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COCALIBRATED STRUCTURES ON LIE ALGEBRAS WITH A CODIMENSION ONE

ABELIAN IDEAL

MARCO FREIBERT

Abstract. Cocalibrated G2-structures and cocalibrated G∗

2
-structures are the natural initial values for Hitchin’s

evolution equations whose solutions define (pseudo)-Riemannian manifolds with holonomy group contained in Spin(7)
or Spin0(3, 4), respectively. In this article, we classify which seven-dimensional real Lie algebras with a codimension
one Abelian ideal admit such structures. Moreover, we classify the seven-dimensional complex Lie algebras with a
codimension one Abelian ideal which admit cocalibrated (G2)C-structures.

1. Introduction

In Berger’s list [1] of possible holonomy groups of irreducible non-symmetric simply connected Riemannian
manifolds the case of holonomy equal to Spin(7) had been unsettled for over 30 years. Finally, Bryant [2] in 1987
was the first who was able to construct examples of Riemannian manifolds with holonomy group equal to Spin(7).
Moreover, he also constructed in the same article examples for the previously unsettled case of holonomy group
equal to Spin0(3, 4), corresponding to irreducible non-symmetric simply connected pseudo-Riemannian metrics with
split signature (4, 4).

In 2000, Hitchin [7] came up with a nice machinery to construct Riemannian manifolds with holonomy groups
contained in Spin(7). Therefore he introduced a certain partial differential equation for three-forms on a compact
seven-dimensional manifold M . He showed that solutions of this equation may be used to define a Riemannian
metric with holonomy contained in Spin(7) onM×I for a sufficiently small interval I ⊆ R if one uses as initial value
what is called a cocalibrated G2-structure ϕ ∈ Ω3M on M . A cocalibrated G2-structure ϕ ∈ Ω3M is a three-form
on M which pointwise looks like a certain standard form and whose Hodge dual ⋆ϕϕ ∈ Ω4M with respect to the
induced Riemannian metric is closed. In [5], it has been proved that compactness is not necessary to get, using the
machinery of Hitchin, a metric with holonomy contained in Spin(7) on an open neighborhood ofM ×{0} in M ×R.
Moreover, Hitchin’s flow equation has been generalized in [5] to the pseudo-Riemannian case, yielding a metric with
holonomy contained in Spin0(3, 4) if the initial value is a cocalibrated G∗

2-structure ϕ ∈ Ω3M . Finally, it has been
showed that if all data are real-analytic, a unique local solution exists in both cases. Similar to cocalibrated G2-
structures, cocalibrated G∗

2-structures ϕ ∈ Ω3M are three-forms which pointwise look like a certain other standard
form and whose Hodge dual ⋆ϕϕ ∈ Ω4M with respect to the induced pseudo-Riemannian metric of signature (3, 4)
is closed.

This motivates to classify first the seven-dimensional real-analytic manifolds that admit real-analytic cocalibrated
G2- or G

∗
2-structures, at least for certain simple subclasses. In a next step, it is then of interest to solve concretely

Hitchin’s flow equations on these manifolds and compute the holonomy group or give more abstract arguments that
the holonomy group is further reduced to a subgroup of Spin(7) or Spin0(3, 4), respectively.

A classification of cocalibrated G2-structures has been carried out for seven-dimensional compact homogeneous
spaces with homogeneous cocalibrated G2-structures [11]. We focus on a similar case, namely cocalibrated left-
invariant G2- or G

∗
2-structures on Lie groups G. In this case, d⋆ϕ ϕ = 0 reduces to an algebraic equation depending

only on the structure coefficients of the Lie algebra g associated to G. Such a structure is then also called a
cocalibrated G2- or G

∗
2-structure on a seven-dimensional Lie algebra.

Due to the vast amount of seven-dimensional real Lie algebras we restrict ourselves further and consider cocali-
brated G2- and G∗

2-structures on seven dimensional real Lie algebras g which admit a six-dimensional Abelian ideal
u. For these Lie algebras, the entire Lie bracket is encoded in the action of an element e7 ∈ g\u on u and the
Lie algebras can be classified by the complex Jordan normal form of ad(e7)|u. This simple structure allows us to
give a full classification of the Lie algebras in question admitting such structures only in properties of the complex
Jordan normal form of ad(e7)|u. We also classify which seven-dimensional complex Lie algebras g with complex
codimension one Abelian ideal u admit cocalibrated (G2)C-structures. In a follow-up paper we will solve Hitchin’s
flow equations concretely for some of those seven-dimensional real Lie algebras, compute the holonomy groups in
these cases and prove some general theorems on the possible holonomy groups.
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Coming to our main results, let g be a real or complex seven-dimensional Lie algebra with codimension one
Abelian ideal and number consecutively the diagonal elements of a fixed complex Jordan normal form by λ1, . . . , λ6
and the Jordan blocks of the complex Jordan normal form by 1, . . . ,m, both from the upper left to the lower
right. Moreover, denote by JB(i) for all i = 1, . . . , 6, the number of the Jordan block in which the corresponding
generalized eigenvector lies. Then our four main theorems can be stated as follows:

Theorem 1.1. Let g be a seven-dimensional real Lie algebra which admits a codimension one Abelian ideal u. Let
e7 ∈ g\u and ω ∈ Λ2u∗ be a non-degenerated two-form on u. Then the following are equivalent:

(a) g admits a cocalibrated G2-structure.
(b) g admits a cocalibrated G∗

2-structure such that the subspace u is non-degenerated with respect to the induced
pseudo-Euclidean metric on g.

(c) ad(e7)|u ∈ gl(u) is similar under GL(u) to an element in sp(u, ω).
(d) The complex Jordan normal form of ad(e7)|u has the property that for all m ∈ N and all λ 6= 0 the number

of Jordan blocks of size m with λ on the diagonal is the same as the number of Jordan blocks of size m with
−λ on the diagonal and the number of Jordan blocks of size 2m− 1 with 0 on the diagonal is even.

Theorem 1.2. Let g be a seven-dimensional complex Lie algebra which admits a codimension one Abelian ideal u.
Let e7 ∈ g\u and ω ∈ Λ2u∗ be a non-degenerated two-form on u. Then the following are equivalent:

(a) g admits a cocalibrated (G2)C-structure such that the subspace u is non-degenerated with respect to the
induced non-degenerated complex symmetric bilinear form on g.

(b) ad(e7)|u ∈ gl(u) is similar under GL(u) to an element in sp(u, ω).
(c) The complex Jordan normal form of ad(e7)|u has the property that for all m ∈ N and all λ 6= 0 the number

of Jordan blocks of size m with λ on the diagonal is the same as the number of Jordan blocks of size m with
−λ on the diagonal and the number of Jordan blocks of size 2m− 1 with 0 on the diagonal is even.

Theorem 1.3. Let g be a seven-dimensional real Lie algebra which admits a codimension one Abelian ideal. Let
e7 ∈ g\u, V2 be a two-dimensional subspace of u, V4 be a four-dimensional subspace of u such that u = V2 ⊕ V4 and
ω ∈ Λ2V ∗

4 be a non-degenerated two-form on V4. Then the following are equivalent:

(a) g admits a cocalibrated G∗
2-structure.

(b) ad(e7)|u ∈ gl(u) is similar under GL(u) to an element in

{f ∈ gl(u)|f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4), f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω2)}.

(c) There exists a partition of {1, . . . , 6} into three subsets I1, I2, I3, each of cardinality two, such that the
following is true:
(i)

∑
i∈I1

λi =
∑

i∈I2
λi = −∑i∈I3

λi.

(ii) If there are i1 ∈ I1, i2 ∈ I2 such that JB(i1) = JB(i2) then λi1 = λi2 = −
∑

i∈I3
λi

2 or JB(j1) = JB(j2)
for the uniquely determined jk ∈ Ik such that {ik, jk} = Ik, k = 1, 2.

(iii) If there exists i2 ∈ I2 such that JB(j) = JB(i2) for all j ∈ I1 or if there exists i1 ∈ I1 such that

JB(j) = JB(i1) for all j ∈ I2, then λj = −
∑

i∈I3
λi

2 for all j ∈ I1 ∪ I2 and JB(j) = JB(k) for all
j, k ∈ I1 ∪ I2.

Theorem 1.4. Let g be a seven-dimensional complex Lie algebra which admits a codimension one Abelian ideal.
Let e7 ∈ g\u, V2 be a two-dimensional subspace of u, V4 be a four-dimensional subspace of u such that u = V2 ⊕ V4
and ω ∈ Λ2V ∗

4 be a non-degenerated two-form on V4. Then the following are equivalent:

(a) g admits a cocalibrated (G2)C-structure.
(b) ad(e7)|u ∈ gl(u) is similar under GL(u) to an element in

{f ∈ gl(u)|f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4), f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω2)}.

(c) There exists a partition of {1, . . . , 6} into three subsets I1, I2, I3, each of cardinality two, such that the
following is true:
(i)

∑
i∈I1

λi =
∑

i∈I2
λi = −∑i∈I3

λi.

(ii) If there are i1 ∈ I1, i2 ∈ I2 such that JB(i1) = JB(i2) then λi1 = λi2 = −
∑

i∈I3
λi

2 or JB(j1) = JB(j2)
for the uniquely determined jk ∈ Ik such that {ik, jk} = Ik, k = 1, 2.

