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Abstract

We prove that the union of two finitary matroids is a matroid, and
in fact finitary. On the other hand we show that the union of a finitary
matroid with an arbitrary matroid need not be a matroid.

We extend the well-known base packing theorem for finite matroids
to co-finitary matroids, implying the tree-packing results in infinite
graphs of Tutte and of Diestel.

1 Introduction

For two finite matroids M1 = (E1, I1) and M2 = (E2, I2), the well-known
matroid union theorem [7, 8] asserts that the set system

I(M1 ∨M2) = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}

is the set of independent sets of their union matroid M1 ∨M2, whose bases
are the unions of pairs of bases with least intersection.

In Example 3.4, we provide two infinite matroids M1 and M2 for which
the set I(M1 ∨M2) does not define a matroid. Hence, an analogue of the
finite matroid union theorem does not exist for arbitrary infinite matroids.

One of the matroids involved in Example 3.4 contains no infinite circuits,
such a matroid is called finitary. Nevertheless, we prove the following.

Theorem 1.1. If M1 and M2 are finitary matroids, then M1 ∨ M2 is a
matroid, and in fact finitary.

The finite matroid union theorem asserts that the union of two disjoint
bases of a finite matroid M is a base of M ∨ M . For finitary matroids
the same assertion is false. Indeed, there exists a finitary matroid N with
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two disjoint bases whose union is not a base of the matroid N ∨ N , see
Example 3.1.

An easy consequence of Theorem 1.1 is that the union of finitely many
finitary matroids is a finitary matroid. We show that this is best possible
in the sense that the union of countably many finite matroids need not be
a matroid, see Example 3.2.

In [3], we use Theorem 1.1 to prove that the union of two ‘nearly finitary’
matroids is a ‘nearly finitary’ matroid. This then reduces the ‘gap’ between
Theorem 1.1 and the counterexamples against matroid union.

The main difficulty in proving Theorem 1.1 arises from the need to verify
that I(M1∨M2) satisfies the axioms (IM) and (I3), stated below. The former
essentially asserts that each independent set is contained in a maximal one.
To verify that this axiom is satisfied we use a topological argument (see
Section 5) that shows that I(M1∨M2) is a finitary set system, meaning that
an infinite set belongs to the system provided that each of its finite subsets
does. It is then an easy consequence of Zorn’s lemma that all finitary set
systems satisfy (IM).

The axiom (I3) asserts that whenever I is a non-maximal independent set
and I ′ is base, then there exists an x ∈ I ′ \ I such that I + x is independent.
We prove the following.

Theorem 1.2. If M1 and M2 are matroids, then I(M1∨M2) satisfies (I3).

The main benefit of Theorem 1.2 is that it holds for arbitrary ma-
troids (which need not be finitary); this reduces the problem of determining
whether I(M1 ∨M2) defines a matroid to the problem of determining if the
latter satisfies (IM).

To prove Theorem 1.2, we introduce the concept of exchange chains.
These turn out to have further applications. For instance, in [3] we use
these chains together with our union results to gain progress on the infinite
matroid intersection conjecture, put forth by Nash-Williams [2].

Two well-known applications of the finite matroid union theorem are
that of base covering (see Section 6) and base packing of finite matroids.
The former extends to finitary matroids in a straightforward manner by
Theorem 1.1 (see Corollary 6.1). We extend the latter to matroids whose
dual is finitary, these are called co-finitary matroids. As a consequence,
we obtain a single matroidal proof for the two well-known tree packing
theorems in infinite graphs of Diestel [6, Theorem 8.5.7] and of Tutte [9]
(see Section 6).

More specifically, the finite base packing theorem asserts that a finite
matroid M admits k disjoint bases if and only if kr(X)+|E(M)\X| ≥ kr(M)
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for every X ⊆ E(M) [8], where r denotes the rank function of M . For
infinite matroids, this rank condition is too crude. We reformulate it using
the notion of relative rank [5] as follows.

Theorem 1.3. A co-finitary matroid M with ground set E admits k disjoint
bases if and only if |Y | ≥ kr(E|E − Y ) for all finite sets Y ⊆ E.

