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Abstract

We introduce the nearly finitary matroids which form a superclass
of the finitary matroids, and prove that the union of two nearly finitary
matroids is a matroid and, in fact, nearly finitary. To prove the latter,
we appeal to the finitary matroid union theorem established in the first
paper of this series. We also characterize the nearly finitary graphic
matroids.

Using the nearly finitary matroid union result, we establish that
the infinite matroid intersection conjecture of Nash-Williams is true
whenever the first matroid is nearly finitary and the second is the dual
of a nearly finitary matroid.

From this we derive an alternative matroidal proof of the infinite
Menger theorem for locally finite graphs. In addition, we show that the
infinite matroid intersection conjecture for finitary implies the general
infinite Menger theorem which was conjectured by Erdős, and proved
only recently by Aharoni and Berger.

1 Introduction

For two finite matroids M1 = (E1, I1) and M2 = (E2, I2), the well-known
matroid union theorem [10, 12] asserts that the set system

I(M1 ∨M2) = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}

is the set of independent sets of their union matroid M1 ∨M2.
There exist two infinite matroids M1 and M2 for which the set I(M1 ∨

M2) does not define a matroid [4]. One of the matroids involved contains no
infinite circuits, such a matroid is called finitary. Hence, an analogue of the
finite matroid union theorem does not exist for arbitrary infinite matroids.
Nevertheless, the following is true.

∗Research supported by the Minerva foundation.
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Theorem 1.1 ([4]). If M1 and M2 are finitary matroids, then M1 ∨M2 is
a matroid, and in fact finitary.

The main results of this paper are an extension of this theorem to nearly
finitary matroids, defined below, and its applications. For a given matroid
M , the subsets of its ground set containing no finite circuit are the indepen-
dent sets of a finitary matroid, which we call the finitarization of M (see
Section 4). We call a matroid M nearly finitary if every base of its finita-
rization contains a base of M missing only finitely many elements from the
base of the finitarization. Using Theorem 1.1, we prove the following.

Theorem 1.2. If M1 and M2 are nearly finitary matroids, then M1 ∨M2

is a matroid and in fact nearly finitary.

In view of the above mentioned counterexample against matroid union,
this theorem is rather tight: the matroid involved in the counterexample that
is not finitary is a countable sum of infinite circuits and of loops and thus
it is the simplest example of a non-nearly finitary matroid. More generally,
we show under an additional assumption that for every non-nearly finitary
matroid there is a finitary matroid such that the union of these two is not a
matroid (see Proposition 4.3).

A simple consequence of Theorem 1.2 is that M1 ∨ · · · ∨Mk is a nearly
finitary matroid whenever M1, . . . ,Mk are nearly finitary. On the other
hand, a countable union of finitary matroids need not be a matroid [4].

The class of nearly finitary matroids contains all finitary matroids but
not only. One way to construct nearly finitary matroids that are not finitary
is the following. Given any infinite-rank finitary matroid M , the set system
C(M) ∪ B(M), consisting of the circuits of M together with the bases of
M , respectively, is the set of circuits of a nearly finitary matroid that is not
finitary (see Proposition 5.1). Nearly finitary matroids that are not finitary
also arise from graphs. In this paper, we characterize the nearly finitary
graphic matroids (see Propositions 5.2 and 5.3).

An appealing aspect of Theorem 1.2 is that it reveals new types of infinite
matroids which do not seem to arise from graphs directly (see Example 3.2).

In finite matroid theory, the matroid union theorem has numerous appli-
cations; one striking application is an exceptionally short proof of the finite
matroid intersection theorem [10]. The following conjecture, which was put
forth by Nash-Williams and first appeared in [3], can be seen as the infinite
analogue of matroid intersection. 1

1An alternative notion of infinite matroid intersection was given by Christian [7].
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Conjecture 1.3. Any two matroids M1 and M2 on a common ground set
E have a common independent set I admitting a partition I = J1 ∪ J2 such
that clM1(J1) ∪ clM2(J2) = E.

Originally, the above conjecture was put forth for finitary matroids.
In [3], the connections between Conjecture 1.3 and the infinite analogues
of König’s and Hall’s theorems are established. Aharoni and Ziv [3] showed
that the conjecture is true whenever one matroid is finitary and the other
is a countable direct sum of finite-rank matroids. We prove the following
connection between infinite matroid union and infinite matroid intersection.
Although this connection is well known for finite matroids, it requires more
effort to prove it for for infinite matroids.

Theorem 1.4. If M1 and M2 are matroids on a common ground set E and
M1 ∨M∗

2 is a matroid, then Conjecture 1.3 holds for M1 and M2.

A consequence of Theorem 1.2 and Theorem 1.4 reads as follows.

Corollary 1.5. Conjecture 1.3 holds for M1 and M2 whenever M1 is nearly
finitary and M2 is the dual of a nearly finitary matroid.

Corollary 1.5 does not imply the result of [3] nor is it implied by their results.
The infinite Menger theorem, conjectured by Erdős, reads as follows.

Theorem 1.6 (Aharoni and Berger [2]). Let G be a connected graph. Then
for any S, T ⊆ V (G) there is a set L of vertex disjoint S–T paths and an
S–T separator X ⊆

⋃
P∈L V (P ) satisfying |X ∩ V (P )| = 1 for each P ∈ L.

While Podewski and Steffens proved the infinite Menger theorem for
countable rayless graphs in 1977 [11], it took ten more years until Aharoni
solved the countable case [1]. This was the first proof of the infinite Menger
theorem for locally finite graphs. Using Corollary 1.5, we provide an al-
ternative matroidal proof of the infinite Menger theorem for locally finite
graphs, see Section 6.

It is natural to ask whether one can also provide a matroidal proof of the
general infinite Menger theorem. Towards this venue, we offer the following.

Theorem 1.7. The infinite matroid intersection conjecture for finitary ma-
troids implies the general infinite Menger theorem.

Note that the counterexamples against matroid union show that the
general infinite Menger theorem cannot be deduced from Theorem 1.4 and
Theorem 1.7 directly, see Section 6.
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This paper is organized as follows. Notation and terminology are set in
Section 2. Certain instructive examples (some mentioned in the Introduc-
tion) are presented in Section 3. The proof of Theorem 1.2 can be found in
Section 4. In Section 5, we construct nearly finitary matroids that are not
finitary from finitary matroids and characterize the nearly finitary graphic
matroids. In Section 6, we consider infinite matroid intersection and prove
Theorem 1.4, Corollary 1.5, and Theorem 1.7 and finally provide an alterna-
tive matroidal proof of the infinite Menger theorem for locally finite graphs.

