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EXTREMAL RESULTS FOR ODD CYCLES IN SPARSE

PSEUDORANDOM GRAPHS

ELAD AIGNER-HOREV, HIÊ. P HÀN, AND MATHIAS SCHACHT

Abstract. We consider extremal problems for subgraphs of pseudorandom

graphs. For graphs F and Γ the generalized Turán density πF (Γ) denotes
the maximum edge density of a spanning subgraph of Γ, which contains no

copy of F . Extending the Erdős-Stone theorem for odd cycles, we show that

πF (Γ) = 1/2 provided F is an odd cycle and Γ is a sufficiently pseudorandom
graph.

In particular, for (n, d, λ)-graphs Γ, i.e., n-vertex, d-regular graphs with all

non-trivial eigenvalues in the interval [−λ, λ], our result holds for odd cycles
of length `, if

λ`−2 log(n)`−3 � d`−1/n .

For triangles this condition is best possible and this result was obtained by

Sudakov, Szabó, and Vu, who addressed the case, when F is a complete graph.

A construction of Alon and Kahale (based on an earlier construction of Alon for
triangle-free (n, d, λ)-graphs) asserts that our assumption on Γ is best possible

up to the polylog-factor for every odd ` ≥ 5.

1. Introduction and main result

For two graphs G and H, the generalized Turán number, denoted ex(G,H), is
defined to be the largest number of edges an H-free subgraph of G may have. Here,
a graph G is H-free if it contains no copy of H as a (not necessarily induced)
subgraph. With this notation, the well known Erdős-Stone theorem reads

ex(Kn, H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
(1)

where χ(H) denotes the chromatic number of H.
The systematic study of extensions of the Erdős–Stone theorem arising from

replacing Kn in (1) with a sparse random or a pseudorandom graph was initiated
by Kohayakawa and collaborators (see, e.g., [9, 10, 12, 13]). For random graphs
such extensions were obtained recently in [8, 15].

Here, we continue the study for pseudorandom graphs. Roughly speaking, a
pseudorandom graph is a graph whose edge distribution closely resembles that of
a truly random graph of the same edge density. One way to formally capture this
notion of pseudorandomness is through eigenvalue separation. A graph G on n
vertices may be associated with a Boolean n× n adjacency matrix A. This matrix
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is symmetric and, hence, all its eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn are real. If G is d-
regular, then λ1 = d and |λn| ≤ d by the Perron-Frobenius theorem. The difference
in order of magnitude between d and the second eigenvalue λ(G) = max{λ2, |λn|}
ofG is often called the spectral gap ofG. It is well known [1, 17] that the spectral gap
provides a measure of control over the edge distribution of G. Roughly, the larger
is the spectral gap the stronger is the resemblance between the edge distribution
of G and that of the random graph G(n, p), where p = d/n. This phenomenon
led to the notion of (n, d, λ)-graphs by which we mean d-regular n-vertex graphs
satisfying |λ(G)| ≤ λ.

Turán type problems for sparse pseudorandom graphs were addressed in [7, 13,
16]. In this paper, we continue in studying extensions of the Erdős-Stone theorem
for sparse host graphs and determine upper bounds for the generalized Turán num-
ber for odd cycles in sparse pseudorandom host graphs, i.e., ex(G,C2k+1) where G
is a pseudorandom graphs and C2k+1 is the odd cycle of length 2k + 1. Our work
is related to work of Sudakov, Szabó, and Vu [16] who determined ex(G,Kt) for a
pseudorandom graph G and t ≥ 3. Their result may be viewed as the pseudorandom
counterpart of Turán’s theorem [6].

For any graph G, the trivial lower bound ex(G,C2k+1) ≥ e(G)/2, where e(G) =
|E(G)|, follows from the fact that every graph G contains a bipartite subgraph with
at least half the edges of G. For G ∼= Kn, this bound is essentially tight, by the
Erdős-Stone theorem. Our result asserts that this bound remains essentially tight
for sufficiently pseudorandom graphs.

Theorem 1. Let k ≥ 1 be an integer. If Γ is an (n, d, λ)-graph satisfying

λ2k−1 � d2k

n
(log n)

−4(k−1)2

, (2)

then

ex(Γ, C2k+1) =

(
1

2
+ o(1)

)
dn

2
. (3)

The asymptotic notation in (2) means that λ and d may be functions of n; and

for two functions f(n), g(n) > 0 we write f(n) � g(n) whenever f(n)
g(n) → 0 as

n→∞.
For k = 1, the same problem was studied in [16]. In this case, we obtain the

same result which is known to be best possible due to the construction of Alon [2].
For k ≥ 2, Alon’s construction can be extended as to fit for general odd cycles;
see [3] and [14, Example 10 and page 125], implying that that for any k ≥ 2 the
condition (2) is best possible up to the polylog-factor.

1.1. Our main result. Theorem 1 is a consequence of Theorem 3 stated below
for the so called jumbled graphs. We recall this notion of pseudorandomness which
can be traced back to Thomason [18].

Given a graph Γ and two not necessarily disjoint sets X,Y ⊂ V (Γ). By vol(X,Y )
we denote the number of all possible edges with one end in X and the other in Y
and by eΓ(X,Y ) we denote the number of actual edges xy ∈ E(Γ) satisfying x ∈ X
and y ∈ Y . As usual, let eΓ(X) = eΓ(X,X).
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Definition 2. Let p = p(n) be a sequence of densities, i.e., 0 ≤ p ≤ 1, and let
β = β(n). An n-vertex graph Γ is called (p, β)-jumbled if

|eΓ(X,Y )− p vol(X,Y )| ≤ β vol(X,Y )1/2,

for all X,Y ⊆ V (Γ).

In particular, for disjoint sets X,Y

|eΓ(X,Y )− p|X||Y || ≤ β(|X||Y |)1/2, (4)

and for X = Y we have ∣∣∣∣eΓ(X)− p
(
|X|
2

)∣∣∣∣ ≤ β|X| (5)

The following is our main result. The rest of the paper is dedicated to its proof.

Theorem 3. For every integer k ≥ 1 and every δ > 0 there exists a γ > 0 such
that for every sequence of densities p = p(n) there exists an n0 such that for any
n ≥ n0 the following holds.

If Γ is an n-vertex (p, β)-jumbled graph satisfying

β ≤ γ p
1+ 1

(2k−1)n

log2(k−1) n
, (6)

then

ex(Γ, C2k+1) <

(
1

2
+ δ

)
p

(
n

2

)
.

By the so called expander mixing lemma [4, 17] (see also [5, Prop. 9.2.1]), an
(n, d, λ)-graph as in Theorem 1 is a (p, β)-jumbled graph with p = d/n and β =

o(p1+1/(2k−1)n log−2(k−1) n) showing that Theorem 3 indeed implies Theorem 1.

2. Proof of Theorem 3

Our proof of Theorem 3 relies on Lemmas 4 and 5 stated below. In this section,
we state these lemmas while defering their proofs to Sections 3 and 4, respectively.
We then show how these two lemmas imply Theorem 3.

To state Lemma 4, we employ the following notation. For a graph G and disjoint
vertex sets X,Y ⊆ V (G), we write G[X,Y ] to denote the bipartite subgraph of G
whose vertex set is X ∪ Y and whose edge set, denoted EG(X,Y ), consists of all
edges of G with one end in X and the other in Y . Also, we write EG(X) to denote
the edge set of G[X].

For a graph R and a positive integer m, we write R(m) to denote the graph
obtained by replacing every vertex i ∈ V (R) with a set of vertices Vi of size m and
adding the complete bipartite graph between Vi and Vj whenever ij ∈ E(R). A
spanning subgraph of R(m) is called an R(m)-graph. In addition, such a graph,
say G ⊆ R(m), is called (α, p, ε)-degree-regular if degG[Vi,Vj ](v) = (α± ε)pm holds

whenever ij ∈ E(R) and v ∈ Vi∪Vj . Throughout, the notation R(m′) for a positive
real m′ is shorthand for R(dm′e); such conventions do not effect our asymptotic
estimates.