Theorem 1.3 does not extend naturally to arbitrary infinite matroids.
Indeed, for every integer k there exists a finitary matroid with no three
disjoint bases yet satisfying |Y | ≥ kr(E|E − Y ) for every Y ⊆ E [1, 6].

As far as we know, all known proofs in which the finite base packing theo-
rem is derived from the finite matroid union theorem rely on the assumption
that the matroid has finite rank. As this assumption is too restrictive in our
setting, our proof of Theorem 1.3 does not appeal to Theorem 1.1.

This paper is organized as follows. Additional notation and terminology
is set in Section 2. The examples mentioned above and a few others are
detailed in Section 3. In Section 4, we prove Theorem 1.2. Our main result,
Theorem 1.1, is proved in Section 5. In Section 6, we prove the Theorems 6.1
and 6. Finally, in Section 7, we pose some open problems.

2 Preliminaries

Throughout, notation and terminology for graphs are that of [6], for ma-
troids that of [7, 5], and for topology that of [4]. M always denotes a
matroid and E(M), I(M), B(M), and C(M) denote its ground set, inde-
pendent sets, bases, and circuits, respectively. It will be convenient to have
a similar notation for set systems. That is, for a set system I over some
ground set E, an element of I is called independent, a maximal element of
I is called a base of I, and a minimal element of P(E) \ I is called circuit
of I.

A set system I is the set of independent sets of a matroid if it satisfies
the following independence axioms [5].

(I1) ∅ ∈ I.

(I2) dIe = I, that is, I is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I ′ ∈ I | I ⊆ I ′ ⊆ X} has a
maximal element.
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In [5], a matroid is characterised in terms of its circuits. Of this charac-
terisation we shall need the circuit elimination axiom phrased here for a
matroid M .

(C3) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M) satisfies x ∈
Cy ⇔ x = y for all x, y ∈ X, then for every z ∈ C \ (⋃x∈X Cx

)
there

exists a C ′ ∈ C(M) such that z ∈ C ′ ⊆ (C ∪⋃x∈X Cx

) \X.

A circuit of M which contains a given set X ⊆ E(M) is called an X-circuit.
The closure (see [7]) of a set X ⊆ E(M) is denoted by cl(X).

As mentioned in the Introduction, a set system is finitary if an infinite
set belongs to the system provided each of its finite subsets does. If I(M) is
finitary, then M is called a finitary matroid; as already mentioned, finitary
matroids have no infinite circuits.

For a connected graph G, a maximal set of edges containing no finite
cycles is called an ordinary spanning tree. These are the bases of the finite
cycle matroid, denoted MF (G). Next, a maximal set of edges containing no
finite cycles nor any double ray is called an algebraic spanning tree. These
are the bases of the algebraic cycle matroid, denoted MA(G).

3 Examples

In this section, we demonstrate the significant difference between the union
of finite matroids and that of infinite matroids by providing examples for
the limitations of infinite matroid union.

Example 3.1. We present a finitary infinite matroid M admitting two
disjoint bases whose union is properly contained in the union of some other
two bases; so that in M ∨M the union of the first pair of bases is not a base.

Consider the infinite one-sided ladder with every edge doubled, say H,
and recall that the bases of MF (H) are the ordinary spanning trees of H. In
Figure 1, (B1, B2) and (B3, B4) are both pairs of disjoint bases of MF (H).
However, B3 ∪ B4 properly covers B1 ∪ B2 as it additionally contains the
leftmost edge of H.

We remark that a direct sum of infinitely many copies of H gives rise to
an infinite sequence of unions of disjoint bases, each properly containing the
previous one, strengthening Example 3.1, that is, the failure of the ‘finite
intuition’ mentioned above.
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B2 B4
. . . . . .

B1 B3

Figure 1: The disjoint bases B1 and B2 on the left are properly covered by
the bases B3 and B4 on the right.

Example 3.2. A union of infinitely many matroids of finite rank need not
be a matroid. For any integer k ≥ 1, we have that

M :=
∨
n∈N

Uk,R is not a matroid.

As usual, Uk,R denotes the k-uniform matroid with ground set R. The set
I(M) violates (IM) for I = ∅ and X = R as the independent sets of M are
exactly the countable subsets of R. Indeed, as a countable union of finite sets
is countable, every independent set is countable. Conversely, an uncountable
subset of R can never be written as a countable union of independent and
thus finite sets.