2 Preliminaries

Throughout, notation and terminology for graphs are that of [8] and are
that of [6, 10] for matroids. M always denotes a matroid where E(M),
C(M), I(M), and B(M) denote its ground set, circuits, independent sets,
and bases, respectively. For X ⊆ E(M), we write clM (X) to denote the
closure of X [10]. G always denotes a graph where V (G) and E(G) denote
its vertex and edge sets, respectively.

Following [6], a set system I taken from the power set P(E) of a set E
is the set of independent sets of a matroid provided it satisfies the following
independence axioms.

(I1) ∅ ∈ I.

(I2) dIe = I, i.e., I is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set { I ′ ∈ I | I ⊆ I ′ ⊆ X } has a
maximal element.

The following is one of the main results of [4].

Theorem 2.1. ([4, Theorem 1.2])
If M1 and M2 are matroids, then I(M1 ∨M2) satisfies (I3).

Consequently, whenever we are confronted with the task of verifying that
M1 ∨M2 is a matroid for some two matroids M1 and M2, it is sufficient to
show that I(M1 ∨M2) satisfies (IM). But the proof of the above theorem
also yields another result [4, Corollary 4.4]:

Lemma 2.2. If M1 and M2 are matroids, then I = I(M1 ∨M2) satisfies
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(*) For all I, J ∈ I and all y ∈ I \ J with J + y /∈ I there exists x ∈ J \ I
such that (J + y)− x ∈ I.

Lemma 2.3. Let M be a matroid and I, B ∈ I(M) with B maximal and
B \ I finite. Then |I \B| ≤ |B \ I|.

Proof. The proof is by induction on |B \ I|. For |B \ I| = 0 we have B ⊆ I
and hence B = I by maximality of B. Now suppose there is y ∈ B \ I. If
I + y ∈ I then by induction

|I \B| = |(I + y) \B| ≤ |B \ (I + y)| = |B \ I| − 1

and hence |I \ B| < |B \ I|. Otherwise there is a unique circuit C of M in
I + y. Clearly C cannot be be contained in B an therefore has an element
x ∈ I \B. Then (I + y)− x is independent, so by induction

|I \B| − 1 = |((I + y)− x) \B| ≤ |B \ ((I + y)− x)| = |B \ I| − 1

and hence |I \B| ≤ |B \ I|.

Of the circuit axioms we require only the circuit elimination axiom
phrased here for a matroid M .

(CE) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M)2 satisfies
x ∈ Cy ⇔ x = y for all x, y ∈ X, then for every z ∈ C \

(⋃
x∈X Cx

)
there exists a C ′ ∈ C(M) such that z ∈ C ′ ⊆

(
C ∪

⋃
x∈X Cx

)
\X.

The finite graphic matroids have three natural extensions in the infinite
scene [6]; each with its ground set E(G). The most studied of which is
MF (G), the finite cycle matroid, whose circuits are the finite cycles of G.
This is a finitary matroid. The second extension is the algebraic cycle ma-
troid, denoted MA(G), whose circuits are the finite cycles and double rays
of G [6, 5]3.

The third extension of the finite graphic matroids are the topological
cycle matroids, denoted MT (G)4, whose circuits are the finite and topological
cycles5 of G.

For a connected graph G, a maximal set of edges containing no finite
cycles is called an ordinary spanning tree. A maximal set of edges containing
no finite cycles nor any double ray is called an algebraic spanning tree. These
are the bases of MF (G) and MA(G), respectively.

2C(M) is the set of circuits of M .
3MA(G) is not necessarily a matroid for any G; see [9].
4MT (G) is a matroid for any G; see [5].
5See Section 4 or [8, Chapter 8].
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3 Examples

In this section, we collect various examples, in order to demonstrate the
significant difference between the union of finite matroids and that of infinite
matroids.

Example 3.1. Let G be the (Z×Z)-grid. We show that I(MA(G)∨MA(G))
admits a properly nested sequence A1 ∪ B1 ( A2 ∪ B2 ( . . . of unions of
disjoint bases of MA(G). Moreover, not even

⋃
k∈N(Ak ∪ Bk) is a base of

MA(G) ∨MA(G) which is nevertheless a matroid.

ghhhhhhhhhhhggg︸ ︷︷ ︸
2k columns

ek

Ak

Bk

Figure 1: The sets Ak (black) and Bk (gray) are disjoint bases of MA(G).

The set Ak ∪ Bk, as in Figure 1, covers all edges of the grid but the
horizontal edges of one column and the vertical edges from one row that are
on the right side of ek. As the edge ek moves right when k increases, Ak∪Bk

is properly contained in Ak+1 ∪Bk+1.
In fact, MA(G)∨MA(G) is the free matroid since it can be covered with

two independent sets, see Figure 2. Another more subtle difference between
finite and infinite matroid union is pointed out in the last paragraph of
Section 6.

Example 3.2. In the following we look at a matroid obtained as a union of
two graphic nearly finitary matroids. Let H be the infinite one-sided ladder
with every edge doubled as depicted in Figure 3. More formally, H has the
vertex set A ∪ B where A = {a0, a1, . . .} and B = {b0, b1, . . .} are disjoint
and for any non-negative integer i there are
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Figure 2: The set drawn and its complement are independent in MA(G).

• two edges between ai and bi which we call rungs,

• two edges between ai and ai+1 which we call upper edges, and

• two edges between bi and bi+1 which we call lower edges.

By Hn we denote the graph induced by H on the vertices {a0, . . . , an} ∪
{b0, . . . , bn}.

Note that MA(H) is nearly finitary and hence, by Theorem 1.2, M :=
MA(H) ∨MA(H) is a matroid. The set of all non-rungs of H plus one of
the two rungs between a0 and b0 is easily seen to be a circuit of M and we
denote it by C. Removing from E(H) one edge from each pair of parallel
upper edges and one rung from each pair of parallel rungs apart from the
first pair between a0 and b0 gives an independent set I of M . However, the
contractions of both C and I to Hn are circuits of M.E(Hn).