The following lemma essentially asserts that under a certain assumption of jum-
bledness, a relatively dense subgraph of a sufficiently large (p, β)-jumbled graph
contains a degree-regular C`(m)-graph with large m.
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Lemma 4. For any integer ` ≥ 3, all % > 0, α0 > 0 and 0 < ε < α0 there exist
a ν > 0 and a γ > 0 such that for every sequence of densities p = p(n) � log n/n
there exists an n0 such that for every n ≥ n0 the following holds.

Let Γ be an n-vertex (p, β)-jumbled graph with β = β(n) ≤ γp1+%n and let G ⊂ Γ
be a subgraph of Γ satisfying e(G) ≥ α0p

(
n
2

)
. Then, there exists an α ≥ α0 such

that G contains an (α, p, ε)-degree-regular C`(νn)-graph as a subgraph.

Equipped with Lemma 4, we focus on large degree-regular C`(m)-graphs hosted
in a sufficiently jumbled graph Γ. In this setting, we shall concentrate on odd cycles
in Γ that have all but one of their edges in the hosted C`(m)-graph. The remaining
edge belongs to Γ. The first part of Lemma 5 stated below provides a lower bound
for the number of such configurations (see (8)). We now make this precise.

We require some additional notation introduced next. Fix a vertex labeling of
C2k+1, say, (uk, . . . , u1, w, v1, . . . , vk). For a jumbled graph Γ (as in Lemma 5),
let H ⊆ Γ be a C2k+1(m)-graph with the following corresponding vertex partition
(Uk, . . . , U1,W, V1, . . . , Vk). By C(H,Γ) we denote the set of all cycles of length
(2k + 1) of the form (u′k, . . . , u

′
1, w

′, v′1, . . . , v
′
k) such that w′ ∈ W, v′i ∈ Vi, u′i ∈ Ui,

v′ku
′
k ∈ E(Γ), and all edges other than v′ku

′
k in E(H). In other words, a member

of C(H,Γ) is a cycle of Γ of length 2k+ 1 with the additional requirement that the
labeled edge v′ku

′
k connects the ends of the path of length 2k in H.

For a real number µ > 0, an edge of Γ[Vk, Uk] is called µ-saturated if such is
contained in at least p(µpm)2k−1 members of C(H,Γ). A cycle in C(H,Γ) containing
a µ-saturated edge is called a µ-saturated cycle. We write S(µ,H,Γ) to denote the
set of µ-saturated cycles in C(H,Γ).

To motivate the definition of µ-saturated edges, note that we expect that an edge
of Γ[Uk, Vk] extends to (αp)2km2k−1 members of C(H,Γ). For µ ≈ α, a µ-saturated
edge overshoots this expectation by a factor of 1/α.

The following lemma asserts for sufficiently jumbled graphs the number of α-
saturated cycles is negligible compared to |C(H,Γ)| (see (8) and (9)).

Lemma 5. For any integer k ≥ 1 and all reals 0 < ν, α0 ≤ 1, and 0 < ε ≤ α0/3
there exists a γ > 0 such that for every sequence of densities p = p(n) there exists
an n0 such that for any n ≥ n0 the following holds.

If Γ is (p, β)-jumbled n-vertex graphs with

β = β(n) ≤ γ p1+ 1
2k−1n

log2(k−1) n
, (7)

then for any m ≥ νn and any α ≥ α0 a (α, p, ε)-degree-regular C2k+1(m)-graph
H ⊆ Γ satisfies

|C(H,Γ)| ≥ (α− 2ε)
2k

(pm)2k+1 (8)

and

|S(α+ 2ε,H,Γ)| ≤ (3ε)2k (pm)
2k+1

. (9)

With Lemmas 4 and 5 stated above (and proved in Sections 3 and 4, respectively)
we proceed by showing how these imply Theorem 3; our main result.
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Proof of Theorem 3. Let k ≥ 1 and δ > 0 be given. Without loss of generality, we
may assume that δ ≤ 1/2. We set

` = 2k + 1, % = `−1, ε =
δ

4 + 32k + 62k+1
, and α0 = 1/2 + δ, (10)

and let ν and γ1 be those obtained by applying Lemma 4 with `, %, ε, and α0 as
these are set in (10). Next, let γ2 be that obtained by applying Lemma 5 with
k, ν, α0 and ε, and set

γ = min{γ1, γ2, δν/4}. (11)

From this point on, Theorem 3 and Lemmas 4 and 5 are quantified in a similar
manner. Hence, given p = p(n), let n0 be sufficiently large as to accommodate
Lemmas 4 and 5.

Let Γ be a (p, β)-jumbled n-vertex graph with β satisfying (6). To prove Theo-
rem 3, it is sufficient to show that every subgraph G of Γ satisfying e(G) ≥ α0p

(
n
2

)
contains a C2k+1. To that end, let G be such a subgraph of Γ and let H ⊆ G be
an (α, p, ε)-degree-regular C2k+1(m)-graph given by Lemma 4, where α ≥ α0 and
m ≥ νn. Next, let F = F (Uk, Vk) ⊆ EΓ(Uk, Vk) denote those edges of Γ[Uk, Vk]
met by a member of C(H,Γ). Every edge in F completes a path of length 2k in H
into a cycle of length 2k + 1. In what follows, we prove that F ∩ E(Uk, Vk) 6= ∅
which then implies that C2k+1 ⊆ H ⊆ G completing our proof of Theorem 3.

To this end, it is sufficient to show

|F | ≥
(
α− δ

2

)
pm2. (12)

Indeed, as H is (α, p, ε)-degree-regular and since ε < δ/2, we obtain

eH(Uk, Vk) =
∑
v∈Uk

degH[Uk,Vk](v) ≥
(
α− δ

2

)
pm2.

On the other hand, jumbledness of Γ combined with m ≥ νn and γ ≤ δν/4 guar-
antees

eΓ(Uk, Vk) ≤ pm2 + βm ≤ pm2 + γp1+%nm ≤ (1 + δ/2) pm2.

Hence, eΓ(Uk, Vk) < |F |+ eH(Uk, Vk) implying that |F | and EH(Uk, Vk) have non-
empty intersection.

It remains to show (12). By definition, each member of F is contained in at most

p (α+ 2ε)
2k−1

(pm)2k−1 members of C′ = C(H,Γ) \ S(α+ 2ε,H,Γ) so that

|F | ≥ |C′|
p (α+ 2ε)

2k−1
(pm)2k−1

. (13)

Next, owing to Lemma 5, we obtain the estimates

|C(H,Γ)| ≥ (α− 2ε)
2k

(pm)2k+1 (14)

and

|S(α+ 2ε,H,Γ)| ≤ (3ε)2k(pm)2k+1. (15)

Combining (13), (14), and (15) we obtain that

|F | ≥ (α− 2ε)2k − (3ε)2k

(α+ 2ε)2k−1
pm2.
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First, we consider the term

T =
(α− 2ε)2k

(α+ 2ε)2k−1
= (α− 2ε)

(
α− 2ε

α+ 2ε

)2k−1

.

As a−b
a+b ≥ 1− 2

ab for any a, b > 0 and α ≥ 1/2, we attain

T ≥ (α− 2ε)

(
1− 2

α
2ε

)2k−1

≥ (α− 2ε)(1− 8ε)2k−1.

By the Bernoulli inequality (1−8ε)2k−1 ≥ (1−16kε). Then, since δ ≤ 1/2 it follows
that

T ≥ α− 2ε− 16kε. (16)

Combining the fact that

(3ε)2k

(α+ 2ε)2k−1
≤ 22k−132kε ≤ 62kε

with (16), we arrive at

|F | ≥
(
α− 2ε− 16kε− 62kε

)
pm2.