(iii) If there exists i2 ∈ I2 such that JB(j) = JB(i2) for all j ∈ I1 or if there exists i1 ∈ I1 such that

JB(j) = JB(i1) for all j ∈ I2, then λj = −
∑

i∈I3
λi

2 for all j ∈ I1 ∪ I2 and JB(j) = JB(k) for all
j, k ∈ I1 ∪ I2.
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We like to point out two interesting consequences of the Theorems 1.1 - 1.4:
Firstly, Theorem 1.1 states that if a real seven-dimensional Lie algebra with codimension one Abelian ideal

admits a cocalibrated G2-structure, then it also admits a cocalibrated G∗
2-structure. It would be of interest to know

if this is a general feature of seven-dimensional Lie algebras. We do not think so but are not able to give a concrete
counterexample.

Secondly, the conditions for the existence of a cocalibrated G∗
2-structure on a real seven-dimensional Lie algebra

with codimension one Abelian ideal are completely analogously to the ones for a (G2)C-structure on a complex
seven-dimensional Lie algebra with codimension one Abelian ideal. In particular, a real seven-dimensional Lie
algebra with codimension one Abelian ideal admits a cocalibrated G∗

2-structure if and only if its complexification
admits a cocalibrated (G2)C-structure. Again it would be of interest to know if this is a general feature.

The proof of the Theorems 1.1 - 1.4 focuses directly on the Hodge dual of a G2-, G∗
2- or (G2)C-structure.

Therefore, after recalling the basic definitions needed in this article and giving a classification of n-dimensional Lie
algebras with codimension one Abelian ideals in section 2, we compute in section 3 the values of certain algebraic
invariants for the orbits of all Hodge duals in a seven-dimensional real or complex vector space. These algebraic
invariants have been used by Westwick [13] to classify the orbits of three-vectors in seven real dimensions. For
the computation we use this classification and a similar classification by Westwick [12] of the orbits of complex
three-vectors up to dimension eight. The concrete values of the mentioned invariants for the Hodge duals and the
particular structure of seven-dimensional Lie algebras g with codimension one Abelian ideals u allow us in subsection
4.1 to equivalently reformulate our problem in the way that the linear operator ad(e7)|u for some e7 ∈ g\u has to
be similar to an element in the Lie algebras associated to the stabilizer groups of certain four-forms on u. This
establishes the equivalence of (a)-(c) in Theorem 1.1, of (a) and (b) in Theorem 1.2 and almost the equivalence of
(a) and (b) in Theorem 1.3 and in Theorem 1.4. Finally, in subsection 4.2 we use the well-known results on the
structure of complex Jordan normal forms of elements in the symplectic Lie algebras sp(2n,R) and sp(2n,C) to
reformulate everything totally in properties of the complex Jordan normal form of ad(e7)|u and finish the proof of
Theorem 1.1-1.4.

2. Preliminaries

2.1. G
(∗)
2 -structures on vector spaces. In this subsection, we define G2-structures, G

∗
2-structures and (G2)C-

structures on seven-dimensional real or complex vector spaces V . We recall how these structures induce in a natural
way a Euclidean metric, a pseudo-Euclidean metric of signature (3, 4) or a non-degenerated complex symmetric
bilinear form on V , respectively and how a Hodge star operator on V can then naturally be defined. Moreover, we
remind the reader of the connection of G2-, G

∗
2-structures or (G2)C-structures to the imaginary octonions, imaginary

split-octonions or imaginary complex octonions, respectively. We mainly follow [2] and [5], to which we also refer for
the proofs of all mentioned facts and more details. Note that we adopted the definition of a G2 and a G∗

2-structure
from [5]. We show that it is in accordance with the definition in [2].

Definition 2.1. Let V be a seven-dimensional real vector space. A G2-structure on V is a three-form ϕ ∈ Λ3V ∗

such that there exists a basis e1, . . . , e7 of V with

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245.

Hereby, e1, . . . , e7 ∈ V ∗ denotes the dual basis of e1, . . . , e7. We call the seven-tuple (e1, . . . e7) ∈ V 7 an adapted
basis for the G2-structure ϕ.

A three-form ϕ̃ ∈ Λ3V ∗ is called a G∗
2-structure on V if there exists a basis f1, . . . , f7 of V with

ϕ̃ = −f127 − f347 + f567 + f135 − f146 − f236 − f245.

Again, f1, . . . , f7 ∈ V ∗ denotes the dual basis of f1, . . . , f7. (f1, . . . , f7) ∈ V 7 is called an adapted basis for the
G∗

2-structure ϕ̃.

If we do not want to specify if ϕ is a G2- or a G∗
2-structure on V we simply speak of a G

(∗)
2 -structure on V .

Definition 2.2. Let W be a seven-dimensional complex vector space. Then a pair (ϕC, volC) ∈ Λ3W ∗ × Λ7W ∗

consisting of a complex volume form 0 6= volC ∈ Λ7W ∗ and a complex three-form ϕC ∈ Λ3W ∗ is called a (G2)C-
structure if there exists a complex basis E1, . . . , E7 of W such that volC = E1234567 and

ϕC = E127 + E347 + E567 + E135 − E146 − E236 − E245.

Again E1, . . . , E7 denotes the dual basis of E1, . . . , E7 and (E1, . . . , E7) ∈ W 7 is called an adapted basis for the
(G2)C-structure (ϕC, volC).

Remark 2.3. • By definition, the set of all G2-structures on a seven-dimensional real vector space V and also
the set of all G∗

2-structures on V forms an orbit under the natural action of GL(V ) on Λ3V ∗. The stabilizers
of these orbits are G2 and G∗

2, respectively. Thereby, G2 is the simply-connected compact real form of the
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complex simply-connected simple Lie group (G2)C and G∗
2 is the split real form of (G2)C with fundamental

group Z2. Since dim(G2) = dim(G∗
2) = 14, these two orbits are open. In fact, they are the only two open

orbits under the action of GL(V ) [7]. So, in Hitchin’s terminology, G
(∗)
2 -structures are stable forms [7].

• Similarly, the set of all (G2)C-structures (ϕC, volC) on a complex vector space W forms an orbit in Λ3W ∗ ×
Λ7W ∗ under the natural action of the complex general linear group GL(W ). The stabilizer of (ϕC, volC) is
the stabilizer of ϕC in SL(W ), which is given by the complex simply-connected simple Lie group (G2)C. If we
have a three-form ϕC ∈ Λ3W for which there exists a basis E1, . . . , E7 with ϕC = E127+E347+E567+E135−
E146 − E236 − E245, then we can always construct a (G2)C-structure by simply setting volC := E1234567.
Note that this does depend on the chosen complex basis E1, . . . , E7. Namely, F1 := 1

ξ
E1, . . . , F7 := 1

ξ
E7 for

ξ ∈ C, ξ3 = 1, is also a complex basis such that ϕC = F 127 + F 347 + F 567 + F 135 − F 146 − F 236 − F 245

giving us ξvolC as volume form. Note that the set of all such three-forms ϕC forms an open orbit in Λ3W ∗

under the natural action of GL(W ).

• A G
(∗)
2 -structure ϕ on a real vector space V induces a (G2)C-structure (ϕC, volC) on the complexification

such that ϕC is the complex-linear extension of ϕ and such that volC := e1234567, where (e1, . . . , e7) is an

adapted basis for the G
(∗)
2 -structure ϕ. Note therefore that if ϕ is a G2-structure, then (e1, . . . , e7) is also

an adapted (complex) basis for (ϕC, volC) while if ϕ is a G∗
2-structure, then (ie1, ie2, ie3, ie4,−e5,−e6, e7) is

an adapted basis for (ϕC, volC). So G2 and G∗
2-structures lie in the same orbit under the natural action of

the complex general linear group.

Lemma 2.4. Let V be a seven-dimensional real vector space and W := VC its complexification.

(a) A G
(∗)
2 -structure ϕ ∈ Λ3V ∗ on V induces uniquely a (pseudo)-Euclidean metric g and a metric volume form

vol on V by

g(v, w)vol :=
1

6
(vyϕ) ∧ (wyϕ) ∧ ϕ

such that each adapted basis for ϕ is an oriented orthonormal basis. g is positive definite if ϕ is a G2-
structure and of signature (3, 4) if ϕ is a G∗

2-structure. If ϕ is a G∗
2-structure and (f1, . . . , f7) is an adapted

basis, then g(fi, fi) = −1 for i = 1, 2, 3, 4 and g(fj, fj) = 1 for j = 5, 6, 7.
(b) A (G2)C-structure (ϕC, volC) induces a non-degenerated symmetric complex bilinear form gC on W by

gC(v, w)volC :=
1

6
(vyϕC) ∧ (wyϕC) ∧ ϕC

and a pseudo-Euclidean metric gsplit of split signature (7, 7) on WR by gsplit := Re(gC). If E1, . . . , E7 is
an adapted basis for (ϕC, volC), then gC(Ej , Ek) = δjk for j, k ∈ {1, . . . , 7} and E1, iE1, . . . , E7, iE7 is an
orthonormal basis for gsplit such that gsplit(Ej , Ej) = 1 and gsplit(iEj , iEj) = −1 for j = 1, . . . , 7.