In this example, we used the fact that r(M) is countable and E(M) is un-
countable. For a subtler example, let A = {a1, a2, . . .} and B = {b1, b2, . . .}
be disjoint and countable. Set En := {a1, . . . , an} ∪ {bn}. Then M :=∨

n∈N U1,En is an infinite union of finite matroids and fails to satisfy (IM)
for I = A and X = A ∪B = E(M).

Example 3.3. We construct two matroids M and N whose union is not a
matroid. M is a direct sum of 1-uniform matroids and thus finitary and N
is a direct sum of circuits and thus co-finitary (see Figure 2).

More precisely, the matroids M and N are as follows. Let E = N × R.
Let Mn := U1,{n}×R and set M :=

⊕
n∈N Mn. Let Nr be the matroid on

N×{r} whose only circuit is N×{r} itself and set N :=
⊕

r∈R Nr. A base of
M is countable as it consists of one element from each of the sets {n}×R. A
base of N consists of all of E but one element from each of the sets N×{r}
and hence misses uncountably many elements of E.

We claim that I(M ∨ N) violates (IM) for I = ∅ and X = E, that is,
I(M ∨N) has no maximal element. For this, it is sufficient to show that a
set J ⊆ E is in I(M ∨N) if and only if it contains at most countably many
circuits of N ; since then, for any J ∈ I(M ∨N) and any circuit C = N×{r}
of N with C * J (such exists) we have J ∪ C ∈ I(M ∨N).
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M1 M2 M3

N−2 N0 Nπ

...

...

... . . .

. . .. . .
... M4

(1, 0) (2, 0) (3, 0) (4, 0)

Figure 2: M =
⊕

n∈N Mn and N =
⊕

r∈R Nr from Example 3.3 as cycle
matroids and how they relate.

Suppose that J ⊆ E contains uncountably many circuits of N . Any JN ∈
I(N) misses an element of each of these uncountably many disjoint circuits
of N , so D := J \ JN is uncountable. On the other hand, any independent
set of M is countable and hence cannot contain D. So J /∈ I(M ∨N).

Suppose that J ⊆ E contains countably many circuits of N . Clearly
there is a set JN ∈ I(N) containing all of J but one element from each
of these circuits. As we are free to choose which element of each circuit
is missed, we can make them lie in different Mn. In particular, we may
assume that the set JM of missed elements is independent in M and thus
J = JM ∪ JN ∈ I(M ∨N).

Example 3.4. Whereas Example 3.3 provides two matroids with uncount-
able ground sets whose union is not a matroid, in this example we construct
two such matroids M and N with countable ground set.

Similarly to the previous example, M is a direct sum of finite 1-uniform
matroids and thus finitary as well as co-finitary and N is a direct sum of
circuits and thus co-finitary (see Figure 3). Note that although we prove
later on that the union of two finitary matroids is indeed a matroid, this
example shows that the union of two co-finitary matroids is not necessarily
a matroid.

Starting the construction of M and N , let E = (N × N) ∪ L where
L = {l1, l2, . . .} is countable and disjoint to N×N. For r ∈ N, let Nr be the
matroid on N × {r} whose only circuit is N × {r} itself and let N be the
matroid obtained from

⊕
r∈N Nr by adding the elements of L as loops. Let

Mn be the 1-uniform matroid on ({n} × {1, 2, . . . , n})∪ {ln}. We obtain M
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M1 M2 M3 . . .

. . .

M4

N1 N2 N3

(2, 2) (3, 2) (4, 2)

Figure 3: M =
⊕

n∈N Mn and N =
⊕

r∈N Nr from Example 3.4 as cycle
matroids and how they relate. The set L in gray.

from
⊕

n∈N Mn by adding the remaining elements of E as loops.
We claim that I(M ∨N) violates (IM) for I = N× N and X = E. For

this, it is sufficient to show I ∈ I(M ∨N) and that a set J with I ⊂ J ⊆ E
is in I(M ∨N) if and only if it misses infinitely many elements of L.