As 2ε+ 16kε+ 62kε ≤ δ/2, by the choice of ε, (12) follows. �

3. Proof of Lemma 4

In this section, we prove Lemma 4. This lemma follows from Lemma 6 below.
Roughly speaking, Lemma 6 asserts that under certain assumptions, a jumbled
graph contains a large subgraph with all its vertices having almost the same degree.

Lemma 6. For all % ≥ 0, µ > 0, 0 < ε < α ≤ 1 there exists a γ > 0 such that for
every sequence of densities p = p(n) there exists an n0 such that for any n ≥ n0

the following holds.
Let Γ be a (p, β)-jumbled n-vertex graph with β = β(n) ≤ γp1+%n and let G ⊂ Γ

be a subgraph of Γ satisfying n′ = |V (G)| ≥ µn and e(G) ≥ αp
(
n′

2

)
. Then, there

exists a subset U ⊂ V (G) of size at least εn′/50 such that one of the following holds:

(I) e(G[U ]) ≥
(
α+ 2ε2/25

)
p
(|U |

2

)
or

(II) degG[U ](u) = (α± ε)p|U | for all u ∈ U .

To prove Lemma 6, we shall make use of the following property immediately
deduced from jumbledness.

Proposition 7. Let Γ be a (p, β)-jumbled graph. If X,Y ⊆ V (Γ) are disjoint and
satisfy eΓ(X,Y ) ≥ k|X| 6= p|Y ||X|, then

|X| ≤ β2|Y |
(k − p|Y |)2

. (17)

Proof of Lemma 6. Given %, µ, ε, and α, set

t∗ =
1

2%
+ 1, ξ =

8ε2

252
, and γ =

µ2ε2ξ

24t∗+1
(18)

Given p = p(n), let n0 be sufficiently large, and let Γ and G be as stated. We
suppose that (I) is not satisfied and show that (II) holds.
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We begin by passing to a large subgraph with a lower bound on its minimum
degree. More precisely, we show that

there exists a W ⊂ V (G) with |W | ≥
√

ξ
2n
′ and δ(G[W ]) ≥ (α− ξ)p|W |, (19)

where δ(J) denotes the minimum degree of a graph J .
To this end, let {Vn′ , Vn′−1, . . . , Vm} be a maximum sequence of vertex sets

where Vn′ = V (G) and Vt−1 is obtained from Vt by removing a single vertex in Vt
of degree less than (α−ξ)p|Vt| = (α−ξ)pt. Given such a sequence, we set W = Vm.

It remains to show that |W | = m ≥ (ξ/2)
1/2

n′. Indeed,

αp

(
n′

2

)
≤ e(G) ≤ (α− ξ)p

∑
t∈[n′]

t

+ eΓ(W );

and since eΓ(W ) ≤ p
(|W |

2

)
+ β|W |, we attain that

α

(
n′

2

)
≤ (α− ξ)

(
n′ + 1

2

)
+

(
|W |

2

)
+ γp%n|W |.

As n′ ≥ µn, then γp%n|W | ≤ γ
µ (n′)2. Hence, for n′ sufficiently large (i.e., n0

sufficiently large) we have

ξ

3
(n′)2 ≤ |W |

2

2
+
γ

µ
(n′)2.

Isolating |W |2 then yields

2

(
ξ

3
− γ

µ

)
(n′)2 ≤ |W |2.

Assertion (19) now follows as γ ≤ ξµ/12.
Next, we repeatedly delete vertices with too high degree showing that this hardly

effects the size of W and the minimum degree condition obtained above. To handle
the maximum degree, we repeatedly discard vertices from W whose degree in G[W ]
exceeds a certain limit. It turns out that although the number of such discarded
vertices might be of order Ω(|W |) we may still ensure that a significant portion of
G[W ] remains. We make this precise now.

Recall that m = |W |, let

X1 =
{
u ∈W : degG[W ](u) ≥ (α+ ε/5)pm

}
,

and note that

|X1| ≤
ε

25
m. (20)

Indeed, eG(W ) ≤
(
α+ 2ε2/25

)
p
(
m
2

)
as assumption (I) does not hold. Then,(

α+ 2ε2/25
)
pm2 ≥ 2|EG(W )| =

∑
u∈W\X1

degG[W ](u) +
∑
x∈X1

degG[W ](x)

≥ (α− ξ)pm(m− |X1|) + (α+ ε/5)pm|X1|
= (α− ξ)pm2 + (ε/5 + ξ)pm|X1|;

so that

|X1| ≤
(
ε2/25 + ξ

ε/25 + ξ

)
m

(18)

≤ ε

25
m.
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The maximum degree of G[W \X1] is at most (α+ε/5)pm and |W \X1| ≥ 4ε
5 m.

However, the minimum degree of a vertex in G2 may now be lower than the bound
requested in (II) and in the remainder of the proof we focus on handling this issue.
Indeed, for a vertex v ∈ W , |NG[W ](v) ∩ X1| might be large to the extent that
discarding X1 has an effect on the degree of v in the resulting graph. As X1 might
be linear in |W | such an event is possible. In the remainder of the proof we focus
on handling this issue.

To this end, we define a sequence of sets (X2, X3, . . . ). The set of vertices
X2 ⊆ W \ X1 consists of those vertices whose degree in G[W ] into X1 is “too
large”. In a similar manner, for t > 2, we define Xt to be the set consisting of the
vertices having “too high” degree into Xt−1. We will show that such a sequence
has constant length and that

∑
t |Xt| is negligible with respect to (α + ε/5)pm so

that discarding all these sets does not affect the maximum degree of the remaining
vertices.

For t ≥ 2, put

Xt =

u ∈W \
t−1⋃
j=1

Xj : degG[W ](u,Xt−1) ≥ ε

2t+2
pm

 .

In what follows, we prove by induction on i that

|Xt| ≤ γt−1p(t−1)2%m, for all 2 ≤ t ≤ t∗. (21)

Indeed, |X2| satisfies,

|X2|
(17)

≤ β2|X1|(
ε
8pm− p|X1|

)2 ≤ ε
25γ

2p2p2%n2m(
ε
8 −

ε
25

)2
p2m2

≤

 γ

µ ε
25

√
ξ
2

2

p2%m
(18)

≤ γp2%m,

where the third inequality is since n2 ≤ m2

µ2ξ/2 . Consequently, (21) holds for t = 2.

For t ≥ 2 we obtain that

|Xt+1| ≤
β2|Xt|(

ε
2t+3 pm− p|Xt|

)2
holds, by (17). Substituting |Xt| with the inductive hypothesis yields

|Xt+1| ≤
γ2p2p2%n2γt−1p2(t−1)%m(
ε

2t+3 − γt−1p2(t−1)%
)2
p2m2

≤ γ2γt−1p2t%m(
ε

2t+3 − γt−1p2(t−1)%
)2
µ2 ξ

2

.

As by the choice of γ, the inequality

ε

2t+3
− γt−1p2(t−1)% ≥ ε

2t+4

holds for each 2 ≤ t ≤ t∗, we reach

|Xt+1| ≤
γ2γt−1(

µ ε
2t+4

√
ξ
2

)2 p
2t%m

(18)

≤ γtp2t%m.

This concludes our proof of (21).
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Next, we show that the length of the sequence (Xt) is constant. In particular,
we show that this sequence has length at most t∗ = 1

2% + 1. To see this, observe

that Xt+1 is empty if |Xt| < ε
2t+2 pm. By (21), the latter is satisfied if

γt−1p2(t−1)%m <
ε

2t+2
pm. (22)

For t∗, (22) is satisfied provided

γt
∗−1 ≤ ε

2t∗+2
,

which indeed holds due to the choice of γ.