So in some sense, M does not resemble graphic matroids like MF , MA,
and MT as such a phenomenon does not occur there. For instance, in a
countable graph G denote by Gn the graph obtained from G by contracting
all but the first n edges. Then an edge set forms circuit of MT (G) if and
only if, for every n, its restriction to Gn forms a circuit of MT (Gn) =
MT (G).E(Gn). This fact is often used to construct the infinite circuits of
MT [5]; such a tool is no longer available for M .
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H3

a4a1 a2 a3a0

b0 b1 b2 b3 b4

H

Figure 3: The subgraph H3 of H.

4 Union of nearly finitary matroids

In this section, we prove Theorem 1.2.

4.1 Finitarizations of matroids

For a matroid M , let Ifin(M) denote the set of subsets of E(M) containing
no finite circuit of M , or equivalently, the set of subsets of E(M) which
have all their finite subsets in I(M). We call Mfin = (E(M), Ifin(M)) the
finitarization of M . With this notation, a matroid M is nearly finitary if it
satisfies

(NEAR) for every J ∈ I(Mfin) there is I ∈ I(M) such that |J \ I| <∞.

In addition, if there is an integer k such that for every J ∈ I(Mfin) there
is an I ∈ I(M) with |J \ I| ≤ k, then M is called k-nearly finitary.

For a set system I (not necessarily the independent sets of a matroid)
we call a maximal element of I a base and a minimal element subject to not
being in I a circuit. This allows us to extend the notions of finitarization
and nearly finitary to I; despite the fact that I is not necessarily a matroid.

Note that we cannot expect that, in a k-nearly finitary matroid M , for
every base Bfin of Mfin we have |Bfin \ B| = k for all B ∈ B(M). Consider
for example MA(L) where L is the one-sided infinite ladder. Clearly, L has
a spanning double ray D and a spanning ray R. The edge sets of both form
bases of MA(L)fin since they are spanning. In M , on the other hand, E(D)
is a circuit and E(R) a base.

Let I = dIe. The finitarization Ifin of I has the following properties.
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1. I ⊆ Ifin with equality if and only if I is finitary.

2. Ifin is finitary and its circuits are exactly the finite circuits of I.

3. (I|X)fin = Ifin|X, in particular I|X is nearly finitary if I is.

The first two statements are obvious. For the third, we conclude as follows.
Suppose I is nearly finitary and J ∈ I|X ⊆ I. By definition there is I ∈ I
such that J \ I is finite. As J ⊆ X we also have that J \ (I ∩ X) is finite
and clearly I ∩X ∈ I|X.

Proposition 4.1. Mfin is a finitary matroid, whenever M is a matroid.

Proof. By construction Ifin = I(Mfin) satisfies (I1) and (I2) and is finitary,
implying that it also satisfies (IM). So it remains to show that Ifin satisfies
(I3). By definition, a set X ⊆ E(M) is not in Ifin if and only if it contains
a finite circuit of M . Let B, I ∈ Ifin such that B is maximal and I is not.
Hence there is y ∈ E(M) \ I such that I + y ∈ Ifin. If I + x ∈ Ifin for any
x ∈ B\I then we are done, so suppose not. Then y /∈ B and for any x ∈ B\I
there is a finite circuit Cx of M in I + x containing x. By maximality of B,
there is a finite circuit C of M in B + y containing y. By circuit elimination
in M applied to C and the Cx with x ∈ X := C ∩ (B \ I) there is a circuit

D ⊆

(
C ∪

⋃
x∈X

Cx

)
\X ⊆ I + y

of M containing y ∈ C \
⋃

x∈X Cx. But D is finite, since C and all the Cx

are, contradicting I + y ∈ Ifin.

Proposition 4.2. For arbitrary matroids M1 and M2 it holds that

I(Mfin
1 ∨Mfin

2 ) = I(Mfin
1 ∨Mfin

2 )fin = I(M1 ∨M2)fin

Proof. By Proposition 4.1, Mfin
1 and Mfin

2 are finitary matroids and therefore
also Mfin

1 ∨Mfin
2 is a finitary matroid by Theorem 1.1. This establishes the

first equality.
The second equality follows from the definition of the finitarization pro-

vided we show that the finite sets of I(Mfin
1 ∨ Mfin

2 ) and I(M1 ∨ M2)
are the same. Since I(M1) ⊆ I(Mfin

1 ) and I(M2) ⊆ I(Mfin
2 ) it holds

that I(Mfin
1 ∨Mfin

2 ) ⊇ I(M1 ∨M2). On the other hand, a finite set I ∈
I(Mfin

1 ∨ Mfin
2 ) can be written as I = I1 ∪ I2 with I1 ∈ I(Mfin

1 ) and
I2 ∈ I(Mfin

2 ) finite. As I1 and I2 are finite, I1 ∈ I(M1) and I2 ∈ I(M2),
implying that I ∈ I(M1 ∨M2).
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4.2 Proof of the nearly finitary union theorem

As mentioned in the Introduction, we prove the following.

Theorem 1.2. If M1 and M2 are nearly finitary matroids, then M1 ∨M2

is a matroid; and in fact nearly finitary.

Proof. By Theorem 2.1, in order to prove that M1 ∨M2 is a matroid, it is
sufficient to prove that I(M1 ∨M2) satisfies (IM). This will be done in two
steps. We first show that I(M1 ∨M2) is nearly finitary and then deduce
that it satisfies (IM).

To see that I(M1 ∨M2) is nearly finitary, let J ∈ I(M1 ∨M2)fin. By
Proposition 4.2 we may assume that J = J1 ∪ J2 with J1 ∈ I(Mfin

1 ) and
J2 ∈ I(Mfin

2 ). By assumption there are I1 ∈ I(M1) and I2 ∈ I(M2) such
that J1 \ I1 and J2 \ I2 are finite. Then I = I1 ∪ I2 ∈ I(M1 ∨M2) and the
assertion follows as J \ (I1 ∪ I2) ⊆ (J1 \ I1) ∪ (J2 \ I2) is finite.

To prove that I = I(M1 ∨M2) satisfies (IM), let I ⊆ X ⊆ E(M1 ∨M2)
with I ∈ I. As Ifin satisfies (IM) there is a set Bfin ∈ Ifin which is maximal
subject to I ⊆ Bfin ⊆ X and being in Ifin. By assumption there is J ∈ I
such that Bfin \ J is finite and we may assume that J ⊆ X. Then, I \ J ⊆
Bfin \ J is finite so that we may choose a J minimizing |I \ J |. If there is a
y ∈ I \ J , then, by Lemma 2.2, J + y ∈ I or there is an x ∈ J \ I such that
(J + y) − x ∈ I. Both outcomes give a set containing more elements of I
and hence contradicting the choice of J .