To see I ∈ I(M ∨N), note that the diagonal JM := {(n, n) | n ∈ N} is
independent in M and meets each circuit N×{r} of N . In particular, JN :=
(N×N) \ JM is independent in N and therefore I = JM ∪ JN ∈ I(M ∨N).

Suppose J ∈ I(M ∨ N). There are JM ∈ I(M) and JN ∈ I(N) such
that J = JM ∪ JN . As JN misses at least one element from each of the
disjoint circuits of N in I, the set D := I \ JN is infinite. But I ⊆ J and
hence D ⊆ JM . In particular, there is an infinite subset L′ ⊆ L such that
D + l contains a circuit of M for every l ∈ L′. This shows that JM and L′

are disjoint and thus J and L′ are.
Now suppose that there is a sequence i1 < i2 < . . . such that J is disjoint

from L′ = {lir | r ∈ N}. We show that the superset E\L′ of J is in I(M∨N).
Set D := {(ir, r) | r ∈ N}. Then D meets every circuit N × {r} of N in I,
so JN := N × N \ D is independent in N . On the other hand, D contains
exactly one element of each Mn with n ∈ L′. So JM := (L \L′)∪D ∈ I(M)
and therefore E \ L′ = JM ∪ JN ∈ I(M ∨N).

4 Exchange chains – (I3) in unions

Throughout this section M1 and M2 are matroids and we show that I(M1∨
M2) satisfies (I3).
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Theorem 1.2. Whenever M1 and M2 are matroids, then I = I(M1 ∨M2)
satisfies the following.

(I3) Whenever I, I ′ ∈ I with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I.

For technical reasons, we rather show that the following mixture of (I3)
and (B2) is satisfied.

Proposition 4.1. The set I = I(M1 ∨M2) satisfies

(I3’) For all I, B ∈ I where B is maximal and all x ∈ I \ B there exists
y ∈ B \ I such that (I + y)− x ∈ I.

We remark that unlike in (I3), the set I in (I3’) may be maximal.

Proof of Theorem 1.2 assuming Proposition 4.1. Let I ∈ I be non-maximal
and B ∈ I be maximal. As I is non-maximal there is an x ∈ E \ I such that
I + x ∈ I. We may assume x /∈ B or the assertion follows by (I2). By (I3’),
applied to I + x, B, and x ∈ (I + x) \ B there is y ∈ B \ (I + x) such that
I + y ∈ I.

By a representation of a set I ∈ I(M1 ∨M2), we mean a pair (I1, I2)
where I1 ∈ I(M1) and I2 ∈ I(M2) such that I = I1 ∪ I2. At the core of our
proof of Proposition 4.1, is the following notion of an ‘exchange chain’. For
I1 ∈ I(M1), I2 ∈ I(M2), x ∈ I1 ∪ I2, and an element y ∈ E(M1) ∪ E(M2)
(possibly in I1 ∪ I2), a tuple Y = (y0, . . . , yn) with y0 = y and yn = x is
called an even (I1, I2, y, x)-exchange chain (or even (I1, I2, y, x)-chain) of
length n if the following terms are satisfied.

(X1) For even i, there exists a {yi, yi+1}-circuit Ci ⊆ I1 + yi of M1.

(X2) For odd i, there exists a {yi, yi+1}-circuit Ci ⊆ I2 + yi of M2.

Observe that if n ≥ 1, then (X1) and (X2) imply y0 /∈ I1 and that, beginning
with y1 ∈ I1 \ I2, the yi alternate between I1 \ I2 and I2 \ I1 up to yn which
may be in I1 ∩ I2 as well. By an odd exchange chain (or odd chain) we
mean an even chain with the words ‘even’ and ‘odd’ interchanged in the
definition. Consequently, we say exchange chain (or chain) to refer to either
of these. Furthermore, a subchain of a chain is also a chain; that is, given
an (I1, I2, y0, yn)-chain (y0, . . . , yn), the tuple (yk, . . . , yl) is an (I1, I2, yl, yk)-
chain for 0 ≤ k ≤ l ≤ n.