In the remainder of the proof we show that we may choose U = W \
⋃t∗
t=1Xt.,

i.e., |U | ≥ ε
50n
′ and G[U ] satisfies (II). Observe that

|U | = |W | − |X1| −
t∗∑
t=2

|Xt| ≥ |W | − |X1| − (t∗ − 1)|X2|

≥
√
ξ

2
n′ − ε

25
m− 1

2%
γp2%m ≥

(√
ξ

2
− ε

25
− γ

2%

)
n′.

Recalling the choice of ξ and observing that γ
2%

(18)

≤ ε
50 , we have that |U | ≥ ε

50n
′ as

required. By almost the same argument we also observe that

|U | ≥ m− |X1| − (t∗ − 1)|X2| ≥
(

1− 3ε

50

)
m.

It remains to verify that G[U ] satisfies (II). We begin with the maximum degree
of a vertex v ∈ U . Such a vertex satisfies

degG[U ](v) < (α+ ε/5)pm ≤ (α+ ε/5)p
|U |(

1− 3ε
50

) ≤ (α+ ε)p|U |

as α+ ε/5 ≤
(
1− 3ε

50

)
(α+ ε) since α+ ε ≤ 2.

Finally, we consider the minimum degree of a vertex v ∈ U . We have that

degG[U ](v) ≥ (α− ξ) pm− |Xt∗ | −
ε

4
pm

(
t∗∑
t=2

1

2t

)
.

The choice of γ and t∗ and (21) yield |Xt∗ | ≤ ε
50pm. In addition,

∑t∗

t=2 2−t ≤ 1/2.
Consequently,

degG[U ](v) ≥
(
α− ξ − ε

50
− ε

4

)
pm

(18)

≥ (α− ε)pm≥(α− ε)p|U |.

This concludes our proof of Lemma 6. �

Lemma 4 follows from Lemma 6 and a standard concentration result for the
hypergeometric distribution.

Proof of Lemma 4. Given `, %, ε, and α0, set

ε1 = ε/4, µ = (ε1/50)
100ε−2

1 , and ν = µ/`,

let γ′ be that obtained by applying Lemma 6 with %, ε1, and α0, and put

γ = min{γ′, µ}.
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Given p = p(n), let n0 be sufficiently large as to accommodate Lemma 6. For
n ≥ n0, let Γ be an n-vertex (p, β)-jumbled graph, where β is as specified in
Lemma 4, and let G ⊆ Γ be a subgraph of Γ satisfying e(G) ≥ α0p

(
n
2

)
.

To prove Lemma 4, we shall first pass to a subgraph of G that is essentially
degree regular and of order linear in n. We then show that a random equipartition
of such a subgraph is highly likely to be an (α, p, ε)-degree-regular C`(νn)-graph
for some α ≥ α0.

In what follows, we show that there exists an α ≥ α0 and a set U ⊆ V (G)
satisfying

(i) |U | ≥ µn and
(ii) degG[U ](u) = (α± ε1)p|U | for each u ∈ U .

Roughly speaking, to prove this we shall repeatedly apply Lemma 6 starting from
G0 = G and nested subgraphs thereof until assertion (II) of that lemma holds. Due
to jumbledness such an iteration gives rise to a sequence (G0, . . . , Gt) of nested
subgraphs of G0 where t is a constant. We shall then set U = V (Gt). We now
make this precise.

Set G0 = G. For i > 0, let Gi ⊆ Gi−1 be the subgraph of Gi−1 obtained by
assertion (I) of Lemma 6 so that

|V (Gi)| ≥
ε1

50
|V (Gi−1)|

and

e(Gi) ≥
(
α0 + i

(ε1)2

25

)
p

(
|V (Gi)|

2

)
.

Owing to jumbledness and the assumption that e(G0) ≥ α0p
(|V (G0)|

2

)
, it holds that

|V (G0)| ≥ µn. Consequently, sequences of the form (G0, G1, . . .) exist. Let then
(G0, . . . , Gt) be a maximal such sequence. Jumbledness yields(

α0 + t
ε2

1

25

)
p

(
µn

2

)
≤ p
(
µn

2

)
+ βµn,

so that t ≤ 100γ
µε21
≤ 100

ε21
, where γ ≤ µ is used for the last inequality. The existence

of α as required is clear.
In the remainder of the proof, we show that a random equipartition of G[U ]

is highly likely to be an (α, p, ε)-degree-regular C`(νn)-graph. Without loss of
generality, we may assume that |U | = `νn (and thus divisible by `) and that
degG[U ](u) = (α±2ε1)p|U | for each u ∈ U . Indeed, a set U ′ ⊆ U with |U ′| = `νn ≥
µ
2n can be obtained by removing at most ` − 1 vertices from U . A vertex u ∈ U ′
satisfies degG[U ′] = (α ± 2ε′)p|U ′| since ` ≤ ε′p|U | for n (i.e., n0) sufficiently large

and p = Ω(n−1).
Let U = U1∪̇ . . . ∪̇U` be a random equipartition of U consisting of ` sets each of

size νn. Call a vertex v ∈ U bad if there exists an index j ∈ [`] such that v 6∈ Uj
and ∣∣ deg(v, Uj)− αp|Uj |

∣∣ > εp|Uj |.
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Next, for two distinct indices i, j ∈ [`] and a vertex v ∈ Ui, let X = Xj
v = deg(v, Uj)

denote the degree of v into Uj in G[U ]. The random variable X is hypergeometri-
cally distributed with mean

EX =
(α± 2ε1)p|U ||Uj |

|U |
= (α± 2ε1)p|Uj |.

For hypergeometrically distributed random variable the following is a well-known
concentration result (see e.g., [11, Theorem 2.10 and Equation (2.9)])

P [|X − EX| ≥ ηEX] ≤ 2 exp(−ηEX/3) for η ≤ 3/2.

Consequently, the probability that a fixed vertex v is bad is given by

P [v is bad] ≤ `P [|X − EX| > (ε− 2ε1)pνn] ≤ `P
[
|X − EX| > ε− 2ε1

α+ 2ε1
EX
]

≤ 2` exp

(
− ε− 2ε1

α+ 2ε1
EX
)
,

Hence, for n sufficiently large since p� lnn/n we have that

P [there exists a bad vertex in U ] ≤ 2`|U | exp

(
− ε− 2ε1

α+ 2ε1
EX
)
< 1,

implying that there exists an equipartition of U yielding no bad vertices. Such a
partition, with possible redundant edges removed, forms an (α, p, ε)-degree-regular
C`(νn)-graph, as required. �

4. Proof of Lemma 5

In this section we prove Lemma 5. Throughout this section, Γ denotes an n-
vertex (p, β)-jumbled graph and H denotes an (α, p, ε)-degree-regular C2k+1(m)-
graph that is a subgraph of Γ. We assume that the graph H has a partition
(Uk, . . . , U1,W, V1, . . . , Vk) of its vertex set (see Section 2).

Lemma 5 has two parts the first of which concerns C(H,Γ). Recall that this set
consists of all (2k + 1)-cycles of the form (uk, . . . , u1, w, v1, . . . , vk), where ui ∈ Ui,
w ∈W , vi ∈ Vi, the edge ukvk is an edge of Γ[Uk, Vk], and the remaining edges are
that of H. The first part of the lemma (see (8)) asserts that

|C(H,Γ)| ≥ (α− 2ε)
2k

(pm)2k+1 .

Observe that the fact that H is almost degree regular implies that the number of
paths of the form (uk, . . . , u1, w, v1, . . . , vk) in H is ((α ± ε)pm)2k. As H is an
arbitrary subgraph of Γ it may occur that this set of paths ”clusters” on a small
number of pairs of vertices (uk, vk) ∈ Uk×Vk. The lower bound stated in (8) asserts
that this is not the case. In fact, a p proportion of these paths extend to cycles in
C(H,Γ) as one would expect in a purely random setting.