(c) Let ϕ be a G
(∗)
2 -structure on V , g be the induced pseudo-Euclidean metric on V , vol be the induced volume

form on V and (ϕC, volC) be the induced (G2)C-structure on W in the sense of Remark 2.3. Then volC and
the induced complex bilinear form gC on W are the complex-linear extensions of vol and g, respectively.

Remark 2.5. G2-structures, G
∗
2-structures and (G2)C-structures may be understood through the composition algebra

of the octonions (O, 〈·, ·〉), of the split-octonions (Os, 〈·, ·〉s) or of the complex octonions (OC, 〈·, ·〉C), respectively.
Therefore, consider the seven-dimensional orthogonal complements ImO, ImOs, ImOC of span(1) ⊆ O,Os,OC.

Then the three-form ϕ ∈ Λ3ImO∗, ϕ(u, v, w) := 〈u · v, w〉 is a G2-structure on ImO, the three-form ϕs ∈ Λ3ImO∗
s,

ϕs(u, v, w) := 〈u · v, w〉s is a G∗
2-structure on ImOs and the three-form ϕC ∈ Λ3ImO∗

C
, ϕC(u, v, w) := 〈u · v, w〉C

together with the volume form volC := (vyϕ) ∧ (vyϕ) ∧ ϕ is a (G2)C-structure on ImOC, where v ∈ ImOC is an
arbitrary imaginary complex octonion with 〈v, v〉C = 1. Moreover, the (pseudo)-Euclidean metric g on ImO or on
ImOs induced by ϕ or ϕs, respectively, is 〈·, ·〉 or 〈·, ·〉s, respectively. Similarly, the non-degenerated symmetric
complex bilinear form gC on ImOC induced by (ϕC, volC) is exactly 〈·, ·〉C.

To get an adapted basis, consider for a G
(∗)
2 -structure the quaternions H naturally embedded as a positive

definite subspace into O and Os and for a (G2)C-structure the complex quaternions HC naturally embedded as a
non-degenerated subspace into OC. Choose the standard basis 1, i, j, k of H or HC and a normed element ǫ ∈ H⊥

or ǫ ∈ H⊥
C
, respectively. Then, in the case of a G2 and a (G2)C-structure, (ǫ, jǫ, iǫ, kǫ, i,−k, j) is an adapted

basis while in the case of a G∗
2-structure (ǫ, jǫ, iǫ, kǫ,−i, k, j) is an adapted basis. Note that other authors [11]

call (i, j, k, ǫ, iǫ, jǫ, kǫ) an adapted basis. If we denote in all three cases this basis by (F1, . . . , F7), then ϕ, ϕs and
(ϕC, volC) are given by

ϕ = F 123 + F 145 − F 167 + F 246 + F 257 + F 347 − F 356, ϕs = F 123 − F 145 + F 167 − F 246 − F 257 − F 347 + F 356

ϕC = F 123 + F 145 − F 167 + F 246 + F 257 + F 347 − F 356, volC = F 1234567.

These are exactly the expressions used in [2] to define G
(∗)
2 - and (G2)C-structures.
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Definition 2.6. Lemma 2.4 (a) allows, for a given G
(∗)
2 -structure ϕ on V , to define a Hodge star operator ⋆ϕ :

Λ∗V ∗ → Λ∗V ∗ by the usual requirement that for a k-form ψ ∈ ΛkV ∗ the (n− k)-form ⋆ϕψ ∈ Λn−kV ∗ is the unique
(n− k)-form on V such that for all (n− k)-forms φ ∈ Λn−kV ∗ we have

ψ ∧ φ = g(⋆ϕψ, φ)vol.

Similarly, Lemma 2.4 (b) allows us to define for a given (G2)C-structure (ϕC, volC) on W a Hodge star operator
⋆ϕC

: Λ∗W ∗ → Λ∗W ∗ by the requirement that for a complex k-form ψ ∈ ΛkW ∗ the complex (n− k)-form ⋆ϕC
ψ ∈

Λn−kW ∗ is the unique (n− k)-form such that for all (n− k)-forms φ ∈ Λn−kW ∗ we have

ψ ∧ φ = gC(⋆ϕC
ψ, φ)volC.

Remark 2.7. • If (e1, . . . , e7) is an adapted basis for a G
(∗)
2 -structure ϕ on V , then the Hodge dual ⋆ϕϕ is

given by

⋆ϕ ϕ = ǫ(e1256 + e3456) + e1234 − e2467 + e2357 + e1457 + e1367 (2.1)

where ǫ = 1 if ϕ is a G2-structure and ǫ = −1 if ϕ is a G∗
2-structure. Note that the set of all Hodge duals

of a G2-structure and also the set of all Hodge duals of a G∗
2-structure form again an open orbit under the

natural action of GL(V ) on Λ4V ∗.
• If Ψ ∈ Λ4V ∗ is a four-form on the real seven-dimensional vector space V such that there exists a basis
(e1, . . . , e7) with Ψ = ǫ(e1256 + e3456) + e1234 − e2467 + e2357 + e1457 + e1367, then the stabilizer of Ψ in
GL+(V ) is G2 for ǫ = 1 and G∗

2 for ǫ = −1. Hence such a Ψ together with a volume form vol induces

uniquely a G
(∗)
2 -structure ϕ ∈ Λ3V ∗ such that ⋆ϕϕ = Ψ. Then ⋆ϕΨ = ϕ and the volume form induced by

ϕ is exactly vol. Thus, an equivalent description of a G
(∗)
2 -structure can be given as a four-form as above

together with an orientation. Although this equivalent description is more appropriate in our case we stick
to the standard notation in the literature and only call the three-form ϕ a G2-structure.

• If (E1, . . . , E7) is an adapted basis for a (G2)C-structure (ϕC, volC) onW := VC, then the Hodge dual ⋆ϕC
ϕC

is given by

⋆ϕC
ϕC = E1234 + E1256 + E3456 − E2467 + E2357 + E1457 + E1367 (2.2)

Note that ⋆ϕC
depends also on volC although we suppressed this dependence in the notation. Note further

that if (ϕC, volC) is induced by a G
(∗)
2 -structure ϕ, then ⋆ϕC

is the complex-linear extension of ⋆ϕ. The set
of all Hodge duals of a (G2)C-structure forms again an open orbit under the natural action of GL(W ) on
Λ4W ∗.

• If Ψ ∈ Λ4W ∗ is a four-form on the complex seven-dimensional vector space W := VC such that there exists
a basis (E1, . . . , E7) with Ψ = E1234 + E1256 + E3456 − E2467 + E2357 + E1457 + E1367, then the stabilizer
of Ψ in SL(W ) is exactly (G2)C. Hence such a Ψ together with a compatible volume form volC induces
uniquely a (G2)C-structure (ϕC, volC) such that ⋆ϕC

ϕC = Ψ. Then also ⋆ϕC
Ψ = ϕC and as before we see

that we may equivalently describe a (G2)C-structure as a pair (Ψ, volC) such that there is a basis for which
the two forms are in the above standard forms. However, again we stick to the standard notation in the
literature and only call the pair (ϕC, volC) a (G2)C-structure.

• Let (ϕC, volC) be a (G2)C-structure on the complex vector space W and consider the real vector space WR

with complex structure i. Then ϕC is a (3, 0)-form, volC a (7, 0)-form and gsplit is anti-hermitian with
respect to i.

2.2. Cocalibrated G
(∗)
2 -structures on manifolds and Lie algebras. G2-structures on seven-dimensional man-

ifolds M , i.e. reductions of the frame bundle ofM to G2, are in one-to-one correspondence to three-forms ϕ ∈ Ω3M
such that ϕp is a G2-structure on TpM for all p ∈M due to the fact that such a ϕ is pointwise stabilized by G2.

Similarly, G∗
2-structures on seven-dimensional manifolds M are in one-to-one correspondence to three-forms

ϕ ∈ Ω3M such that ϕp is a G∗
2-structure on TpM for all p ∈M .

This motivates to call these kinds of three-forms ϕ ∈ Ω3M from now onG2- or G
∗
2-structures, respectively.

A G
(∗)
2 -structure ϕ ∈ Ω3M on a seven-dimensional manifoldM induces a Hodge star operator ⋆ϕ : Ω∗M → Ω∗M .

ϕ ∈ Ω3M is called cocalibrated if the Hodge dual ⋆ϕϕ is closed.
A (G2)C-structures on a 14-dimensional (real) manifold M is a reduction of the frame bundle to (G2)C ⊆

GL(7,C) ⊆ GL(14,R). Note that then M admits an almost complex structure J coming from the reduction
to the subgroup GL(7,C). Hence (G2)C-structures are in one-to-one correspondence to a triplet (J, ϕC, volC) ∈
Γ(End(TM))× Ω3(M,C) × Ω7(M,C) consisting of an almost complex structure J on M , a complex-valued three-
form ϕC and a complex volume form volC such that for all p ∈M the pair ((ϕC)p, (volC)p) ∈ Λ3T ∗

pM⊗C×Λ7T ∗
pM⊗C

is a (G2)C-structure on the complex seven-dimensional space (TpM,Jp).

In particular, ϕC ∈ Ω(3,0)M and volC ∈ Ω(7,0)M . Moreover, (ϕC, volC) induces a non-degenerated complex
bilinear (with respect to J) symmetric two-tensor gC ∈ Γ(S2T ∗M ⊗ C) pointwise as explained above. Note that
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then gsplit := Re(gC) is a pseudo-Riemannian metric of split signature (7, 7) on M and that (gsplit, J) is an almost

anti-hermitian structure on M . Moreover, gC defines a Hodge star operator ⋆ϕC
: Ω(k,0)M → Ω(7−k,0)M pointwise

as explained above. We say that (ϕC, volC) is a cocalibrated (G2)C-structure if d ⋆ϕC
ϕC = 0.