Lemma 4.2. If there exists an (I1, I2, y, x)-chain, then (I +y)−x ∈ I(M1∨
M2) where I := I1∪I2. Moreover, if x ∈ I1∩I2, then even I+y ∈ I(M1∨M2).
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In the proof of Lemma 4.2 we use chains to manipulate the sets I1 and
I2 as depicted in Figure 4 such that they additionally cover y0 = y at the
expense of not covering yn = x anymore (unless x ∈ I1 ∩ I2). Although
Lemma 4.2 is changing I1 ∪ I2 by only one element, this might require
an exchange chain of arbitrary length, for example in the configuration of
Figure 4 a chain of length four is needed.

C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) the initial representation

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) the obtained representation

Figure 4: An even exchange chain of length 4.

Proof. By induction on the length of the chain. The statement is trivial for
chains of length 0. Assume n ≥ 1 and that Y = (y0, . . . , yn) is a shortest
(I1, I2, y, x)-chain. Without loss of generality, let Y be an even chain. If
Y ′ := (y1, . . . , yn) is an (odd) (I ′1, I2, y1, x)-chain where I ′1 := (I1 + y0)− y1,
then ((I ′1 ∪ I2) + y1)− x ∈ I(M1 ∨M2) by the induction hypothesis and the
assertion follows, since (I ′1 ∪ I2) + y1 = (I1 ∪ I2) + y0. If also x ∈ I1 ∩ I2,
then either x ∈ I ′1 ∩ I2 or y1 = x and hence n = 1. In the former case
I + y ∈ I(M1 ∨M2) follows from the induction hypothesis and in the latter
case I + y = I ′1 ∪ I2 ∈ I(M1 ∨M2) as x ∈ I2.

Since I2 has not changed, (X2) still holds for Y ′, so to verify that Y ′ is
an (I ′1, I2, y1, x)-chain, it remains to show I ′1 ∈ I(M1) and to check (X1). To
this end, let Ci be a {yi, yi+1}-circuit of M1 in I1 + yi for all even i. Such
exist by (X1) for Y . Notice that any circuit of M1 in I1 + y0 has to contain
y0 since I1 ∈ I(M1). On the other hand, two distinct circuits in I1 + y0

would give rise to a circuit contained in I1 by the circuit elimination axiom
applied to these two circuits, eliminating y0. Hence C0 is the unique circuit
of M1 in I1 + y0 and y1 ∈ C0 ensures I ′1 = (I1 + y0)− y1 ∈ I(M1).

To see (X1), we show that there is a {yi, yi+1}-circuit C ′i of M1 in I ′1 +yi

for every even i ≥ 2. Indeed, if Ci ⊆ I ′1 + yi, then set C ′i := Ci; else, Ci
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contains an element of I1\I ′1 = {y1}. Furthermore, yi+1 ∈ Ci\C0; otherwise
(y0, yi+1, . . . , yn) is a shorter (I1, I2, y, x)-chain for, contradicting the choice
of Y . Applying the circuit elimination axiom to C0 and Ci, eliminating y1

and fixing yi+1, yields a circuit C ′i ⊆ (C0 ∪ Ci) − y1 of M1 containing yi+1.
Finally, as I ′1 is independent and C ′i \ I ′1 ⊆ {yi} it follows that yi ∈ C ′i.

Central to our argument in the proof of Proposition 4.1 is the following
set. For I1 ∈ I(M1), I2 ∈ I(M2), and x ∈ I1 ∪ I2 let

A(I1, I2, x) := {a | there exists an (I1, I2, a, x)-chain}
Such has the property that

for every y /∈ A, either I1 + y ∈ I(M1) or the unique circuit
Cy of M1 in I1 + y is disjoint from A. (1)

To see this, suppose I1 + y /∈ I(M1). Then there is a unique circuit Cy of
M1 in I1 + y. If Cy ∩ A = ∅, then the assertion holds so we may assume
that Cy ∩ A contains an element, a say. Hence there is an (I1, I2, a, x)-
chain (y0 = a, y1, . . . , yn−1, yn = x). As a ∈ I1 this chain must be odd
or have length 0, that is, a = x. Clearly, (y, a, y1, . . . , yn−1, x) is an even
(I1, I2, y, x)-chain, contradicting the assumption that y /∈ A.