The second part of Lemma 5 concerns the set S(α+2ε,H,Γ) of (α+2ε)-saturated
cycles. This consists of all cycles (uk, . . . , u1, w, v1, . . . , vk) in C(H,Γ) for which
the edge ukvk ∈ E(Γ[Uk, Vk]) is (α + 2ε)-saturated, meaning that it is contained
in at least p((α + 2ε)pm)2k−1 members of C(H,Γ). In (9), the second part of
the lemma, an upper bound is put forth for |S(α + 2ε,H,Γ)| asserting that the
latter is negligible compared to |C(H,Γ)|. The point here is that for |C(Γ, H)| ≥
(α − 2ε)2k(pm)2k+1 ((8) will yield this) and eΓ[Uk, Vk] is approximately pm2, we
expect an edge of Γ[Uk, Vk] to be contained in roughly at least p(α−2ε)2k(pm)2k−1
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members of C(H,Γ). Hence, for a small ε, the number of (α+ 2ε)-saturated cycles
overshoots this expectation by a factor of roughly 1/α. In particular, we will show

that |S(α+ 2ε,H,Γ)| ≤ (3ε)2k (pm)
2k+1

.
In the sequel we introduce a framework that will enable us to handle estimates

for both |C(H,Γ)| and |S(µ,H,Γ)| using essentially the same type of arguments.
Prior to this framework, we include here a brief and rough sketch of our approach
for k = 3 in which H has the partition (U3, U2, U1,W, V1, V2, V3).

For a vertex w ∈W , we write C(H,Γ, w) to denote the cycles in C(H,Γ), so that
|C(H,Γ, w)| is the contribution of w to |C(H,Γ)|. Clearly, an estimate for such a
contribution will translate into an estimate for |C(H,Γ)|. To estimate C(H,Γ, w),
we shall repeatedly apply the jumbledness condition (4) to pairs of subsets (L, T )
where L ⊆ U3 and T ⊆ V3. The framework to be introduced will ensure us that
in each such application of the jumbledness condition to a pair (L, T ), each of the
edges in Γ[L, T ] ⊆ Γ[Uk, Vk] thus obtained is contained in roughly the same number
of cycles in C(H,Γ, w).

To achieve this level of control, consider, first, the neighborhood Xw = NH(w)∩
U1 of w in U1. We partition the set U2 according to the “backward” degrees of its
vertices into Xw. More precisely, the ith partition class will consist of all vertices
u ∈ U2 satisfying (1 + η)i−1 ≤ |NH(u) ∩ Xw| < (1 + η)i for some small η to be
chosen later on. Some of these classes may be empty. Nevertheless, these classes
cover U2, and there are at most dlog1+η ne+ 1 such classes.

We proceed to U3 in a similar manner. Each partition class of U2 will define
a partition of U3. The latter is defined in a similar manner to the partition just
defined for U2 using Xw. More precisely, given the i-th partition class of U2, say,
Zη(i,Xw), we assign a vertex u ∈ U3 to the j-th partition class of U3 if it satisfies
(1+η)j−1 ≤ |NH(u)∩Zη(i,Xw)| < (1+η)j . The resulting partition class is denoted
Zη(i, j,Xw).

We partition the sets V2 and V3 in a similar manner where we use Yw = NH(w)∩
V1, the neighborhood of w in V1, instead of Xw.

The advantage of this kind of partitioning is that the number of paths between
w and any vertex u ∈ Zη(i, j,Xw) ⊂ U3, confined to the set Zη(i,Xw) - i.e. paths
of the form (w, u′, u) where u′ ∈ Zη(i,Xw) - is at least (1 + η)i+j−2 and at most
(1+η)i+j . As a result, this number is known up to a factor of (1+η)2. Naturally, the
same bounds hold for w and any vertex v ∈ Zη(i′, j′, Yw) ⊂ V3, where Zη(i′, j′, Yw)
is the set obtained by the partitioning procedure with respect to Yw, V2, and V3.

Now, if we take a path from w to u ∈ Zη(i, j,Xw), confined to Zη(i,Xw), and
another path from w to v ∈ Zη(i′, j′, Yw), confined to Zη(i′, Xw), then these two
paths yield a path from u to v. Hence, the number of such (u, v)-paths is at least

(1 + η)i+i
′+j+j′−4 and at most (1 + η)i+i

′+j+j′ .
Since u and v were arbitrary vertices from Zη(i, j,Xw) and Zη(i′, j′, Yw), respec-

tively, we conclude that if uv is an edge of Γ, then (1 + η)i+i
′+j+j′±4 is the number

of cycles in C(H,Γ, w) that contain the edge uv and are confined to Zη(i,Xw) and
Zη(i′, Xw).

On the other hand, jumbledness of Γ yields that the number of edges in Γ between
Zη(i, j,Xw) and Zη(i′, j′, Yw) is

p|Zη(i, j,Xw)||Zη(i′, j′, Yw)| ± β
√
|Zη(i, j,Xw)||Zη(i′, j′, Yw)|.
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Summing over all 1 ≤ i, j, i′, j′ ≤ dlog1+η ne + 1, we obtain a good estimate for
|C(H,Γ, w)|. Indeed, the main term of the contribution of w is∑

i,j,i′,j′

p|Zη(i, j,Xw)||Zη(i′, j′, Yw)|(1 + η)i+j+i
′+j′±4.

This, we will show to be

|Xw||Yw|p((α± ε)pm)4, (23)

by a simple argument. Note that we also obtain an upper bound here which will
turn out important later. The main obstacle will be to show that the error term is
negligible compared to the main term, i.e., that∑

i,j,i′,j′

β
√
|Zη(i, j,Xw)||Zη(i′, j′, Yw)|(1 + η)i+j+i

′+j′+4 = o(p(pm)6), (24)

provided Γ is sufficiently jumbled. This will be done in Claim 8.
So far we have discussed our approach for establishing the first part of Lemma 5,

i.e., (8). For the second part of this lemma, i.e., (9), we are to estimate of |S(α +
2ε,H,Γ)|. This will be done by employing similar arguments to those above that
will be applied to a rearrangement of the partition (U3, U2, U1,W, V1, V2, V3). In
particular we shall use the rearrangement

(Ũ3, Ũ2, Ũ1, W̃ , Ṽ1, Ṽ2, Ṽ3) = (W,U1, U2, U3, V3, V2, V1).

This is a valid partition of the C7(m)-graph H.
The interest here is to estimate the number of (α + 2ε)-saturated cycles. The

(α+2ε)-saturated edges that these cycles contain now lie between the sets W̃ = U3

and Ṽ1 = V3. For a given vertex w̃ ∈ W̃ we set, as before, X̃w̃ = NH(w̃) ∩ Ũ1.

Unlike before, we shall define the set Ỹw̃ ⊂ Ṽ1 to consist of those vertices of Ṽ1 that
are incident to w̃ through (α+ 2ε)-saturated edges.

The same arguments as above, yield bounds corresponding to (23) and (24)
that will then lead to an upper bound on the number of (α + 2ε)-saturated cycles
containing w̃. In particular, we shall have that since every (α+ 2ε)-saturated edge
is contained in at least p((α+ 2ε)pm)5 cycles containing w̃, then

|Ỹw̃|p((α+ 2ε)pm)5 ≤ |X̃w||Ỹw|p((α+ ε)pm)4 + o(p(pm)6). (25)

Now, as |X̃w| ≤ (α+ ε)pm, we conclude that this last inequality can hold provided

that |Ỹw̃| = o(pm), implying that the number of (α+ 2ε)-saturated cycles contain-
ing w̃ is bounded from above by the right hand side of (25), which is o(p(pm)6).

Summing over all w̃ ∈ W̃ yields the desired bound.