It remains to show that J can be extended to a maximal set B of I in
X. For any superset J ′ ∈ I of J , we have J ′ ∈ Ifin and Bfin \ J ′ is finite as
it is a subset of Bfin \ J . As Ifin is a matroid, Lemma 2.3 implies

|J ′ \Bfin| ≤ |Bfin \ J ′| ≤ |Bfin \ J |.

Hence, |J ′ \ J | ≤ 2|Bfin \ J | <∞. Thus, we can greedily add elements to J
to obtain the wanted set B after finitely many steps.

A matroid N is non-nearly finitary, if such has a set I ∈ I(Nfin) with
the property that no finite subset of I meets all (necessarily infinite) circuits
of N in I. The following proposition asserts for certain non-nearly finitary
matroids a union theorem is false. More precisely, we show that if a non-
nearly finitary matroid N has a set I such that N |I has only countably
many infinite circuits, then M ∨ N is not a matroid for some matroid M ;
moreover, we show that there is a finitary such M . In this sense our main
result Theorem 1.2 is best possible.
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Proposition 4.3. Let N be a non-nearly finitary matroid such that some
I ∈ I(Nfin) contains only countably many circuits and no finite subset of I
meets all these circuits. Then there is a finitary matroid M such that M ∨N
is not a matroid.

Proof. For N and I as above pick an enumeration C1, C2, . . . of the circuits
of N in I. We may assume that I =

⋃
n∈N Cn. There exist countably many

disjoint subsets Y1, Y2, . . . of I satisfying

1. |Yn| ≤ n for all n ∈ N; and

2. Yn ∩ Ci 6= ∅ for all n ∈ N and all 1 ≤ i ≤ n.

Such sets can be constructed6 as follows. Suppose Y1, . . . , Yn have already
been defined. Let Yn+1 be a set of size at most n + 1 disjoint to each of
Y1, . . . , Yn and meeting the circuits C1, . . . , Cn+1; such exists as

⋃n
i=1 Yi is

finite and all circuits in I are infinite.
Let L = {l1, l2, . . .} be a countable set disjoint from E(N). For each

n ∈ N let Mn be the 1-uniform matroid on Yn ∪ {ln}, i.e. Mn := U1,Yn∪{ln}.
Then, M :=

⊕
n∈N Mn is a direct sum of finite matroids and hence finitary.

We contend that I ∈ I(M ∨ N) and that I(M ∨ N) violates (IM) for
I and X := I ∪ L. By construction, Yn contains some element dn of Cn,
for every n ∈ N. So that JM = {d1, d2, . . .} meets every circuit of N in I
and is independent in M . This means that JN := I \ JM ∈ I(N) and thus
I = JM ∪ JN ∈ I(M ∨N).

It is now sufficient to show that some I ⊆ J ⊆ X is in I(M ∨ N)
if and only if it misses infinitely many elements L′ ⊆ L. Suppose that
J ∈ I(M ∨ N). There are sets JM ∈ I(M) and JN ∈ I(N) such that
J = JM ∪JN . As D := I \JN meets every circuit of N in I by independence
of JN , the set D is infinite. But I ⊆ J and hence D ⊆ JM . Let A be the set
of all integers n such that Yn ∩D 6= ∅. As Yn is finite for every n ∈ N, the
set A must be infinite and so is L′ := {ln | n ∈ A}. Since JM is independent
in M and any element of L′ forms a circuit of M with some element of JM ,
we have JM ∩L′ = ∅ and thus J ∩L′ = ∅ as no independent set of N meets
L.

Suppose that there is a sequence i1 < i2 < . . . such that J is disjoint from
L′ = {lin | n ∈ N}. We show that the superset X \ L′ of J is in I(M ∨N).
By construction, for every n ∈ N, the set Yin contains an elements dn of
Cn. Set D := {dn | n ∈ N}. Then D meets every circuit of N in I, so
JN := I \ D is independent in N . On the other hand, D contains exactly

6Our construction here mimics Example 3.4 in [4].
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one element of each Mn with n ∈ L′. So JM := (L \ L′) ∪ D ∈ I(M) and
therefore X \ L′ = JM ∪ JN ∈ I(M ∨N).

5 Nearly finitary matroids

It is natural to ask what the class of nearly finitary matroids consists of. In
this section, we address this question.

This next construction is probably the most natural manner to construct
nearly finitary matroids; as such can be obtained from finitary matroids as
follows.

For a matroid M and an integer k ≥ 0, set M [k] := (E(M), I[k]), where

I[k] := {I ∈ I(M) | ∃J ∈ I(M) such that I ⊆ J and |J \ I| = k}.

Proposition 5.1. If rank(M) ≥ k, then M [k] is a matroid.

Clearly, M [k] is k-nearly finitary, if M is finitary. And, if E(M) /∈ C(M),
then C(M [1]) = C(M)∪B(M). We postpone the proof of Proposition 5.1 to
Section 5.1.

In Propositions 5.2 and 5.3 (see below), we characterize the nearly fini-
tary graphic matroids; We recall from Section 3 that for a graph G, the
matroid MA(G) has E(G) as its ground set and as circuits the edge sets of
finite cycles and double rays of G. Similarly, MT (G) is the matroid on E(G)
whose circuits are edge sets of the finite and topological cycles of G.

The nearly finitary algebraic cycle matroids are characterized as follows.

Proposition 5.2. MA(G) is a nearly finitary matroid if and only if G has
only a finite number of vertex disjoint rays.

A graph with each of its vertices having finite degree is called locally
finite. In the same spirit, the nearly finitary topological cycle matroids are
characterized as follows.

Proposition 5.3. Suppose that G is 2-connected and locally finite. Then,
MT (G) is a nearly finitary matroid if and only if G has only a finite number
of vertex disjoint rays.

The proofs of Propositions 5.2 and 5.3 can be found in the Sections 5.2
and 5.3, respectively. Both proofs require the following theorem from [8,
Theorem 8.2.5].

Theorem 5.4 (Halin 1965). If an infinite graph G contains k disjoint rays
for every k ∈ N, then G contains infinitely many disjoint rays.
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5.1 M [k] is a matroid

Here, we prove Proposition 5.1.