A cocalibrated G
(∗)
2 -structure on a (real) Lie algebra g is a G

(∗)
2 -structure on a seven-dimensional real Lie algebra

g with d ⋆ϕ ϕ = 0, where one defines an exterior derivative d on Λ∗g∗ in the usual way by identifying k-forms
on g with left-invariant k-forms on G. That means on one-forms α ∈ Λ1g∗ we have (dα)(X,Y ) = −α([X,Y ]) for

all one-forms α ∈ Λ1g∗ and all X,Y ∈ g. So cocalibrated, left-invariant G
(∗)
2 -structures on a Lie group G are in

one-to-one correspondence to cocalibrated G
(∗)
2 -structures on the associated Lie algebra g and d ⋆ϕ ϕ = 0 is an

algebraic equation. Note that, due to Remark 2.7, a Lie algebra admits a cocalibrated G
(∗)
2 -structure if and only if

it admits a closed four-form Ψ of the same form as in equation (2.1).
Similarly, a cocalibrated (G2)C-structure on a (complex) Lie algebra g is defined as a (G2)C-structure (ϕC, volC)

on the seven-dimensional complex Lie algebra g with d ⋆ϕC
ϕC = 0, where the differential d is defined complete

analogously. Again we have a one-to-one correspondence between cocalibrated (G2)C-structure on g and left-
invariant cocalibrated (G2)C-structures on a corresponding complex Lie group G. Note that the left-invariant
almost complex structure J is induced by multiplication with i on g is integrable. Note further that, again due to
Remark 2.7, a Lie algebra admits a cocalibrated (G2)C-structure if and only if it admits a closed four-form Ψ of the
same form as in equation (2.2).

2.3. Lie algebras with codimension one Abelian ideals. In this subsection we consider, for F ∈ {R,C}, n-
dimensional F-Lie algebras with codimension one Abelian ideals. We show how the exterior differential on k-forms
can be described in an easy way and give a description of all closed k-forms on these Lie algebras. Finally we show
how one can classify all such Lie algebras.

Lemma 2.8. Let g be an n-dimensional F-Lie algebra, F ∈ {R,C}, with a codimension one Abelian ideal u. Choose

en ∈ g\u and let en ∈ u0 be such that en(en) = 1. Then we can canonically identify Λku∗ with Λkspan(en)
0
as

vector spaces using the decomposition g = u ⊕ span(en). Set f := ad(e7)|u ∈ gl(u). Using the above canonical
identification the following statements are true:

(i) dα = en ∧ (−α ◦ f) for all α ∈ Λ1u∗ and den = 0.
(ii) dρ = en ∧ (f.ρ) and d(en ∧ ρ) = 0 for all ρ ∈ Λku∗. Thereby, the Lie algebra gl(u) acts in the natural way

on Λku∗.
(iii) A k-form ρ ∈ Λku∗ is closed if and only if f ∈ L(GL(u)ρ). Thereby, GL(u)ρ ⊆ GL(u) is the stabilizer group

of the k-form ρ under the natural action of GL(u) on Λku∗ and L(GL(u)ρ) is the associated Lie algebra.

Proof. Let X,Y ∈ g. Then den(X,Y ) = −en([X,Y ]) = 0 since [X,Y ] ∈ u and en ∈ u0. This shows den = 0. Next,

let α ∈ Λ1span(en)
0 ∼= Λ1u∗. If X,Y are both in u we have [X,Y ] = 0 and so

dα(X,Y ) = −α([X,Y ]) = 0 = (en ∧ (−α ◦ f))(X,Y ).

Furthermore, if Y ∈ u, then

dα(en, Y ) = −α([en, Y ]) = −(α ◦ f)(Y ) = −en(en)(α ◦ f)(Y ) = (en ∧ (−α ◦ f))(en, Y ).

This shows dα = en ∧ (−α ◦ f) and so (i).
But then dρ = en ∧ f.ρ for all ρ ∈ Λku∗ follows immediately. Moreover, this also shows

d(en ∧ ρ) = −en ∧ dρ = −en ∧ en ∧ f.ρ = 0

for all ρ ∈ Λku∗ and (ii) follows.
If ρ ∈ Λken

0 ∼= Λku∗ is closed (with respect to the differential on g), then f.ρ = 0. Thus exp(tf).ρ = ρ and
so exp(tf) ∈ GL(u)ρ for all t ∈ R. Hence f ∈ L(GL(u)ρ). Conversely, if f ∈ L(GL(u)ρ), then by definition
exp(tf).ρ = ρ for all t ∈ R. Differentiating at zero gives f.ρ = 0 and so dρ = 0. This finishes the proof of (iii). �

To get a classification of all Lie algebras with a codimension one Abelian ideal we note that the entire structure
is encoded in the action of an element en ∈ g\u on the subspace u and the action of any other element e′n ∈ g\u on
u is a non-zero multiple of the action of en. More generally, we have:

Proposition 2.9. Let g = Fn−1 ⋊ϕ Fen and g′ = Fn−1 ⋊ϕ′ Fe′n be two n-dimensional F-Lie algebras, F ∈ {R,C},
with Abelian ideal of codimension 1. Then g ∼= g′ if and only if there exists γ ∈ F\{0} such that ϕ(en) and γϕ

′(e′n)
are conjugate in GLn−1(F). Hence g is isomorphic to g′ if and only if there exists γ ∈ F\{0} such that in the complex
Jordan normal forms for ϕ(en) and γϕ

′(e′n) for each Jordan block for ϕ(en) of size m with λ on the diagonal there
exists a Jordan block for ϕ′(e′n) of size m with γλ on the diagonal.
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Proof. ”⇒”:
If g and so also g′ are Abelian, then the statement is trivial. Next, assume that g is not Abelian and admits more
than one codimension one Abelian ideal. Le u be an Abelian ideal in g of codimension one with u 6= Fn−1. Then
V := u ∩ Fn−1 is a (n− 2)-dimensional subspace of Fn−1. Since [g, g] ⊆ u ∩ Fn−1 = V , we have ϕ(en)(F

n−1) ⊆ V .
Moreover, u 6= Fn−1 implies the existence of λ 6= 0 and w ∈ Fn−1 such that u := w + λen ∈ u. Then, for all v ∈ V ,
the identities

ϕ(en)(v) = [en, v]g =
1

λ
[λen, v]g =

1

λ
[u − w, v]g =

1

λ
[u, v]g = 0,

are true, where the last two identities follow from the fact that Fn−1 and u are Abelian. Hence ϕ(en)|V = 0 and
the Jordan normal form of ϕ(en) is 



0 1
0

0
. . .

0



.

The same is of course true for g′ and the statement follows for this case (note that then g = h3 ⊕ Fn−3 with the
three-dimensional Heisenberg algebra h3).

So we may assume that the unique Abelian ideal of codimension one in g and g′ is Fn−1. Then each Lie algebra
isomorphism Φ : g → g′ maps Fn−1 isomorphically onto Fn−1 and there has to be F ∋ γ 6= 0 and w ∈ Fn−1 such
that Φ(en) = γe′n + w. So, for ψ := Φ|Fn−1 ∈ gl(Fn−1) and all v ∈ Fn−1 we get

(ψ ◦ ϕ(en))(v) = Φ([en, v]g) = [Φ(en),Φ(v)]g′ = [γe′n + w,ψ(v)]g′ = γ(ϕ′(e′n) ◦ ψ)(v),
which implies the statement.

”⇐”:
By assumption, there exists ψ ∈ GLn−1(F) and γ ∈ F\{0} such that

ϕ(en) = ψ−1 ◦ (γϕ′(e′n)) ◦ ψ.
Then a short computation shows that

Ψ : g → g′, Ψ(v + αen) := ψ(v) + αγe′n, ∀v ∈ Fn−1, α ∈ F

is a Lie algebra isomorphism. �

Remark 2.10. • Note that for F = R of course not all complex Jordan normal forms are possible for ϕ(en). It
is well-known that exactly those complex Jordan normal forms are possible where for each complex Jordan
block of size n with λ /∈ R on the diagonal we have a complex Jordan block of size n with λ on the diagonal.
Note that this implies that not all complex n-dimensional Lie algebras g with codimension one Abelian
ideals are complexifications of real n-dimensional Lie algebras with codimension one Abelian ideals.

• Proposition 2.9 gives us in fact a classification of all real or complex n-dimensional Lie algebras with
codimension one Abelian ideals. We may write down a complete list for each dimension by considering step-
by-step all possible sizes of the Jordan blocks in the complex Jordan form for ϕ(en), choosing the diagonal
elements in each Jordan blocks as parameters and restricting these parameters in such a way that they are
non-isomorphic for different parameter values but still give all isomorphism classes. This restriction can be
carried out in detail in each case using the condition in Proposition 2.9 but it is still a cumbersome job and
we will not do it here.

• Another way to formulate the essence of Proposition 2.9 is to say that the isomorphism classes of non-
Abelian n-dimensional F-Lie algebras, F ∈ {R,C}, with codimension one Abelian ideals are in one-to-one
correspondence to the orbits of PGLn−1(F) on the projective space P (EndFn−1). This is a stratified space
with the largest strata having codimension (n− 2).