Proof of Proposition 4.1. Let B ∈ I(M1 ∨M2) maximal, I ∈ I(M1 ∨M2),
and x ∈ I \B. Recall that we seek a y ∈ B \I such that (I +y)−x ∈ I(M1∨
M2). Let (I1, I2) and (B1, B2) be representations of I and B, respectively.
We may assume I1 ∈ B(M1|I) and I2 ∈ B(M2|I). We may further assume
that for all y ∈ B \ I the sets I1 + y and I2 + y are dependent in M1 and
M2, respectively, or it holds that I + y ∈ I(M1 ∨M2) so that the assertion
follows. Hence, for every y ∈ (B∪I)\I1 there is a circuit Cy ⊆ I1 +y of M1;
such contains y and is unique since otherwise the circuit elimination axiom
applied to these two circuits eliminating y yields a circuit contained in I1, a
contradiction.

If A := A(I1, I2, x) intersects B \ I, then the assertion follows from
Lemma 4.2. Else, A ∩ (B \ I) = ∅, in which case we derive a contradiction
to the maximality of B. To this end, set (Figure 5)

B′1 := (B1 \ b1) ∪ i1 where b1 := B1 ∩A and i1 := I1 ∩A

B′2 := (B2 \ b2) ∪ i2 where b2 := B2 ∩A and i2 := I2 ∩A

Since A contains x but is disjoint from B \I, it holds that (b1∪ b2)+x ⊆
i1 ∪ i2 and thus B + x ⊆ B′1 ∪B′2. It remains to verify the independence of
B′1 and B′2 in M1 and M2, respectively.
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a

C

B1

B2

I1
I2

A

i1
i2

b2
b1

Figure 5: The independent sets I1, at the top, and I2, at the bottom, the
bases B1, on the right, and B2, on the left, and their intersection with A.

Without loss of generality it is sufficient to show B′1 ∈ I(M1). For the
remainder of the proof ‘independent’ and ‘circuit’ refer to the matroid M1.
Suppose for a contradiction that the set B′1 is dependent, that is, it contains
a circuit C. Since i1 and B1 \b1 are independent, neither of these contain C.
Hence there is a ∈ C ∩ i1 ⊆ A. But C \ I1 ⊆ B1 \ A and therefore no Cy

with y ∈ C \ I1 contains a by (1). Thus, applying the circuit elimination
axiom on C eliminating all y ∈ C \ I1 via Cy fixing a, yields a circuit in I1,
a contradiction.

We conclude this section with a few remarks.

1. The maximality of B was only used to avoid the outcome B + x ∈
I(M1∨M2). So the proof actually shows a slightly stronger statement.

Corollary 4.3. For all I, J ∈ I(M1 ∨M2) and x ∈ I \ J , if J + x /∈
I(M1 ∨ M2), then there exists y ∈ J \ I such that (I + y) − x ∈
I(M1 ∨M2).

2. For any maximal representation (I1, I2) of I there is y ∈ B\I such that
exchanging finitely many elements of I1 and I2 gives a representation
of (I + y)− x.

3. To define the set A(I1, I2, x), we consider chains whose last element
is fixed. Alternatively, one may consider chains whose first element is
fixed. More precisely, for I1 ∈ I(M1), I2 ∈ I(M2), and y /∈ I1 ∪ I2 let

Z(I1, I2, y) := {z | there exists an (I1, I2, y, z)-chain}
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Then a similar argument as in the proof of Proposition 4.1, applied to
Z(I1, I2, y) instead of A(I1, I2, y), yields the following.

Corollary 4.4. For all I, J ∈ I(M1 ∨M2) and y ∈ J \ I, if I + y /∈
I(M1 ∨ M2), then there exists x ∈ I \ J such that (I + y) − x ∈
I(M1 ∨M2).

4. Even arbitrary unions of matroids satisfy (I3) (however, they may still
violate (IM) as in Example 3.2). To see this, either adjust the proof of
Proposition 4.1, in particular the notion of an exchange chain, to this
more general setting, or reduce the general case to Proposition 4.1.

5 Finitary matroids

In this section, we prove our main result which reads as follows.

Theorem 1.1. If M1 and M2 are finitary matroids, then M1 ∨ M2 is a
matroid; and in fact finitary.

For countable matroids, Theorem 1.1 can be proved by means of König’s
infinity lemma. Here, to capture matroids on any infinite ground set, we
resort to using a topological approach. See [4] for the required topological
background needed here.