Proof of Proposition 5.1. (I1) holds as rank(M) ≥ k and (I2) holds as it
does in M .

For (I3) let I ′, I ∈ I(M [k]) such that I ′ is maximal and I is not. There is
a set F ′ ⊆ E(M)\I ′ of size k such that, in M , I ′∪F ′ is not only independent
but, by maximality of I ′, also a base. Similarly, there is a set F ⊆ E(M) \ I
of size k such that I ∪ F ∈ I(M).

We claim that I∪F is non-maximal in I(M) for any such F . Suppose not
and I ∪F is maximal for some F as above. By assumption, I is contained in
some larger set of I(M [k]). Hence there is a set F + ⊆ E(M)\I of size k +1
such that I ∪F + is independent in M . Clearly (I ∪F ) \ (I ∪F +) = F \F +

is finite, so Lemma 2.3 implies that∣∣F + \ F
∣∣ =

∣∣(I ∪ F +) \ (I ∪ F )
∣∣ ≤ ∣∣(I ∪ F ) \ (I ∪ F +)

∣∣ =
∣∣F \ F +

∣∣ .
In particular, k + 1 = |F +| ≤ |F | = k, a contradiction.

Hence we can pick F such that F ∩ F ′ is maximal and, as I ∪ F is non-
maximal in I(M), apply (I3) in M to obtain a x ∈ (I ′ ∪ F ′) \ (I ∪ F ) such
that (I ∪ F ) + x ∈ I(M). This means I + x ∈ I(M [k]). And x ∈ I ′ \ I
follows, as x /∈ F ′ by our choice of F .

To show (IM), let I ⊆ X ⊆ E(M) with I ∈ I(M [k]) be given. By (IM)
for M , there is a B ∈ I(M) which is maximal subject to I ⊆ B ⊆ X. We
may assume that F := B \ I has at most k elements; for otherwise there is a
superset I ′ ⊆ B of I such that |B \ I ′| = k and it suffices to find a maximal
set containing I ′ ∈ I(M [k]) instead of I.

We claim that for any F + ⊆ X \ I of size k + 1 the set I ∪ F + is not in
I(M [k]). For a contradiction, suppose it is. Then in M |X, the set B = I∪F
is a base and I ∪ F + is independent and as (I ∪ F ) \ (I ∪ F +) ⊆ F \ F + is
finite, Lemma 2.3 implies∣∣F + \ F

∣∣ =
∣∣(I ∪ F +) \ (I ∪ F )

∣∣ ≤ ∣∣(I ∪ F ) \ (I ∪ F +)
∣∣ =

∣∣F \ F +
∣∣ .

This means k + 1 = |F +| ≤ |F | = k, a contradiction. So by successively
adding single elements of X \ I to I as long as the obtained set is still in
I(M [k]) we arrive at the wanted maximal element after at most k steps.

5.2 The nearly finitary algebraic cycle matroids

In this section, we prove Proposition 5.2. It will be instructive to note that
a base of MA(G) is a maximal subset of E(G) containing no finite cycle and
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no double ray of G; while a base of MA(G)fin is a maximal subset of E(G)
containing no finite cycle of G, i.e., an ordinary spanning tree of G.

Proof of Proposition 5.2. Suppose that G has k disjoint rays for every inte-
ger k; so that G has a set R of infinitely many disjoint rays by Theorem 5.4.
We show that MA(G) is not nearly finitary.

The edge set of
⋃
R =

⋃
R∈RR is independent in MA(G)fin as it induces

no finite cycle of G. Therefore there is a base of MA(G)fin containing it;
such induces an ordinary spanning tree, say T , of G. We show that

T − F contains a double ray for any finite edge set F ⊆ E(T ). (1)

This implies that E(T ) \ I is infinite for every independent set I of MA(G)
and hence MA(G) is not nearly finitary. To see (1), note that T − F has
|F |+1 components for any finite edge set F ⊆ E(T ) as T is a tree and succes-
sively removing edges always splits one component into two. So one of these
components contains infinitely many disjoint rays from R and consequently
a double ray.

Suppose next, that G has at most k disjoint rays for some integer k
and let T be an ordinary spanning tree of G, that is, E(T ) is maximal in
MA(G)fin. To prove that MA(G) is nearly finitary, we need to find a finite
set F ⊆ E(T ) such that E(T ) \ F is independent in MA(G), i.e. it induces
no double ray of G. Let R be a maximal set of disjoint rays in T ; such exists
by assumption and |R| ≤ k. As T is a tree and the rays of R are vertex
disjoint, it is easy to see that T contains a set F of |R| − 1 edges such that
T −F has |R| components which each contain one ray of R. By maximality
of R no component of T − F contains two disjoint rays, or equivalently, a
double ray.

5.3 The nearly finitary topological cycle matroids

In this section, we prove Proposition 5.3. To this end, we shall require only
the following notions for MT (G) which are presented in full detail in [5]. An
end of G is an equivalence class of rays, where two rays are equivalent if they
cannot be separated by a finite edge set. In particular, two rays meeting
infinitely often are equivalent. Let the degree of an end ω be the size of a
maximal set of vertex disjoint rays belonging to ω, which is well-defined [8].
We say that a double ray belongs to an end if the two rays which arise from
the removal of one edge from the double ray belong to that end; this does
not depend on the choice of the edge.
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The finite circuits of MT (G) are the edge sets of finite cycles of G. An
instance of an infinite circuit of MT (G) is the edge set of a double ray which
is comprised of two rays from the same end. In fact, every infinite circuit of
MT (G) induces at least one double ray; provided that G is locally finite [8].

A graph G has only finitely many disjoint rays if and only if G has only
finitely many ends, each with finite degree. Also, note that

every end of a 2-connected locally finite graph has degree at least 2. (2)

Indeed, applying Menger’s theorem inductively, it is easy to construct in
any k-connected graph for any end ω a set of k disjoint rays of ω.

Proof of Proposition 5.3. If G has only a finite number of vertex disjoint rays
then MA(G) is nearly finitary by Proposition 5.2. Observing MA(G)fin =
MT (G)fin and I(MA(G)) ⊆ I(MT (G)), we conclude that MT (G) is nearly
finitary as well.