3. Invariants for orbits of k-vectors

In this section, F may be an arbitrary field of characteristic 0 although we will only need the case F ∈ {R,C} in
the following. Let V be an n-dimensional F-vector space. We define certain numbers for k-vectors X ∈ ΛkV which
are invariant under the natural action of GL(V ) on ΛkV . Some of them were introduced by Westwick in [13] to
classify all orbits of three-vectors in seven dimension. Using this classification, the classification of three-vectors up
to eight complex dimensions in [12] and so-called dual isomorphisms we can determine the values of these invariants
for the orbit of Hodge duals of G2-structures, G

∗
2-structures and (G2)C-structures. For more background on these

invariants, we refer the reader also to [3] and [4].
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A k-vector X ∈ ΛkV is called simple or decomposable if there exist vectors v1, . . . , vk ∈ V such that X =
v1 ∧ . . . ∧ vk. The cone Gk(V ) ⊆ ΛkV of all decomposable k-vectors is called the Grassmann cone.

The (irreducible) length l(X) of a k-vector X ∈ ΛkV is the smallest non-negative integer l ∈ N0 for which there

exist decomposable k-vectors X1, . . . , Xl with X =
∑l

i=1Xi. If U is another finite-dimensional F-vector space, then
considering X as k-vector in V ⊕U does not affect the length of X . Moreover, if u1, . . . us are linearly independent
vectors in U , then l(X) = l(X ∧ u1 ∧ . . . ∧ us).

The rank ρ(X) of a k-vector X ∈ ΛkV is the dimension of the support [X ] of the k-vector X , which is defined by

[X ] :=
⋂

{W subspace of V |X ∈ ΛkW}.

Equivalently, the rank is given by the dimension of the image of the map F : V ∗ → Λk−1V , F (α) := αyX .
Let v ∈ [X ]\{0} and W be a complement of span(v) in [X ]. Then there exists a unique (k − 1)-vector X1 =

X1(v,W ) ∈ Λk−1W and a unique k-vector X2 = X2(v,W ) ∈ ΛkW such that

X = X1 ∧ v +X2.

Let

D(X) :=
{
Y ∈ Λk−1V |Y = X1(v,W ) for v ∈ [X ]\{0}, W complement of span(v) in [X ]

}

and

E(X) :=
{
Z ∈ ΛkV |Z = X2(v,W ) for v ∈ [X ]\{0}, W complement of span(v) in [X ]

}
.

Set

m(X) := min{l(Y )|Y ∈ D(X)}, r(X) := min{l(Z)|Z ∈ E(X)}.
The quadruple (ρ(X), l(X), r(X),m(X)) is invariant under the natural action of GL(V ) on ΛkV .

For two-vectors the length is enough to distinguish the orbits under the natural action of the general linear group
GL(V ) and the length of a two-vector can easily be computed:

Lemma 3.1. Let V be an n-dimensional F-vector space. Then:

(a) X ∈ Λ2V is of length l if and only if X l 6= 0 and X l+1 = 0.
(b) X ∈ Λ2V has irreducible length l if and only if there are 2l linearly independent vectors v1, . . . , v2l ∈ V such

that X =
∑l

i=1 v2i−1 ∧ v2i.
Proof. (a) is [3, Theorem 2.11].

For (b) note that if X is as in the statement, i.e. X =
∑l

i=1 v2i−1 ∧ v2i with v1, . . . , v2l ∈ V being linearly

independent, then X l = l! v1 ∧ . . . ∧ v2l and X l+1 = 0. Thus (a) implies that the length is l.

If X has length l, then, by definition, X =
∑l

i=1 Yi for Yi ∈ G2(V ). Hence we may choose vectors vj ∈ V ,
j = 1, . . . 2l such that Yi = v2i−1 ∧ v2i. By (a),

v1 ∧ . . . ∧ v2l = Y1 ∧ . . . ∧ Yl =
X l

l!
6= 0.

Thus v1, . . . , v2l are linearly independent and (b) follows. �

In [13], Westwick showed that the quadruple (ρ(X), l(X), r(X),m(X)) is sufficient to distinguish between the
different orbits of three-vectors in a seven-dimensional real vector space:

Lemma 3.2. Let U be a seven-dimensional real vector space. If three-vectors X ∈ L3U and Y ∈ Λ3U lie in different
orbits under the natural action of GL(U) on Λ3U , then

(ρ(X), l(X), r(X),m(X)) 6= (ρ(Y ), l(Y ), r(Y ),m(Y )).

If U = V ∗ is the dual space of a seven-dimensional vector space V and ϕ is a G2-structure on V , then

(ρ(ϕ), l(ϕ), r(ϕ),m(ϕ)) = (7, 5, 3, 3),

and if ϕ̃ is a G∗
2-structure on V , then

(ρ(ϕ̃), l(ϕ̃), r(ϕ̃),m(ϕ̃)) = (7, 4, 2, 2).

In the complex case the different classes of orbits and their lengths and ranks have been determined in [12].
Using these results and the results obtained in this work before, the values of the two other invariants for the orbit
of (G2)C-structures can be computed:

Lemma 3.3. If (volC, ϕC) is a (G2)C-structure on the complex seven-dimensional space W , then

(ρ(ϕC), l(ϕC), r(ϕC),m(ϕC)) = (7, 4, 2, 2).
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Proof. [12] states that ρ(ϕC) = 7 and l(ϕC) = 4. Since ϕC is the complex-linear extension of a G∗
2-structure on a

real form of W , Lemma 3.2 shows r(ϕC) ≤ 2 and m(ϕC) ≤ 2.
We first show r(ϕC) = 2. Assume therefore that r(ϕC) ≤ 1. Then we must have a non-zero one-form α ∈ W ∗

and a complement U of span(α) in W ∗ such that the unique two-form ω ∈ Λ2U and the unique three-form ρ ∈ Λ3U
with ϕC = ω ∧ α + ρ fulfill l(ρ) ≤ 1. By Lemma 3.1, a two-form on a six-dimensional complex vector space has
maximal length three. Thus we must have l(ω) = 3 and l(ρ) = 1. By Lemma 3.1 (b), there exists a basis e1, . . . , e6

of U such that ω = e12 + e34 + e56. If dim([ρ] ∩ span(e2i−1, e2i)) = {2} for some i ∈ {1, 2, 3}, then the length of
α ∧ e2i−1 ∧ e2i + ρ is one and so the length of ϕC = α ∧ ω + ρ is at most three, contradicting l(ϕC) = 4. Hence
dim([ρ] ∩ span(e2i−1, e2i)) = {1} for i = 1, 2, 3 and we may assume, without loss of generality, that ρ = e246. But
then ϕC = e246 + e12 ∧ α + e34 ∧ α + e56 ∧ α and this means that it is in class V II of [12]. This class is different
from class X in [12], which is the equivalence class of a (G2)C-structure. Hence r(ϕC) = 2.

Finally, we showm(ϕC) = 2. Assume therefore thatm(ϕC) = 1 (note that by definitionm(ϕC) > 0 since ϕC 6= 0).
Then there exists 0 6= β ∈ V ∗ and a complement Z of span(β) in V ∗ such that ϕC = β ∧ ω + ρ0 with ω ∈ Λ2Z,
ρ0 ∈ Λ3Z and l(ω) = 1. By Lemma 3.1 (a), ω2 = 0. We show that the symmetric complex bilinear form gC induced
by (ϕC, volC) is then degenerated, which is the desired contradiction. Therefore, let v ∈ Z0 with β(v) = 1. Then

vyϕC = ω

and so
6 gC(v, v)volC = (vyϕC) ∧ (vyϕC) ∧ ϕC = ω2 ∧ ϕC = 0.

Now let w ∈ β0 be arbitrary. Then

6 gC(v, w)volC = (vyϕC) ∧ (wyϕC) ∧ ϕC = ω ∧ (−β ∧ (wyω) + wy ρ0) ∧ (β ∧ ω + ρ0)

= −ω ∧ β ∧ (wyω) ∧ ρ0 + ω ∧ (wy ρ0) ∧ ρ0 = 0,

where the first summand is zero due to ω∧(wyω) = 1
2wyω

2 = 0 and the second summand is zero since ω∧(wy ρ0)∧ρ0
is a seven-vector on the six-dimensional vector space Z. But so the symmetric bilinear form gC is degenerated.
Thus m(ϕC) = 2 as claimed.

�

We aim at determing the values of these invariants for the Hodge duals of G
(∗)
2 -structures and of (G2)C-structures.

Therefore, we will determining more generally how these invariants transform under Hodge star operators. To deal
with this subject, we introduce the notion of a Grassmann cone preserving maps, see [8]:

Definition 3.4. Let V1, V2 be two finite-dimensional F-vector spaces and g : Λk1V1 → Λk2V2 be a linear map. We
say that g is a Grassmann cone preserving map or a GCP map if g(Gk1(V1)) ⊆ Gk2 (V2). Then l(g(X)) ≤ l(X) for
all X ∈ Λk1V1. g is called a GCP isomorphism if it is a vector space isomorphism and g and g−1 are both GCP
maps. In this case, l(g(X)) = l(X) for all X ∈ Λk1V1.