We recall the definition of the product topology on P(E). The usual base
is formed by the system of all sets

C(A, B) := {X ⊆ E | A ⊆ X,B ∩X = ∅}

where A, B ⊆ E are finite and disjoint. Note that these sets are closed as
well. Throughout this section, P(E) is endowed with the product topology
and closed is used in the topological sense only.

We will show that Theorem 1.1 can easily be deduced from Theorem 5.1
and Lemma 5.2, presented next.

Theorem 5.1. Suppose I = dIe ⊆ P(E). Then the following are equivalent

5.1.1. I is finitary;

5.1.2. I is compact, in the subspace topology of P(E).
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Note that as P(E) is a compact Hausdorff space, 5.1.2 is equivalent to
the assumption that I is closed in P(E), which we use quite often in the
following proofs.

Proof. For the forward direction, we show that I is closed. Let X /∈ I.
Since I is finitary, X has a finite subset Y /∈ I and no superset of Y is in I
as I = dIe. Therefore, C(Y, ∅) is an open set containing X and avoiding I
and hence I is closed.

For the converse direction, assume that I is compact and let X be a set
such that all finite subsets of X are in I. We show X ∈ I using the finite
intersection property1 of P(E). Consider the family K of pairs (A, B) where
A ⊆ X and B ⊆ E \ X are both finite. The set C(A, B) ∩ I is closed for
every (A, B) ∈ K, as C(A, B) and I are closed. If L is a finite subfamily of
K, then ⋃

(A,B)∈L

A ∈
⋂

(A,B)∈L

(C(A, B) ∩ I) .

As P(E) is compact, the finite intersection property yields ⋂
(A,B)∈K

C(A, B)

 ∩ I =
⋂

(A,B)∈K

(C(A, B) ∩ I) 6= ∅

But
⋂

(A,B)∈K C(A, B) = {X}, and hence X ∈ I, as desired.

Lemma 5.2. If I and J are closed in P(E), then so is I ∨ J .

Proof. Equipping P(E)×P(E) with the product topology, yields that Carte-
sian products of closed sets in P(E) are closed in P(E)×P(E). In particular,
I × J is closed in P(E)×P(E). In order to prove that I ∨ J is closed, we
note that I ∨ J is exactly the image of I × J under the union map

f : P(E)× P(E)→ P(E), f(A, B) = A ∪B.

It remains to check that f maps closed sets to closed sets; which is equivalent
to showing that f maps compact sets to compact sets as P(E) is a compact
Hausdorff space. As continuous images of compact spaces are compact, it
suffices to prove that f is continuous, that is, to check that the pre-images
of subbase sets C({a}, ∅) and C(∅, {b}) are open:

f−1(C({a}, ∅)) = (C({a}, ∅)× P(E)) ∪ (P(E)× C({a}, ∅))
1The finite intersection property ensures that an intersection over a family C of closed

sets is non-empty if every intersection of finitely many members of C is.
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f−1(C(∅, {b})) = C(∅, {b})× C(∅, {b})

Proof of Theorem 1.1. By Theorem 1.2 it remains to show that I(M1) ∨
I(M2) satisfies (IM). As all finitary set systems satisfy (IM), by Zorn’s
lemma, we show that I(M1 ∨M2) is finitary. By Theorem 5.1, I(M1) and
I(M2) are both compact and thus closed in P(E), yielding, by Lemma 5.2,
that I(M1)∨I(M2) is closed P(E), and thus compact. As I(M1)∨I(M2) =
dI(M1) ∨ I(M2)e, Theorem 5.1 yields that I(M1) ∨ I(M2) is finitary, as
desired.

6 Base packing and covering

We begin by proving base packing for co-finitary matroids.

Theorem 1.3. A co-finitary matroid M = (E, I) has k disjoint bases if
and only if |Y | ≥ k · r(E|E − Y ) for all finite sets Y ⊆ E.