Now, suppose that G contains k vertex disjoint rays for every k ∈ N. If
G has an end ω of infinite degree, then there is an infinite set R of vertex
disjoint rays belonging to ω. As any double ray containing two rays of R
forms a circuit of MT (G), the argument from the proof of Proposition 5.2
shows that MT (G) is not nearly finitary.

Assume then that G has no end of infinite degree. There are infinitely
many disjoint rays, by Theorem 5.4. Hence, there is a countable set of ends
Ω = {ω1, ω2, . . .}.

We inductively construct a setR of infinitely many vertex disjoint double
rays, one belonging to each end of Ω. Suppose that for any integer n ≥ 0 we
have constructed a set Rn of n disjoint double rays, one belonging to each
of the ends ω1, . . . , ωn. Different ends can be separated by finitely many
vertices so there is a finite set S of vertices such that

⋃
Rn has no vertex in

the component C of G − S which contains ωn+1. Since ωn+1 has degree 2
by (2), there are two disjoint rays from ωn+1 in C an thus also a double ray
D belonging to ωn+1. Set Rn+1 := Rn ∪ {D} and R :=

⋃
n∈NRn.

As
⋃
R contains no finite cycle of G, it can be extended to an ordinary

spanning tree of G. Removing finitely many edges from this tree clearly
leaves an element of R intact. Hence, the edge set of the resulting graph
still contains a circuit of MT (G). Thus, MT (G) is not nearly finitary in this
case as well.

We end this section with the following open problem.

Question 5.5. Is it true that any nearly finitary matroid is k-nearly finitary
for some k ∈ N?
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Note that the argument in the proof of Proposition 5.2 (which we reuse
for Proposition 5.3) shows that MA(G) and MT (G) are (k−1)-nearly finitary
if G has at most k vertex disjoint rays. So for MA(G) and MT (G) the answer
is yes when G is locally finite and 2-connected but both proofs use the non-
trivial theorem of Halin for which no matroidal equivalent is known.

6 Infinite matroid intersection

In this section, we prove Theorem 1.4, Theorem 1.7 and provide an alterna-
tive matroidal proof of the infinite Menger Theorem for locally finite graphs.

6.1 From infinite matroid union to infinite matroid intersec-
tion

Here, we prove Theorem 1.4 which reads as follows.

Theorem 1.4. If M1 and M2 are matroids on a common ground set E and
M1 ∨M∗

2 is a matroid, then there exists an I ∈ I(M1) ∩ I(M2) admitting a
partition I = J1 ∪ J2 such that clM1(J1) ∪ clM2(J2) = E.

Proof of Theorem 1.4. We start from the well known proof from finite ma-
troid theory that matroid union implies a solution to the matroid intersection
problem. Indeed, let B1 ∪ B∗2 ∈ B(M1 ∨M∗

2 ) where B1 ∈ B(M1) and B∗2 ∈
B(M∗

2 ). Rut B2 = E \B∗2 ∈ B(M2). Then, I = B1 ∩B2 ∈ I(M1) ∩ I(M2).
It remains to show that I admits the required partition. This problem

can be rephrased (elegantly) as a directed graph coloring problem. We write
Ci(x) to denote the fundamental circuit of x into Bi in Mi whenever x /∈ Bi

for i = 1, 2. Let C∗2 (x) denote the fundamental circuit of x into B∗2 in M∗
2

whenever x /∈ B∗2 . Also, put X = B1 ∩B∗2 , Y = B2 \ I, and Z = B∗2 \X, see
Figure 4.

We shall also require the well known fact [10], which is easy to generalize
to infinite matroids [6, Lemma 3.11], that for any matroid M

|C ∩ C∗| 6= 1 whenever C ∈ C(M) and C∗ ∈ C(M∗). (3)

To prove that I has the required partition, we need the following miti-
gation:

clM1(I) ∪ clM2(I) = E = I ∪X ∪ Y ∪ Z. (4)

To see (4), note first that
X ⊆ clM2(I). (5)
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B1

B2

B∗
2

I

X

Y

Z

blue

red

blue is spanned by I in M2

red is spanned by I in M1

Figure 4: The sets X, Y , and Z and their colorings.

Clearly, no member of X is spanned by I in M1. Assume then that x ∈ X
is not spanned by I in M2 so that there exists a y ∈ C2(x) ∩ Y . Then,
x ∈ C∗2 (y), by (3). Consequently, B1∪B∗2 ( B1∪(B∗2 +y−x) ∈ I(M1∨M∗

2 );
contradiction to the maximality of B1 ∪B∗2 , implying (5).

A similar argument shows that

Y ⊆ clM1(I). (6)

To see that
Z ⊆ clM1(I) ∪ clM2(I), (7)

assume, towards contradiction, that some z ∈ Z is not spanned by I neither
in M1 nor in M2 so that there exist an x ∈ C1(z) ∩X and a y ∈ C2(z) ∩ Y .
Then B1 − x + z and B2 − y + z are bases and thus B1 ∪ B∗2 ( (B1 − x +
z) ∪ (B∗2 − z + y) contradicts the maximality of B1 ∪B∗2 .

Having proved (4), we translate the problem of finding a suitable par-
tition I = J1 ∪ J2 into a directed graph coloring problem. By (4), each
x ∈ E \ I satisfies C1(x) − x ⊆ I or C2(x) − x ⊆ I. Define G = (V,E) to
be the directed graph whose vertex set is V = E \ I and whose edge set is
given by

E = {(x, y) : C1(x) ∩ C2(y) ∩ I 6= ∅}. (8)

Recall that a source is a vertex with no incoming edges and a sink is a vertex
with no outgoing edges. As C1(x) does not exist for any x ∈ X and C2(y)
does not exist for any y ∈ Y , it follows that

the members of X are sinks and those of Y are sources in G. (9)

A 2-coloring of G, by say blue and red, is called divisive if such satisfies the
following.

17



(D.1) I spans all the blue elements in M1;

(D.2) I spans all the red elements in M2; and

(D.3) J1∩J2 = ∅ where J1 := (
⋃

x blue C1(x))∩I and J2 := (
⋃

x red C2(x))∩I.

Clearly, if G has a divisive coloring, then I admits the required partition.
We show that G admits a divisive coloring. Color with blue all the

sources. These are the vertices that can only be spanned by I in M1. Color
with red all the sinks, that is, all the vertices that can only be spanned by
I in M2. This defines a partial coloring of G in which all members of X are
red and those of Y are blue. Such a partial coloring can clearly be extended
into a divisive coloring of G if

G has no (y, x)-path with y blue and x red. (10)

Indeed, given (10) and (9), color all vertices reachable by a path from a
blue vertex with the color blue, color all vertices from which a red vertex
is reachable by a path with red, and color all remaining vertices with, say,
blue. The resulting coloring is divisive.