Each linear map f : V1 → V2 induces naturally a GCP map f∗ : ΛkV1 → ΛkV2 for all k ∈ N. f∗ is a GCP
isomorphism if and only if f is a vector space isomorphism. Such GCP isomorphisms preserve all of the numbers
ρ(X), l(X), r(X) and m(X).

Another important type of GCP isomorphisms is given by so called dual isomorphism δ, i.e. by maps δ : ΛkV →
Λn−kV ∗ such that δ(X) := Xy vol with a volume form vol ∈ ΛnV ∗, vol 6= 0.

Remark 3.5. • If δ, δ̃ : ΛkV → Λn−kV ∗ are both dual isomorphisms, then δ̃ is a non-zero multiple of δ.
• The standard definition in the literature [8] is to call a linear map F : ΛkV → Λn−kV , V being an n-
dimensional F-vector space, a dual isomorphism if there exists a basis e1, . . . , en of V such that
F (ei1 ∧ . . . eik) = ej1 ∧ . . . ejn−k

for all 1 ≤ i1 < . . . < ik ≤ n and for the uniquely defined 1 ≤ j1 <
. . . < jn−k ≤ n with {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}. A relation to our definition can be given by

F = (−1)
k(k+1)

2 g∗ ◦ δ ◦ f∗ with f : V → V being the linear map defined by f(ei) = (−1)iei, δ being the dual
isomorphism associated to the volume form vol = e1234567 and g : V ∗ → V being the linear map defined by
g(ei) = ei.

• Let δ be a dual isomorphism in our sense for the volume form vol = e1234567, e1, . . . , e7 ∈ V ∗ being a basis of
V ∗. The composition of δ with the linear map f∗ : Λn−kV ∗ → Λn−kV induced by the linear map f : V ∗ → V
with f(ei) = ei is the Hodge star operator associated to the Euclidean metric and the orientation on V
for which e1, . . . , en is an oriented orthonormal basis. Similarly, Hodge star operators associated to pseudo-
Euclidean metrics and a given orientation or to non-degenerated complex symmetric bilinear forms and a
compatible complex volume form are compositions of one dual isomorphism and one GCP isomorphism of
the type f∗.

Hence, to determine the values of the invariants ρ(X), l(X), m(X), r(X) under Hodge star operators it suffices
to determine the values of these invariants under dual isomorphisms. Therefore we observe the following:
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The image of a decomposable non-zero k-vector X = v1 ∧ . . . ∧ vk is a non-zero (n − k)-form Ω ∈ Λn−k[X ]0,

where [X ]
0
is the annihilator of [X ]. Since dim([X ]

0
) = n−k, it has to be decomposable. Thus δ : ΛkV → Λn−kV ∗

is a GCP homomorphism. It is, in fact, a GCP isomorphism since the inverse of δ(X) = Xy vol is again a dual
isomorphism, namely δ−1(ψ) = ψy ν with ν ∈ ΛnV ∗∗ ∼= ΛnV , ν(vol) = 1. These observations imply

Lemma 3.6. Let V be an n-dimensional F-vector space, k ∈ {1, . . . , n − 1} and δ : ΛkV → Λn−kV ∗ be a dual
isomorphism. Then δ is a GCP isomorphism and so l(δ(X)) = l(X) for all X ∈ ΛkV . If r(X) = 0, then
ρ(δ(X)) < n. Moreover, if X ∈ ΛkV fulfills ρ(X) = n and r(X) > 0, then ρ(δ(X)) = ρ(X), m(δ(X)) = r(X) and
r(δ(X)) = m(X).

Proof. We only have to show the second and the third part. Let 0 6= vol ∈ ΛnV ∗ be the volume form associated
to δ. If X ∈ ΛkV with r(X) = 0, then there exists 0 6= v ∈ V , a complement W of span(v) in V and X1 ∈ Λk−1V
such that X = v ∧ X1. But then δ(X) = (v ∧ X1)y vol = X1y (vy vol) and the considerations before the Lemma
show vy vol ∈ Λn−1span(v)0. Thus δ(X) ∈ Λn−kspan(v)0. Since span(v)0 is a subspace of codimension one in V ∗,
we get ρ(δ(X)) < n.

Next, let X be a k-vector with ρ(X) = n and r(X) > 0. If the rank of δ(X) is less than n, then there exists
v ∈ V , v 6= 0 such that vy δ(X) = 0. Thus

δ(X ∧ v) = (X ∧ v)y vol = vy (Xy vol) = vy δ(X) = 0,

and so X ∧ v = 0. We decompose X = X1 ∧ v +X2 with X1 ∈ Λk−1W , X2 ∈ ΛkW for some complement W of
span(v) in V . But then r(X) > 0 (note that [X ] = V due to ρ(X) = n) implies X2 6= 0 and so X ∧ v = X2 ∧ v 6= 0,
a contradiction. Hence ρ(δ(X)) = n.

Now we compute the values r(δ(X)) and m(δ(X)). Therefore, let v ∈ V , v 6= 0 and W be a complement of
span(v) in V . Decompose

X = X1 ∧ v +X2

uniquely with X1 ∈ Λk−1W and X2 ∈ ΛkW . Analogously to above, we get δ(X1 ∧ v) ∈ Λn−kspan(v)0. Moreover,

the considerations directly before the lemma imply δ(X2) ∈ Λn−k[X2]
0 ⊆ Λ1W 0 ∧ Λn−k−1span(v)

0
. Thus δ(X2) =

α ∧ Y2 for some 0 6= α ∈ W 0 and for Y2 ∈ Λn−k−1span(v)
0
. This is true for each possible choice of v and

W . If we now choose v and W such that l(X1) = m(X) (note that this is only possible since ρ(X) = n),

then ρ(δ(X)) = n, the fact that span(v)
0
is a complement of span(α) in V ∗ and that δ a GCP -map imply

m(X) = l(X1) = l(X1 ∧ v) = l(δ(X1 ∧ v)) ≥ r(δ(X)). Similarly, if we choose v,W such that l(X2) = r(X), we
obtain r(X) = l(X2) = l(δ(X2)) ≥ m(δ(X)).
δ−1 is again a dual isomorphism. Thus r(δ(X)) = 0 would imply ρ(X) < n, a contradiction. Hence r(δ(X)) > 0

and we already proved ρ(δ(X)) = n. But then we may apply the just proven and get m(δ(X)) ≥ r(δ−1(δ(X))) =
r(X) and r(δ(X)) ≥ m(δ−1(δ(X))). Thus equality holds in both cases and the statement is proven. �

Lemma 3.1 and Lemma 3.6 imply the following result on standard forms of (n− 2)-vectors of length l:

Lemma 3.7. Let V be an n-dimensional F-vector space and Y ∈ Λn−2V be an (n − 2)-vector on V . In a wedge
product, denote by v̂ for v ∈ V a vector which is omitted in this product. Then:

(a) Y has length l < n
2 if and only if there exists a basis w1, . . . , wn of V such that

Y =

l∑

i=1

w1 ∧ . . . ŵ2i−1 ∧ ŵ2i ∧ . . . ∧ wn.

(b) Y has length l = n
2 if and only there exists a basis w1, . . . , wn such that

Y = ±
(

l∑

i=1

w1 ∧ . . . ŵ2i−1 ∧ ŵ2i ∧ . . . ∧ wn

)
.

Proof. Let δ : Λn−2V → Λ2V ∗ be a dual isomorphism. Then Y ∈ Λn−2V is of length l if and only if δ(Y ) is of
length l and Lemma 3.1 (b) tells us that this is the case if and only if there exists a basis v1, . . . , vn ∈ V ∗ of V ∗ such

that δ(Y ) =
∑l

i=1 v
2i−1 ∧ v2i. Now αδ(Y ) = Y y v1...n for some α 6= 0 and so Y ∈ Λn−1V is of length l if and only

if there exists a basis v1, . . . , vn such that Y =
∑l

i=1 αv1 ∧ . . . v̂2i−1 ∧ v̂2i ∧ . . . ∧ vn holds. Setting wj := |α| 1
n−2 vj

for j = 1, . . . , n, we get

Y = ±(

l∑

i=1

w1 ∧ . . . ŵ2i−1 ∧ ŵ2i ∧ . . . ∧ wn).

This shows (b). If l < n
2 , the vector wn appears in each summand. Hence, by changing the sign of wn, if necessary,

we can change the overall sign to + and so (a) follows. �
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Lemma 3.2 and Lemma 3.6 imply

Proposition 3.8. Let ϕ be a G2-structure on a seven-dimensional real vector space V , let ϕ̃ be a G∗
2-structure on

V and let ϕC be a (G2)C-structure on a seven-dimensional complex vector space W . Then

(ρ(⋆ϕϕ), l(⋆ϕϕ),m(⋆ϕϕ), r(⋆ϕϕ)) = (7, 5, 3, 3), (ρ(⋆ϕ̃ϕ̃), l(⋆ϕ̃ϕ̃),m(⋆ϕ̃ϕ̃), r(⋆ϕ̃ϕ̃)) = (7, 4, 2, 2),

(ρ(⋆ϕC
ϕC), l(⋆ϕC

ϕC),m(⋆ϕC
ϕC), r(⋆ϕC

ϕC)) = (7, 4, 2, 2).