Proof. As the ‘only if’ direction is trivial, it remains to show the ‘if’ direc-
tion. For a matroid N and natural numbers k, c put

I[N, k, c] := {X ⊆ E(N) | ∃I1, ..., Ik ∈ I(N) with gc(I1, ..., Ik) = X},

where gc(I1, ..., Ik) := {e : |{j : e ∈ Ij}| ≥ c}. As M has k disjoint spanning
sets if and only if M∗ has k independent sets such that every element of E
is in at least k − 1 of those independent sets. Put another way, M has k
disjoint bases if and only if

I[M∗, k, k − 1] = P(E) (2)

As M∗ is finitary, I[M∗, k, k − 1] is finitary by an argument similar to
that in the proof of Lemma 5.2; here one may define

f : P(E)k → P(E); f(A1, ..., Ak) = gk−1(A1, ..., Ak)

and repeat the above argument.
Thus, it suffices to show that every finite set Y is in I[M∗, k, k − 1]. To

this end, it is sufficient to find k independent sets of M∗ such that every
element of Y is in at least k − 1 of those; complements of which are M -
spanning sets S1, ..., Sk such that these are disjoint if restricted to Y . To
this end, we show that there are disjoint spanning sets S′1, ..., S

′
k of M.Y and
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set Si := S′i ∪ (E−Y ). Since Theorem 1.3 is true for finite matroids [7], the
sets S′1, ..., S

′
k exist if and only if |Z| ≥ k · rM.Y (Y |Y −Z) for all Z ⊆ Y . As

|Z| ≥ k ·r(E|E−Z), by assumption, and as r(E|E−Z) = rM.Y (Y |Y −Z) [5,
Lemma 3.13], the assertion follows.

Diestel [6, Theorem 8.5.7] established that a graph admits k disjoint
topological spanning trees if and only if every partition of its vertex set into
r classes has at least k(r− 1) edges between the classes. A similar result to
that of Diestel was established by Tutte [9] who proved a packing theorem
for the algebraic spanning trees of a locally finite graph.

The topological spanning trees of a graph form the set of bases of a co-
finitary matroid called the topological cycle matroid [5], and recall that the
algebraic spanning trees of a locally finite graph form the set of bases the
so called algebraic cycle matroid which is co-finitary. As mentioned in the
Introduction, Theorem 1.3 provides then a short alternative matroidal proof
of both results of Diestel and Tutte.

Finally, we use Theorem 1.1 to derive a base covering result for finitary
matroids. The finite base covering theorem asserts that a finite matroid
M can be covered by k bases if and only if r(X) ≥ |X|/k for every X ⊆
E(M) [8].

Corollary 6.1. A finitary matroid M can be covered by k independent sets
if and only if rM (X) ≥ |X|/k for every finite X ⊆ E(M).

This claim is false if M is, say, an infinite circuit, implying that this
result is best possible in the sense that M being finitary is necessary.

Proof. The ‘only if’ implication is trivial. Suppose then that each finite
set X ⊆ E(M) satisfies rM (X) ≥ |X|/k and put N =

∨k
i=1 M ; such is

a finitary matroid by Theorem 1.1. If N is the free matroid, the assertion
holds trivially. Suppose then that N is not the free matroid and consequently
contains a circuit C; such is finite as N is finitary. Hence, M |C cannot be
covered by k independent sets of M |C so that by the finite matroid covering
theorem [7, Theorem 12.3.12] there exists a finite set X ⊆ C such that
rM |C(X) < |X|/k which clearly implies rM (X) < |X|/k; a contradiction.

7 Union of a matroid with itself

In this paper and the second paper of this series, we solve the question of
whether the union of two infinite matroids is a matroid almost completely.
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However, we were not able to find a matroid whose union with itself is not a
matroid. Specializing this question, we ask whether the union of a matroid
having only infinite circuits with itself is the free matroid. In other words,
we ask the following.

Question 7.1. Suppose that each circuit of M is infinite. Is it true that the
ground set of M can be covered with two bases of M?

By Proposition 4.1, verifying that I(M∨M) satisfies (IM) is sufficient in
order to show that M∨M is a matroid. One approach to determine whether
I(M∨M) satisfies (IM) is to dualize (IM) and to resolve the resulting version
in the duals. Such an approach brings forth the need to determine whether
for a matroid M there exist two spanning sets with minimal intersection.
For graphic matroids this reads as follows.

Question 7.2. Is it true that every locally finite graph has two ordinary
spanning trees whose intersection is minimal?
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