4.1. Preparation for the proof of Lemma 5. In what follows we make the
above discussion as to our approach precise and make it fit for a general k. As
already mentioned, here Γ is a (p, β)-jumbled graph and H is a subgraph of Γ
that is (α, ε, p)-degree-regular C2k+1(m)-graph. The latter we assume to have the
partition (Uk, . . . , U1,W, V1, . . . , Vk) of its vertex set.

Partitioning the neighborhoods. For a real η > 0, set Lη = dlog1+η 2pme + 1, and
let

Iη = {0} × [Lη]k−1,

where the use of zero here will be made clear shortly. By s we mean a tuple of
integers (s1, . . . , sk) ∈ Iη (so that s1 is always zero), and write sj to denote the
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prefix (s1, . . . , sj), where j ∈ [k], and write s instead of sk. We put Zη(s1, X) =
Zη(0, X) = X ⊂ U1, and for j = 2, . . . , k we define

Zη(sj , X) = {x ∈ Uj : (1 + η)sj−1 ≤ |NH(x) ∩ Zη(sj−1, X)| < (1 + η)sj}, (26)

so that Zη(sj , X) ⊆ Uj for each j ∈ [k]. For future reference, it will be convenient
for us to stress that for η ∈ (0, 1], the value (1 + η)sj is essentially bounded by the
maximum degree of H for any j ∈ [k], in particular, it holds that

if η ∈ (0, 1], then (1 + η)sj ≤ 8pm, for any sj ∈ [Lη]; (27)

indeed,

Lη ≤ log1+η(2pm) + 2 ≤ log1+η(2pm) + log1+η 4 = log1+η 8pm.

Observe, in addition, that (1 +η)Lη−1 ≥ 2pm ≥ (α+ ε)pm, and that the maximum
degree of a vertex in H is (α + ε)pm. This means that (26) defines a partition of
the neighborhood of Zη(sj−1, X) in Uj , i.e.,⋃̇

1≤i≤Lη
Zη((s1, . . . , sj−1, i), X) = NH(Zη(sj−1, X)) ∩ Uj , (28)

where some of these sets may possibly be empty.

Counting paths. We exploit the above partitioning scheme in order to count (X,Uk)-
paths in H. Throughout, by paths we always mean shortest paths. Also, if L and
R are two subsets of vertices, we write (L,R)-path to denote a path with one end
in L and the other in R. With these conventions, an (X,Uk)-path in H, where
X ⊂ U1, has a single vertex in each set Ui, i ∈ [k]. Finally, instead of (X, {y})-path
we write (X, y)-path.

For j ∈ {2, . . . , k} and a tuple s ∈ Iη, we write
∑

sj to denote the sum
∑j
i=1 si =∑j

i=2 si, and we write
∑

s instead of
∑

sk. Further, the subgraph of H induced
by the vertex sets {Zη(s1, X), Zη(s2, X) . . . , Zη(sj , X)} is denoted by H(sj).

For a vertex z ∈ Zη(sj , X) the number πH(X, sj , z) of (X, z)-paths confined to
H(sj) clearly satisfies

j∏
i=2

(1 + η)si−1 ≤ πH(X, sj , z) ≤
j∏
i=2

(1 + η)si .

Since s1 = 0, we may write

(1 + η)−(j−1)(1 + η)
∑

sj ≤ πH(X, sj , z) ≤ (1 + η)
∑

sj . (29)

Recall the benefit of the above partitioning scheme, we observe that for any two
vertices z, z′ ∈ Zη(sj , X), the variation between πH(X, sj , z) and πH(X, sj , z

′) is
bounded by a factor of (1 + η)j−1. Hence, the number

πH(X, sj) =
∑

z∈Zη(sj ,X)

πH(X, sj , z)

of (X,Zη(sj , X))-paths confined to H(sj) satisfies

(1 + η)−(j−1)|Zη(sj , X)|(1 + η)
∑

sj ≤ πH(X, sj) ≤ |Zη(sj , X)|(1 + η)
∑

sj .

By (28), every (X,Uj)-path is contained in H(sj) for exactly one sj . Hence,
summing over all sj , we obtain the following inequality for the number πH(X,Uj)



EXTREMAL RESULTS FOR ODD CYCLES IN SPARSE PSEUDORANDOM GRAPHS 15

of (X,Uj)-paths:

(1 + η)−(j−1)
∑
sj

|Zη(sj , X)|(1 + η)
∑

sj

≤ πH(Uj , X) ≤
∑
sj

|Zη(sj , X)|(1 + η)
∑

sj . (30)

On the other hand, owing to the degree-regularity of H, we obviously have

|X| ((α− ε)pm)
j−1 ≤ πH(Uj , X) ≤ |X| ((α+ ε)pm)

j−1
(31)

for all j ∈ [k]
We conclude this section by mentioning that for a set Y ⊆ V1 and a tuple

t ∈ Iη, we define the sets {Zη(tj , Y )}kj=1 and the numbers πH(Y, tj , u), πH(Y, tj),
πH(Vj , Y ) in an analogous manner to the sets and numbers just defined. The
properties (28) to (31) translate verbatim.

Counting cycles. Given u ∈ Uk, v ∈ Vk, πH(X,u), and πH(Y, v) (the number of
(X,u)-paths and (Y, v)-paths, respectively), we have that

O(X,Y ) =
∑

uv∈EΓ(Uk,Vk)

πH(X,u)πH(Y, v) (32)

is the number of composed paths each of which comprises a (X,u)-path and a (Y, v)-
path (in H) connected by the edge uv ∈ Γ[Uk, Vk]. Let now C(H,Γ, w) denote the
set of cycles in C(H,Γ) containing the vertex w ∈W , and observe that

|C(H,Γ, w)| = O(NH(w) ∩ U1, NH(w) ∩ V1). (33)

Next, let us consider |S(µ,H,Γ)|. To this end, we rearrange the partition

(Uk, . . . , U1,W, V1, . . . , Vk) to yield a partition (Ũk, . . . , Ũ1, W̃ , Ṽ1, . . . , Ṽk). This we
obtain by simply renaming the partition classes as follows:

W̃ = Uk, Ũ1 = Uk−1, . . . , Ũk−1 = U1, Ũk = W, Ṽ1 = Vk, . . . , Ṽk = V1. (34)

Note that the new partition is still a valid partition of the C2k+1(m)-graph H, and

that the µ-saturated edges now lie between W̃ and Ṽ1. For a vertex w̃ ∈ W̃ , let
Dµ(w̃) denote the set of vertices in Ṽ1 adjacent to w̃ (in Γ) through a µ-saturated
edge and let S(µ,H,Γ, w̃) denote the set of µ-saturated cycles containing w̃. Then,

|S(µ,H,Γ, w̃)| ≤ Õ(NH(w̃) ∩ Ũ1, Dµ(w̃)), (35)

where Õ(X̃, Ỹ ) is defined in the same way as O(X̃, Ỹ ) only with respect to the

partition (Ũk, . . . , Ũ1, W̃ , Ṽ1, . . . , Ṽk), and where X̃ ⊂ Ũ1 and Ỹ ⊂ Ṽ1. In (35), we

obtain an upper bound only as cycles in Õ(NH(w̃)∩ Ũ1, Dµ(w̃)) may involve edges

in Γ between Ũk and Ṽk which might not belong to H.
In view of (33) and (35), we focus on O(X,Y ) in order to estimate |C(H,Γ, w)|

and |S(µ,H,Γ, w̃)|. For tuples s, t ∈ Iη, we write eΓ(s, t) for eΓ(Zη(s, X), Zη(t, Y )),
and observe that due to (30) we may write∑

s

∑
t eΓ(s, t)(1 + η)

∑
s+

∑
t

(1 + η)2(k−1)
≤ O(X,Y ) ≤

∑
s

∑
t

eΓ(s, t)(1 + η)
∑

s+
∑

t. (36)

Here, we appeal to the jumbledness of Γ to estimate eΓ(s, t) which asserts that

eΓ(s, t) = p|Zη(s, X)||Zη(t, Y )| ± β
√
|Zη(s, X)||Zη(t, Y )|. (37)
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Substituting this estimate for eΓ(s, t) in (36), we arrive at the following two bounds
for O(X,Y ).