So, if ⋆ϕϕ is the Hodge dual of a G2-structure then, for each choice of a non-zero one-form α ∈ V ∗ and of
a complement W of span(α) in V ∗ the unique four-form Ω ∈ Λ4W and the unique three-form ρ ∈ Λ3W with
⋆ϕϕ = Ω + ρ ∧ α fulfill l(Ω) ≥ 3 and l(ρ) ≥ 3. Since these lengths are at most three by [13] and Lemma 3.7, we
get equality, i.e. l(Ω) = 3 and l(ρ) = 3. Even more, the values of the other invariants of Ω and ρ are uniquely
determined:

Lemma 3.9. Let V be a seven-dimensional vector space, let ϕ ∈ Λ3V ∗ be a G2-structure and let ⋆ϕϕ be its Hodge
dual. Choose a non-zero one-form α ∈ V ∗ and a complement W of span(α) in V ∗. Denote by Ω ∈ Λ4W and by
ρ ∈ Λ3W the unique forms such that ⋆ϕϕ = Ω+ ρ ∧ α. Then:

(a) (ρ(Ω), l(Ω),m(Ω), r(Ω)) = (6, 3, 2, 1).
(b) (ρ(ρ), l(ρ),m(ρ), r(ρ)) = (6, 3, 2, 2).

Proof. (a) Since four-forms in five dimensions are of length at most one, ρ(Ω) = 6. Let β ∈W , β 6= 0 and U be

a complement of span(β) in W . Let Ω̃ ∈ Λ4U , ρ̃ ∈ Λ3U be such that Ω = Ω̃+ ρ̃∧β. Again, since four-forms

in five-dimensions are of length at most one, l(Ω̃) ≤ 1. Moreover, since three-forms in five dimensions are

of length at most two by Lemma 3.7, l(ρ̃) ≤ 2. But l(Ω) = 3 forces l(Ω̃) = 1 and l(ρ̃) = 2. Thus r(Ω) = 1
and m(Ω) = 2 as claimed.

(b) Again, since three-forms in five dimensions are of length at most two, ρ(ρ) = 6. By [13], then either
(m(ρ), r(ρ)) = (2, 2) or (m(ρ), r(ρ)) = (1, 1). Suppose that the second holds. Then there exists β ∈ W ,
β 6= 0 and a complement U of span(β) in W such that for the unique three-form ρ̂ ∈ Λ3U and the unique

two-form ω ∈ Λ2U with ρ = ρ̂ + ω ∧ β we get l(ρ̂) = 1. If Ω̃ ∈ Λ4U and ρ̃ ∈ Λ3U denote the unique forms

such that Ω = Ω̃ + ρ̃ ∧ β, then l(Ω̃) ≤ 1 (U is five-dimensional) and the equality

⋆ϕϕ = Ω + ρ ∧ α = Ω̃ + ρ̃ ∧ β + ρ̂ ∧ α+ ω ∧ β ∧ α = (Ω̃ + ρ̂ ∧ α) + (ρ̃− ω ∧ α) ∧ β
is true. Since the length of Ω̃ + ρ̂ ∧ α is at most two, we have a contradiction to r(⋆ϕϕ) = 3 (consider the
decomposition V ∗ = (U ⊕ span(α)) ⊕ span(β)). Thus (m(ρ), r(ρ)) = (2, 2) as claimed.

�

Remark 3.10. Lemma 3.9 implies obstructions to the existence of cocalibrated G2-structures on an arbitrary seven-
dimensional real Lie algebra. Therefore, let W ⊆ V ∗, α ∈ V ∗, ρ ∈ Λ3W and Ω ∈ Λ4W be as in Lemma 3.9.

• Let δ : Λ4W → Λ2W ∗ be an arbitrary dual isomorphism. Then Lemma 3.9 (a) and Lemma 3.1 (a) imply
that δ(Ω)3 6= 0. This can easily be computed by a computer algebra system.

• Lemma 3.9 (b) shows that ρ ∈ Λ3W ∼= Λ3W ∗∗ is that kind of three-form on the six-dimensional vector
space W ∗ which induces a complex structure Jρ on W ∗ as e.g. explained in [5]. Note that there is a
quartic invariant λ : Λ3W → (Λ6W )⊗2 on the six-dimensional vector space W ∗ which is negative exactly
on those three-forms which induce a complex structure on W ∗. The value of that invariant can also easily
be computed by a computer algebra system.

The case of a Hodge dual of a G∗
2- or (G2)C-structure is more complicated. In this paper we will only need

Lemma 3.11. (a) Let V be a seven-dimensional real vector space, let Ψ be the Hodge dual of a G∗
2-structure,

let 0 6= α ∈ V ∗ and U be a complement of span(α) in V ∗. If Ω ∈ Λ4U , ρ ∈ Λ3U are the unique forms such
that Ψ = Ω + ρ ∧ α, then l(Ω) = 2 if and only if g(α, α) = 0 in the induced metric g.

(b) Let V be a seven-dimensional complex vector space, let Ψ be the Hodge dual of a (G2)C-structure, let
0 6= α ∈ V ∗ and U be a complement of span(α) in V ∗. If Ω ∈ Λ4U , ρ ∈ Λ3U are the unique forms
such that Ψ = Ω + ρ ∧ α, then l(Ω) = 2 if and only if g(α, α) = 0 in the induced non-degenerated complex
symmetric bilinear form g.

Proof. (a) Let vol ∈ Λ7V ∗ be the associated volume form and let 0 6= X ∈ Λ7V be such that vol(X) = 1. Set
Z := δ(Ψ) = ΨyX with the dual isomorphism δ : Λ4V ∗ → Λ3V , δ(Φ) := ΦyX . A short computation in an
adapted basis and the corresponding dual basis shows

g(β, γ)X =
1

6
(βyZ) ∧ (γyZ) ∧ Z
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for all β, γ ∈ V ∗. Set Z1 := δ(Ω) = ΩyX , Z2 := δ(ρ∧α) = (ρ∧α)yX . Then Z = Z1+Z2, l(Ω) = l(δ(Ω)) =
l(Z1), Z2 ∈ Λ3α0 and Z1 = v ∧ Y1 with 0 6= v ∈ U0, α(v) = 1 and Y1 ∈ Λ2α0. Hence l(Ω) = l(Z1) = l(Y1)
and αyZ = αyZ1 + αyZ2 = Y1. This implies the equality

6g(α, α)X = (αyZ1) ∧ (αyZ1) ∧ (Z1 + Z2) = Y 2
1 ∧ (v ∧ Y1 + Z2) = v ∧ Y 3

1 .

But so g(α, α) = 0 if and only if Y 3
1 = 0, which is by Lemma 3.1 (a) equivalent to l(Ω) = l(Y1) < 3 and by

Lemma 3.8 equivalent to l(Ω) = 2. This proves the statement
(b) Part (b) can be proven in complete analogy to part (a).

�

4. Classification

In this section we prove Theorem 1.1 - 1.4. We start in subsection 4.1 by showing that the existence problem of
a cocalibrated G2-, G

∗
2- or (G2)C-structure on a seven-dimensional F-Lie algebra g with codimension one Abelian

ideal u is equivalent to the existence of certain closed four-forms on span(e7)
0
for e7 ∈ g\u. Lemma 2.8 tells us that

is useful to determine the Lie algebra of the stabilizer group of such a closed four-form under the natural action

of GL(u) on Λ4span(e7)
0 ∼= Λ4u∗, which is done afterwards. Altogether, we obtain a rather abstract classification

of the Lie algebras in question which admit cocalibrated structures and establish the equivalence of (a)-(c) in
Theorem 1.1, of (a) and (b) in Theorem 1.2 and almost the equivalence of (a) and (b) in Theorem 1.3 and in
Theorem 1.4. To finish the proof of the equivalence of (a) and (b) in Theorem 1.3 and in Theorem 1.4 and to
prove the equivalence to the last condition in Theorem 1.1 - 1.4 we use in subsection 4.2 well-known results on
the structure of the complex Jordan normal forms of sp(2n,F) to express the existence of cocalibrated structures
totally in properties of the complex Jordan normal form of ad(e7)|u. Note that this also makes connection to our
classification of seven-dimensional F-Lie algebras achieved in Proposition 2.9.

4.1. First reduction of the problem.

Proposition 4.1. Let g be a seven-dimensional F-Lie algebra with six-dimensional Abelian ideal u and let e7 ∈ g\u.
(a) If F = R, g admits a cocalibrated G2-structure ϕ ∈ Λ3V ∗ if and only if g admits a closed four-form

Ω ∈ Λ4span(e7)
0
of length l(Ω) = 3. This is the case if and only if g admits a cocalibrated G∗

2-structure such
that with respect to the induced pseudo-Euclidean metric the subspace u is non-degenerated.

(b) If F = R, g admits a cocalibrated G∗
2-structure ϕ ∈ Λ3V ∗ if and only if g admits a closed four-form

Ω̃ ∈ Λ4span(e7)
0
of length l(Ω̃) ≥ 2.

(c) Similarly, if F = C, g admits a cocalibrated (G2)C-structure if and only if there exists a closed four-form

Ω̂ ∈ Λ4span(e7)
0
of length l(Ω̂) ≥ 2 and it admits a cocalibrated (G2)C-structure such that u is non-

degenerated with respect to the induced non-degenerated symmetric bilinear form if and only if a closed
four-form Ω̂ ∈ Λ4span(e7)

0
with l(Ω̂) = 3 exists.