It remains to prove (10). We show that the existence of a path as in
(10) contradicts the following property. Suppose M and N are matroids
and B ∪ B′ is maximal in I(M ∨ N). Let y /∈ B ∪ B′ and let x ∈ B ∩ B′.
Then,

there exists no (B, B′, y, x)-chain (11)

by [4, Lemma 4.2]. In fact, the contradiction in the proofs of (5),(6), and
(7) arose from simple instances of such forbidden chains. In what follows,
we see that these also capture the more general setting.

Assume, towards contradiction, that P is a (y, x)-path with y blue and
x red; the intermediate vertices of such a path are not colored since they
are not a sink nor a source. In what follows we use P to construct a
(B1, B

∗
2 , y0, y2|P |)-chain (y0, y1, . . . , y2|P |) such that y0 ∈ Y , y2|P | ∈ X, all

odd indexed members of the chain are in V (P ) ∩ Z, and all even indexed
elements of the chain other than y0 and y2|P | are in I. Existence of such a
chain would contradict (11).

Definition of y0. As y is pre-colored blue then either y ∈ Y or C2(y)∩Y 6=
∅. In the former case set y0 = y and in the latter choose y0 ∈ C2(y) ∩ Y .

Definition of y2|P |. In a similar manner, x is pre-colored red since either
x ∈ X or C1(x) ∩X 6= ∅. In the former case, set y2|P | = x and in the latter
case choose y2|P | ∈ C1(x) ∩X.
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The remainder of the chain. Enumerate V (P )∩Z = {y1, y3, . . . , y2|P |−1}
where the enumeration is with respect to the order of the vertices defined by
P . Next, for an edge (y2i−1, y2i+1) ∈ E(P ), let y2i ∈ C1(y2i−1)∩C2(y2i+1)∩I;
such exists by the assumption that (y2i−1, y2i+1) ∈ E. As y2i+1 ∈ C∗2 (y2i) for
all relevant i, by (3), the sequence (y0, y1, y2, . . . , y2|P |) is a (B1, B

∗
2 , y0, y2|P |)-

chain in I(M1 ∨M∗
2 ) as defined in [4].

We note that in the above proof, we do not use the assumption that
M1∨M∗

2 is a matroid; in fact, we only need that I(M1∨M∗
2 ) has a maximal

element.

6.2 From infinite matroid intersection to the infinite Menger
theorem

Here, we prove Theorem 1.7 and then proceed and provide an alternative
matroidal proof for the infinite Menger theorem in the case that the graph is
locally finite. Prior to all this, we recall the formulation of the general infinite
Menger Theorem. Given a graph G and S, T ⊆ V (G), a set X ⊆ V (G) is
called an S–T separator if G−X contains no S–T path. Recall the infinite
Menger theorem.

Theorem 1.6 (Aharoni and Berger [2]). Let G be a connected graph. Then
for any S, T ⊆ V (G) there is a set L of vertex disjoint S–T paths and an
S–T separator X ⊆

⋃
P∈L V (P ) satisfying |X ∩ V (P )| = 1 for each P ∈ L.

As already mentioned in the Introduction, here we prove the following.

Theorem 1.7. The infinite matroid intersection conjecture for finitary ma-
troids implies the general infinite Menger theorem.

Note that infinite matroid union cannot be used to obtain the general
infinite Menger Theorem directly via Theorem 1.4 and Theorem 1.7. In-
deed, in [4, Example 3.4] a finitary matroid M and a co-finitary matroid
N are constructed such that their union is not a matroid. So one cannot
apply Theorem 1.4 to the finitary matroids M and N∗ in order to obtain
Conjecture 1.3 for them. However, it is easy to see that Conjecture 1.3 is
true for M and N∗.

Proof of Theorem 1.7. Let G be a connected graph and let S, T ⊆ V (G) be
as in Theorem 1.6. We may assume that G[S] and G[T ] are both connected.
Indeed, an S–T separator with G[S] and G[T ] connected gives rise to an S–
T separator when these are not necessarily connected. Abbreviate E(S) :=
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E(G[S]) and E(T ) := E(G[T ]), let M be the finite cycle matroid MF (G),
and put MS := M/E(S) − E(T ) and MT := M/E(T ) − E(S); all three
matroids are clearly finitary.

Assuming that the infinite matroid intersection conjecture holds for MS

and MT , there exists a set I ∈ I(MS) ∩ I(MT ) which admits a partition
I = JS ∪ JT satisfying

clMS
(JS) ∪ clMT

(JT ) = E,

where E = E(MS) = E(MT ). We regard I as a subset of E(G).
For the components of G[I] we observe two useful properties. As I is

disjoint from E(S) and E(T ), the edges of a cycle in a component of G[I]
form a circuit in both, MS and MT , contradicting the independence of I in
either. Consequently,

the components of G[I] are trees. (12)

Next, an S-path7 or a T -path in a component of G[I] gives rise to a circuit
of MS or MT in I, respectively. Hence,

|V (C) ∩ S| ≤ 1 and |V (C) ∩ S| ≤ 1 for each component C of G[I]. (13)

Let C denote the components of G[I] meeting both of S and T . Then by
(12) and (13) each member of C contains a unique S–T path and we denote
the set of all these paths by L. Clearly, the paths in L are vertex-disjoint.

In what follows, we find a set X comprised of one vertex from each P ∈ L
to serve as the required S–T separator. To that end, we show that one may
alter the partition I = JS ∪ JT to yield a partition

I = KS ∪KT satisfying clMS
(KS) ∪ clMT

(KT ) = E and (Y.1-4), (14)

where (Y.1-4) are as follows.

(Y.1) Each component C of G[I] contains a vertex of S ∪ T .

(Y.2) Each component C of G[I] meeting S but not T satisfies E(C) ⊆ KS .

(Y.3) Each component C of G[I] meeting T but not S satisfies E(C) ⊆ KT .

(Y.4) Each component C of G[I] meeting both, S and T , contains at most
one vertex which at the same time

7A non-trivial path meeting G[S] exactly in its end vertices.
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(a) lies in S or is incident with an edge of KS , and

(b) lies in T or is incident with an edge of KT .

