξ(g−1h))− ξ(h) = h.(ψ(h−1g, e))− h.ψ(h−1, e)

=h.((h−1.g.x− x)(e)− (h−1.x− x)(e))

=h.((h−1.(g.x− x))(e)) = (g.x− x)(h).

Thus x− ξ is G-invariant and maps to y.

2. It is not necessary to work with the resolution (19), any resolution

A→ A0 → A1 → A2 → · · · (21)

(i.e., a long exact sequence of abelian groups such that the constituting short exact sequences have local
continuous sections) with Ai of the form Ck(G,A′i) for some contractible A′i would do the job. Indeed,
then the double complex

...
...

...
...

EG(B2
GA) //

OO

EG(B2
G(Ck(G,A′0))) //

OO

EG(B2
G(Ck(G2, A′1))) //

OO

EG(B2
G(Ck(G3, A′2))) //

OO

· · ·

EG(BGA) //

OO

EG(BG(Ck(G,A′0))) //

OO

EG(BG(Ck(G2, A′1))) //

OO

EG(BG(Ck(G3, A′2))) //

OO

· · ·

EG(A) //

OO

EG(Ck(G,A′0)) //

OO

EG(Ck(G2, A′1)) //

OO

EG(Ck(G3, A′2)) //

OO

· · ·

A //

OO

Ck(G,A′0) //

OO

Ck(G2, A′1) //

OO

Ck(G3, A′2) //

OO

· · ·
has exact rows and columns (cf. [Seg70, Prop. 2.2]), which remain exact after applying the invariants
functor to it by the observation from 1. Thus the cohomology of the first row is that of the first column,
showing that the cohomology of 20 is the same as the cohomology of AG0 → AG1 → AG2 → · · · .
In particular, for contractible A′ we may replace (19) in the definition of Hn

SM(G,A′) by

A′ → E′GA→ E′G(B′GA
′)→ E′G(B′

2
GA)→ E′G(B′

3
GA
′) · · ·

with E′G(A′) := Ck(G,A′) and B′G(A) := E′G(A)/A (the occurrence of E in the definition EG(A) :=
Ck(G,EA) only serves the purpose of making the target contractible).

3. Since A′ is assumed to be contractible, the short exact sequence A′ → E′G(A′) → B′G(A′) has a global
continuous section [Seg70, App. B], and thus the sequence

Ck(G,A′)→ Ck(G,E′G(A′))→ Ck(G,B′G(A′))

is exact. In particular, the isomorphism Ck(G,E′G(A′)) ∼= E′G(Ck(G,A′)) shows that

B′G(Ck(G,A′)) := E′G(Ck(G,A′))/Ck(G,A′) ∼= Ck(G,E′G(A′))/Ck(G,A′) ∼= Ck(G,B′G(A′))

is again of the form Ck(G,A′′) with A′′ contractible.

These observations, together with an inductive argument, imply that the sequence

AG → (E′GA)G → (E′G(BGA))G → (EG(B′
2
GA))G → (E′G(B′

3
GA))G · · ·

15Note that the leading h is missing in [Seg70, Ex. 2.4].
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is exact for A = Ck(G,A′) and contractible A′, and finally that Hn
SM(G,A) vanishes for n ≥ 1. What also

follows is that for contractible A′, we have Hn
SM(G,A′) ∼= Hn

glob,c(G,A
′) (cf. [Seg70, Prop. 3.1]). Indeed,

Ck(Gk, A′) ∼= Ck(G,Ck(Gk−1, A′)) and thus

A′ → Ck(G,A′)→ Ck(G2, A′)→ Ck(G3, A′)→ · · ·

serves as a resolution of the form (21). Dropping A′ and applying the invariants functor to it then gives the
(homogeneous version of) the complex Cnglob,c(G,A

′).
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