(1 + η)2(k−1)O(X,Y ) ≥ pPη(X)Pη(Y )− βQη(X)Qη(Y ), (38)

and

O(X,Y ) ≤ pPη(X)Pη(Y ) + βQη(X)Qη(Y ), (39)

where

Pη(X) =
∑
s

|Zη(s, X)|(1 + η)
∑

s and Qη(X) =
∑
s

√
|Zη(s, X)|(1 + η)

∑
s, (40)

and where P̃η(X̃) and Qη(X̃) are defined analogously.
Hence, for a small η, the size of O(X,Y ) is essentially determined up to the

additive error term βQη(X)Qη(Y ). In the sequel, we show that this is dominated
by the main term pPη(X)Pη(Y ). The estimate of the error term is complicated and
consequently delegated to Claim 8 below. The estimate of the main term, however,
is almost trivial at this point. To see the latter, we rewrite (30) for j = k as to
obtain

Pη(X) ≤ πH(Uk, X)(1 + η)k−1 ≤ Pη(X)(1 + η)k−1.

With (31) this yields

|X| ((α− ε)pm)
k−1 ≤ Pη(X) ≤ |X| ((α+ ε)(1 + η)pm)

k−1
. (41)

A similar assertion clearly holds for Pη(Y ).
We may now summarize all of the above discussion concisely as follows. For

w ∈W , the sets Xw = NH(w)∩U1 and Yw = NH(w)∩V1 both have size (α±ε)pm
due to the degree regularity of H. Owing to (33), (38), and (41) we have that

(1 + η)2k|C(H,Γ, w)| ≥ (α− ε)2k
p(pm)2k − βQη(Xw)Qη(Yw). (42)

Next, for w̃ ∈ W̃ and sets Xw̃ = NH(w̃) ∩ Ũ1 and Yw̃ = Dµ(w̃) we have, owing
to (35), (39), and (41), that

|S(µ,H,Γ, w̃)|
(35),(39)

≤ pP̃η(Xw̃)P̃η(Dµ(w̃)) + βQ̃η(Xw̃)Q̃η(Dµ(w̃))

≤ |Xw̃||Dµ(w̃)|p ((α+ ε)pm)
2(k−1)

+ βQ̃η(Xw̃)Q̃η(Dµ(w̃))

≤ |Dµ(w̃)|p ((α+ ε)pm)
2k−1

+ βQ̃η(Xw̃)Q̃η(Dµ(w̃)). (43)

We conclude this section by stating the claim that will be used to control the
error term βQη(X)Qη(Y ) (and βQ̃η(X̃)Q̃η(Ỹ )) discussed above.

Claim 8. For any integer k ≥ 1, and reals 0 < ξ, α, η, ν ≤ 1, and 0 < ε ≤ α/3,
there exists a γ > 0 such that for every sequence of densities p = p(n) > 0 there
exists an n0 such that for all n > n0 the following holds.

Let Γ be an n-vertex (p, β)-jumbled graph with

β < γ
p1+ 1

2k−1n

log2(k−1) n
, (44)
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and let H ⊆ Γ be an (α, p, ε)-degree-regular C2k+1(m)-graph, m ≥ νn, with the
partition (Uk, . . . , U1,W, V1, . . . , Vk). If X ⊂ U1 and Y ⊂ V1 both have size at most
(α+ ε)pm, then

βQη(X)Qη(Y ) < ξp(pm)2k.

We postpone the proof of Claim 8 until Section 4.3. In the subsequent section
we show how to derive Lemma 5 from Claim 8.

4.2. Proof of Lemma 5. Given k, ν, α0, and ε, put

ξ = (ε/4)
4k
, η = min

{
ε

4α0
, 1

}
, (45)

and let γ′ be that obtained from Claim 8 applied with k, ξ, α = α0, η, ν, and ε.
For Lemma 5 we set

γ = γ′,

and choose n0 to be sufficiently large as to accommodate Claim 8. Finally, let Γ
and H be as specified in Lemma 5.

Owing to (42)

|C(G,Γ, w)| ≥
(
α− ε
1 + η

)2k

p(pm)2k − 1

(1 + η)2k
βQη(Xw)Qη(Yw),

for any w ∈ W , where Xw = NH(w) ∩ U1 and Yw = NH(w) ∩ V1. Since H is
(α, p, ε)-degree-regular both Xw and Yw have size at most (α+ ε)pm. As a result,
βQη(Xw)Qη(Yw) ≤ ξp(pm)2k, by Claim 8 applied with X = Xw and Y = Yw.
Then, owing to our choices for η and ξ in (45) we have that

|C(G,Γ, w)| ≥
(
α− ε
1 + η

)2k

p(pm)2k − (1 + η)−2kξp(pm)2k

≥ (α− ε)2k − (ε/4)4k

(1 + η)2k
p(pm)2k

≥
(
α− (3/2)ε

1 + η

)2k

p(pm)2k

≥ (α− 2ε)2kp(pm)2k

holds for any w ∈W . Summing over all vertices in W yields (8), the first assertion
of Lemma 5.

It remains to show (9), the second assertion of Lemma 5. Here, we use the

partition of (34). It is sufficient to prove that for any w̃ ∈ W̃ it holds that

|Dα+2ε(w̃)| ≤ (3ε)2kpm. (46)

Indeed, assuming (46) yields

|S(α+ 2ε,H,Γ, w̃)|
(43)

≤ |Dα+2ε(w̃)|p ((α+ ε)pm)
2k−1

+ βQ̃η(Xw̃)Q̃η(Dα+2ε(w̃))

≤ ε2k(α+ ε)2k−1p(pm)2k + ξp(pm)2k (by Claim 8)

(45)

≤
(
ε2k(α+ ε)2k−1 + (ε/4)4k

)
p(pm)2k

≤ (3ε)2kp(pm)2k.
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With this (9) follows once we sum over all vertices in W̃ .

It remains to prove (46). Suppose |Dα+2ε(z̃)| > (3ε)2kpm for some vertex z̃ ∈ W̃ ,

and choose B ⊆ Dα+2ε(z̃) ⊆ Ṽ1 of size d(3ε)2kpme. Observe that since ε ≤ α/3 it
holds that (3ε)2k ≤ α + ε so that |B| ≤ (α + ε)pm. Let us now count the number
of members of S(α + 2ε,H,Γ, z̃) with the (α + 2ε)-saturated edge of the form z̃b
where b ∈ B. We write S(B, z̃) to denote this number. By the definition of an
(α+ 2ε)-saturated edge, we attain

|S(B, z̃)| ≥ |B|p((α+ 2ε)pm)2k−1 = (3ε)2k(α+ 2ε)2k−1p(pm)2k.

On the other hand, (43) with Xz̃ = NH(z̃) ∩ Ũ1 and B instead of Dµ(z̃), together
with Claim 8 with X = Xz̃ and Y = B yield

|S(B, z̃)| ≤ |B|p((α+ ε)pm)2k−1 + ξp(pm)2k (by Claim 8 and (43))

(45)
=
(
(3ε)2k(α+ ε)2k−1 + (ε/4)4k

)
p(pm)2k.

The contradiction here is that

(3ε)2k(α+ ε)2k−1 + (ε/4)4k < (3ε)2k(α+ 2ε)2k−1.

To see this, observe that

(α+ε)2k−1+
ε2k

32k44k
≤ (α+ε)2k−1+(ε/12)2k−1 ≤ (α+ ε+ ε/12)

2k−1
< (α+2ε)2k−1.