Postponing the proof of (14), we first show how to deduce the existence
of the required S–T separator from (14). Define a pair of sets of vertices
(VS , VT ) of V (G) by letting VS consist of those vertices contained in S or
incident with an edge of KS and defining VT in a similar manner. Then
VS ∩ VT may serve as the required S–T separator. To see this, we verify
below that (VS , VT ) satisfies all of the terms (Z.1-4) stated next.

(Z.1) VS ∪ VT = V (G);

(Z.2) for every edge e of G either e ⊆ VS or e ⊆ VT ;

(Z.3) every vertex in VS ∩ VT lies on a path from L; and

(Z.4) every member of L meets VS ∩ VT at most once.

To see (Z.1), suppose v is a vertex not in S ∪ T . As G is connected,
such a vertex is incident with some edge e /∈ E(T ) ∪ E(S). The edge e is
spanned by KT or KS ; say KT . Thus, KT + e contains a circle containing
e or G[KT + e] has a T -path containing e. In either case v is incident with
an edge of KT and thus in VT , as desired.

To see (Z.2), let e ∈ clMT
(KT )\KT ; so that KT +e has a circle containing

e or G[KT + e] has T -path containing e; in either case both end vertices of
e are in VT , as desired. The treatment of the case e ∈ clMS

(KS) is similar.
To see (Z.3), let v ∈ VS ∩ VT ; such is in S or is incident with an edge of

KS , and in T or is incident with an edge in KT . Let C be the component
of G[I] containing v. By (Y.1-4), C ∈ C, i.e. it meets both, S and T and
therefore contains an S–T path P ∈ L. Recall that every edge of C is either
in KS or KT and consider the last vertex w of a maximal initial segment of
P in C −KT . Then w satisfies (Y.4a), as well as (Y.4b), implying v = w;
so that v lies on a path from L.

To see (Z.4), we restate (Y.4) in terms of VS and VT : each component
of C contains at most one vertex of VS ∩ VT . This clearly also holds for the
path from L which is contained in C.

It remains to prove (14). To this end, we show that any component C
of G[I] contains a vertex of S ∪ T . Suppose not. Let e be the first edge on
a V (C)–S path Q which exists by the connectedness of G. Then e /∈ I but
without loss of generality we may assume that e ∈ clMS

(JS). So in G[I] + e
there must be a cycle or an S-path. The latter implies that C contains

21



a vertex of S and the former means that Q was not internally disjoint to
V (C), yielding contradictions in both cases.

We define the sets KS and KT as follows. Let C be a component of G[I].

1. If C meets S but not T , then include its edges into KS .

2. If C meets T but not S, then include its edges into KT .

3. Otherwise (C meets both of S and T ) there is a path P from L in
C. Denote by vC the last vertex of a maximal initial segment of P in
C − JT . As C is a tree, each component C ′ of C − vC is a tree and
there is a unique edge e between vC and C ′. For every such component
C ′, include the edges of C ′ + e in KS if e ∈ JS and in KT otherwise,
i.e. if e ∈ JT .

Note that, by choice of vC , either vC is the last vertex of P or the next edge
of P belongs to JT . This ensures that KS and KT satisfy (Y.4). Moreover,
they form a partition of I which satisfies (Y.1-3) by construction. It remains
to show that clMS

(KS) ∪ clMT
(KT ) = E.

As KS ∪ KT = I, it suffices to show that any e ∈ E \ I is spanned by
KS in MS or by KT in MT . Suppose e ∈ clMS

(JS), i.e. JS + e contains a
circuit of MS . Hence, G[JS ] either contains an e-path R or two disjoint e–S
paths R1 and R2. We show that E(R) ⊆ KS or E(R) ⊆ KT in the former
case and E(R1) ∪ E(R2) ⊆ KS in the latter.

The path R is contained in some component C of G[I]. Suppose C ∈ C
and vC is an inner vertex of R. By assumption, the edges preceding and
succeeding vC on R are both in JS and hence the edges of both components
of C − vC which are met by R plus their edges to vC got included into KS ,
showing E(R) ⊆ KS . Otherwise C /∈ C or C ∈ C but vC is no inner vertex
of R. In both cases the whole set E(R) got included into KS or KT .

We apply the same argument to R1 and R2 except for one difference. If
C /∈ C or C ∈ C but vC is no inner vertex of Ri, then E(Ri) got included
into KS as Ri meets S.

Although the definitions of KS and KT are not symmetrical, a similar
argument shows e ∈ clMS

(KS)∪ clMT
(KT ) if e is spanned by JT in MT .

Combining Theorem 1.4 and a slight modification of the above proof, we
now provide an alternative matroidal proof of the following.

Theorem 6.1. The infinite Menger theorem is true for locally finite graphs.

Before proving Theorem 6.1, we observe the following.
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If G is locally finite, then MA(G) is co-finitary. (15)

Proof. Indeed, assume towards contradiction that MA(G) has an infinite co-
circuit S. In graph language, S is an edge separator that does not separate
two rays. By minimality of S, the graph G−S has exactly two components
and these meet every edge in S. Since G is locally finite and S is infinite,
these two components are infinite and contain a ray, contradicting that S
separates.

Proof of Theorem 6.1. To obtain the assertion, we modify the proof of The-
orem 1.7 as follows. Since G is locally finite and connected, it has only count-
ably many vertices. In particular, G[S] and G[T ] can still be assumed to be
connected without forfeiting that G is locally finite. Furthermore, G does
not contain a subdivision of the (non-locally-finite) Bean graph and hence
MA(G) is a matroid by [6, Theorem 2.5]. By (15), MA(G) is co-finitary and
this is preserved under taking minors. Hence MT := MA(G)/E(T ) − E(S)
is co-finitary as well. In particular, MS ∨M∗

T is a matroid by Theorem 1.1
and thus Theorem 1.4 implies that MS and MT satisfy the infinite matroid
intersection conjecture.

It remains to check that the proof of Theorem 1.7 works with the modi-
fied MT as well. To reduce the number of cases to consider, we assume that
T is infinite and hence contains a ray. Otherwise attach a ray at some vertex
of T and add all its vertices to T . Hence no component of G[I] meeting T
may contain a ray. The proof of Theorem 1.7 can be applied if we replace
(Y.1) by the following: Each component C of G[I] not meeting S ∪ T is in
KT .
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