This proves (46) and thus completes our proof of Lemma 5. �

4.3. Proof of Claim 8. Given k, ξ, α, ε, η, and ν, we set

γ =
ξ (log(1 + η))

2k

28kν
, (47)

choose n0 to be sufficiently large, and let Γ be a (p, β)-jumbled graph, where β
satisfies (44).

Recall that we seek to show that βQη(X)Qη(Y ) ≤ ξp(pm)2k, that Qη(X) =∑
s∈Iη

√
|Zη(s, X)|(1 + η)

∑
s, and that Qη(Y ) is defined in a similar manner. To

this end, we shall now consider the term

qη(s, X) =
√
|Zη(s, X)|(1 + η)

∑
s, (48)

where s ∈ Iη. Below we shall prove that for any s ∈ Iη

qη(s, X) ≤ 24kpk−
1

2(2k−1)m
2k−1

2 . (49)

This estimate will hold for the counterpart term qη(t, Y ) with X replaced by Y and
t ∈ Iη as well due to symmetry.

Assuming (49), we prove that βQη(X)Qη(Y ) ≤ ξp(pm)2k as follows. We observe
the identity

βQη(X)Qη(Y ) = β
∑
s,t

qη(s, X)qη(t, Y ), (50)

and put

L = (2 log1+η n)2(k−1) ≥ L2(k−1)
η ,
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which is an upper bound on the number of summands in (50) (for n sufficiently
large). Then,

βQη(X)Qη(Y ) ≤ βL
(

24kpk−
1

2(2k−1)m
2k−1

2

)2

= βL28kp2k− 1
2k−1m2k−1

(44)

≤ γ28k

(
1

log(1 + η)

)2k−1

p2k+1m2k−1n

(47)

≤ ξp(pm)2k.

It remains to prove (49). Fix now a tuple s ∈ Iη. We shall consider two cases.
throughout these cases we shall use the estimates

α+ ε ≤ 2 and 1 + η ≤ 2. (51)

(1) Suppose, firstly, that |Zη(sj , X)| < p1/(2k−1)m for all 2 ≤ j ≤ k. We shall
show

qη(s, X) =
√
|Zη(s, X)|(1 + η)

∑
s ≤ (1 + η)k

√
|X|

k∏
j=2

Mj , (52)

where

Mj = 2 max

{
β, p
√
|Zη(sj , X)||Zη(sj−1, X)|

}
< 2p1+1/(2k−1)m.

Then, (52) together with the assumption that
√
|X| ≤

√
(α+ ε)pm give

qη(s, X) ≤ (1 + η)k
√

(α+ ε)pm
(

2p1+ 1
2k−1m

)k−1

(51)

≤ 22k√pm
(
p1+ 1

2k−1m
)k−1

= 22kpk−
1

2(2k−1)m
2k−1

2 ,

so that (49) holds in this case.
To verify (52), we first show for all 2 ≤ j ≤ k√

|Zη(sj , X)|(1 + η)sj−1 ≤Mj

√
|Zη(sj−1, X)|. (53)

Note that (53) holds if (1 + η)sj−1 ≤ 2p|Zη(sj−1, X)|. On the other hand,
if (1 + η)sj > 2p|Zη(sj−1, X)| holds then√
|Zη(sj , X)|

(17)

≤
β
√
|Zη(sj−1, X)|

(1 + η)sj−1 − p|Zη(sj−1, X)|
≤
β
√
|Zη(sj−1, X)|

1
2 (1 + η)sj−1

.

Repeating (53) for each 2 ≤ j ≤ k yields (52). This leads to a (1 + η)k−1

multiplicative factor, here we take (1 + η)k. This concludes the proof of
(52).

(2) Suppose, secondly, that |Zη(sj , X)| ≥ p1/(2k−1)m for some 2 ≤ j ≤ k. To
prove (49) in this case, we express qη(s, X) as a product of two numbers,
that is, we write

qη(s, X) =
√
|Zη(s, X)|(1 + η)

∑
s = R1 ×R2, (54)
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where R1 is given by

R1 =
√
|Zη(sj , X)|(1 + η)

∑
sj , (55)

and where R2 is given by

R2 =

k−1∏
r=j

√
|Zη(sr+1, X)|
|Zη(sr, X)|

(1 + η)sr+1 . (56)

Before proceeding let us, first, observe that Rj2 is well-defined. Indeed, we
are concerned with qη(s, X) provided Zη(s, X) is nonempty as otherwise
qη(s, X) = 0 and does not contribute to the sum (50). Now, by the defini-
tion of the Zη-sets, the set Zη(s, X) being nonempty implies that every set
Zη(sr, X) is nonempty for each r ∈ [k]. Consequently, it is valid to divide
by |Zη(sr, X)| for each r ∈ [k]. Second, let us also note that R1 × R2 is
a telescope product; the cardinalities of all Zη-sets cancel each other with
only |Zη(s, X)| remaining after all cancelations.

Now, to upper bound qη(s, X) as required in this case, we prove that

R1 ≤ 4jpj−
1

2(2k−1)m
2j−1

2 , (57)

and that

R2 ≤ (6pm)k−j . (58)

Owing to (54), these two estimates imply (49) in this case. In what follows,
we prove the estimates (57) and (58).

To see (57), observe first that

|Zη(sj , X)|(1 + η)
∑

sj ≤ |X| ((1 + η)(α+ ε)pm)
j−1 ≤ (4pm)j , (59)

where the first inequality is due to the degree-regularity of H (see, (30)
and (31)), and the second inequality is due to the assumption that |X| ≤
(α+ε)pm. This together with the assumption of this case that |Zη(sj , X)| ≥
p1/(2k−1)m yield that

(1 + η)
∑

sj ≤ (4pm)j

|Zη(sj , X)|
≤ 4jpj−

1
2k−1mj−1. (60)

Rewriting (55), we arrive at

R1 =
√
|Zη(sj , X)|(1 + η)

∑
sj (1 + η)

1
2

∑
sj .

Owing to (59) and (60), we then have

R1 ≤ (4pm)j/2
(

4jpj−
1

2k−1mj−1
)1/2

,

and (57) follows.
It remains to prove (58). To see this, let us first rewrite (56) as to attain

the form

R2 =

k−1∏
r=j

(
|Zη(sr+1, X)|
|Zη(sr, X)|

(1 + η)sr+1

)1/2

(1 + η)
sr+1

2 . (61)
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Recall, first, that for any r ∈ [k], it holds that (1 + η)sr ≤ 8pm, by (27).
Second, for r ∈ [k − 1], observe that

|Zη(sr+1, X)|(1 + η)sr+1 ≤ (1 + η)eH(Zη(sr, X), Zη(sr+1, X)),

so that the term |Zη(sr+1, X)|(1 + η)sr+1/|Zη(sr, X)| exceeds the average
degree of a vertex in Zη(sr, X) in the graph H[Zη(sr, X), Zη(sr+1, X)] by
a factor of at most 1 +η. Owing to the degree-regularity of H, this average
degree is bounded by 2pm. Consequently,

|Zη(sr+1, X)|
|Zη(sr, X)|

(1 + η)sr+1 ≤ (1 + η)2pm ≤ 4pm.

It follows that a single factor in (61) is at most
√

4pm
√

8pm ≤ 6pm and
(58) follows.

This concludes our proof of Claim 8. �
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16. B. Sudakov, T. Szabó, and V. H. Vu, A generalization of Turán’s theorem, J. Graph Theory

49 (2005), no. 3, 187–195.

17. R. M. Tanner, Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete
Methods 5 (1984), no. 3, 287–293.

18. A. Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, Surveys
in combinatorics 1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123,

Cambridge Univ. Press, Cambridge, 1987, pp. 173–195.
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