Proof. Firstly, let Ψ be the Hodge dual of a cocalibrated G
(∗)
2 -structure or of a cocalibrated (G2)C-structure.

Decompose the Ψ into

Ψ = Ω1 ∧ e7 +Ω2

with Ω1 ∈ Λ3span(e7)
0, Ω2 ∈ Λ4span(e7)

0, where e7 is the element in the annihilator u0 of u with e7(e7) = 1. Then
d(Ω1 ∧ e7) = 0 by Lemma 2.8. Thus dΨ = 0 implies dΩ2 = 0. Proposition 3.8 and Lemma 3.9 imply l(Ω2) = 3 if Ψ
is the Hodge dual of a G2-structure and l(Ω2) ≥ 2 if Ψ is the Hodge dual of a G∗

2- or a (G2)C-structure. Moreover,
if u is a non-degenerated subspace with respect to the induced pseudo-Euclidean metric in the case of the Hodge
dual of a G∗

2-structure or with respect to the induced non-degenerated symmetric complex bilinear form in the
case of the Hodge dual of a (G2)C-structure then l(Ω2) = 3 by Lemma 3.11. Therefore, note that the subspace
u0 = span(e7) ⊆ g∗ in the dual space g∗ is non-degenerated if and only if the subspace u ⊆ g in the space g is
non-degenerated. This proves one direction in (a)-(c).

For the other direction in (a) - (c), first assume that Ω ∈ Λ4span(e7)
0
is a closed four-form of length three.

By Lemma 3.7 (and replacing Ω by −Ω, if necessary) for arbitrary ǫ ∈ {−1, 1} there exists a basis e1, . . . , e6 of

span(e7)
0
such that

Ω = ǫ(e1256 + e3456) + e1234.

Then

Ψ := ǫ(e1256 + e3456) + e1234 − e2467 + e2357 + e1457 + e1367

is closed (use again Lemma 2.8) and is, for F = R, the Hodge dual of a G2-structure if ǫ = 1 and of a G∗
2-structure

if ǫ = −1 and, for F = C, the Hodge dual of a (G2)C-structure for ǫ ∈ {−1, 1}. Moreover, Lemma 3.11 tells us
that u is non-degenerated with respect to the induced pseudo-Euclidean metric in the case of the Hodge dual of a
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G∗
2-structure and with respect to the induced symmetric non-degenerated bilinear form in the case of the Hodge

dual of a (G2)C-structure.

Finally, let Ω ∈ Λ4span(e7)
0 be a closed four-form of length two. By Lemma 3.7 there exists a basis e1, . . . , e6 of

span(e7)
0
such that

Ω = e1234 + e1256.

Let Ψ be the Hodge dual of an arbitrary G∗
2-structure or (G2)C-structure, respectively. Then r(Ψ) = 2 by Proposition

3.8 in both cases and so there exists f7 ∈ g∗, f7 6= 0 and a complement W of span(f7) in g∗ such that

Ψ = Ω̃1 ∧ f7 + Ω̃2

with Ω̃1 ∈ Λ3W , Ω̃2 ∈ Λ4W and the length of Ω̃2 is two. Hence there exists a basis f1, . . . , f6 of W such that

Ω̃2 = f1234 + f1256.

Denote by F ∈ GL(g∗) the linear map with F (f i) = ei for i = 1, . . . , 7. Then F∗Ψ is the Hodge dual of a
G∗

2-structure or of a (G2)C-structure with adapted basis e1, . . . , e7, respectively. Moreover,

F∗Ψ = F∗(Ω̃1 ∧ f7) + F∗(Ω̃2) = F∗(Ω̃1) ∧ e7 + e1234 + e1256 = F∗(Ω̃1) ∧ e7 +Ω.

Thus F∗Ψ is closed (once again Lemma 2.8) and g admits a cocalibrated G∗
2-structure or a cocalibrated (G2)C-

structure, respectively. This finishes the proof. �

Let us note some interesting consequences of Proposition 4.1:

Corollary 4.2. Let g be a seven-dimensional real Lie algebra with six-dimensional Abelian ideal u. Then:

(a) If g admits a cocalibrated G2-structure, then it also admits a cocalibrated G∗
2-structure.

(b) g admits a cocalibrated G2-structure if and only if g admits a cocalibrated G∗
2-structure such that the subspace

u is non-degenerated with respect to the induced pseudo-Euclidean metric.
(c) The complexification gC admits a cocalibrated (G2)C-structure if and only if g admits a cocalibrated G∗

2-
structure. Moreover, gC admits a cocalibrated (G2)C-structure such that the subspace uC is non-degenerated
with respect to the induced non-degenerated symmetric bilinear form if and only if g admits a cocalibrated
G∗

2-structure such that the subspace u is non-degenerated with respect to the induced pseudo-Euclidean metric
and this is the case if and only if g admits a cocalibrated G2-structure.

By Proposition 4.1, the existence of a cocalibrated G
(∗)
2 -structure or a cocalibrated (G2)C-structure is equivalent

to the existence of certain closed four-forms in Λ4span(e7)
0
. By Lemma 2.8 (c) such a four-form is closed if and

only if the linear map f := ad(e7)|u is in the Lie algebra of the stabilizer group under the action of GL(u) of the
four-form Ω considered as an element in Λ4u∗. Hence, to proceed, we have to determine the stabilizer groups and
the associated Lie algebras of four-forms of length two and three on a six-dimensional F-vector space.

Lemma 4.3. Let V be a six-dimensional F-vector space, F ∈ {R,C}, and Ω ∈ Λ4V ∗ be a four-form.

(a) Let l(Ω) = 3. Then the stabilizer group GL(V )Ω of Ω under the natural action of GL(V ) on Λ4V ∗ is given
by the set of all symplectic and all anti-symplectic transformations of the symplectic vector space (V, ω),
where ω ∈ Λ2V ∗ is a two-form with 1

2ω
2 = Ω. That means

GL(V )Ω = {f ∈ GL(V )|f∗ω = ǫω for some ǫ ∈ {−1, 1}}.
Its Lie algebra is given by the symplectic Lie algebra sp(V, ω).

(b) Let l(Ω) = 2. Set V4 := {v ∈ V |∀w ∈ V : ((w ∧ v)yΩ)2 = 0}. Then V4 is a four-dimensional subspace.
Moreover, there exists a two-dimensional complementary subspace V2 such that Ω = ω2∧ω4 with ω2 ∈ Λ2V4

0,
ω4 ∈ Λ2V2

0 and such that ω4 is of length two. The stabilizer group GL(V )Ω of Ω under the natural action
of GL(V ) on Λ4V ∗ can be described for F = R by

GL(V )Ω = {f ∈ GL(V )|f |V2 = f2 + h, f2 ∈ GL(V2), h ∈ Hom(V2, V4),

f |V4 =
f4√

| det(f2)|
, f4 ∈ GL(V4), f

∗
4ω4 = sgn(det(f2))ω4}.

and for F = C by

GL(V )Ω = {f ∈ GL(V )|f |V2 = f2 + h, f2 ∈ GL(V2), h ∈ Hom(V2, V4),

f |V4 =
f4
λ
, f4 ∈ Sp(V4, ω4), λ ∈ C, λ2 = det(f2)}.

Thereby, we consider ω4 as a two-form on Λ2V ∗
4 by the canonical identification V 0

2
∼= V ∗

4 induced by the
decomposition V = V2 ⊕ V4.
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Its Lie algebra is in both cases given by

L(GL(V )Ω) = {f ∈ gl(V )|f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4),

f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω4)}.

Proof. (a) Let Ω ∈ Λ4V ∗ be of length 3. By Lemma 3.1 (a) and Lemma 3.7 there exists a (linear) symplectic
two-form ω ∈ Λ2V ∗, i.e. a two-form of length three, such that Ω = 1

2ω
2. The two-form ω provides an

isomorphism V ∗ → V and so an isomorphism Λ2V ∗ → Λ2V . Moreover, 0 6= ω3

6 ∈ Λ6V ∗ provides an

isomorphism Λ2V → Λ4V ∗ given by X 7→ Xy
ω3

6 . The natural representation of GL(V ) on Λ4V ∗ given by

f.Ψ = (f−1)∗Ψ gives us a representation on Λ2V ∗ using the mentioned isomorphisms. GL(V ) ∋ f acts then
on Λ2V ∗ by f.φ := det(f)−1(f t)∗φ for all φ ∈ Λ2V ∗. Thereby, f t is the symplectic transpose of f , i.e. f t

is defined by ω(f(v), w) = ω(v, f t(w)) for all v, w ∈ V . Moreover, the image of Ω ∈ Λ4V ∗ under all these
isomorphisms is exactly ω as one easily checks in a symplectic basis and its dual basis.

If F = R we therefore have f ∈ GL(V )Ω, i.e. f.Ω = Ω, if and only

(
1√

| det(f)|
f t

)∗

ω = ±ω, where

the plus sign appears if det(f) > 0 and the minus sign if det(f) < 0. Hence 1√
| det(f)|

f t is a symplectic

transformation of (V, ω) if det(f) > 0 and an anti-symplectic transformation if det(f) < 0. Since the
determinant of a symplectic transformation is one and the determinant of an anti-symplectic transformation

in a six-dimensional space is −1, we get ±1 = det

(
1√

| det(f)|
f t

)
= det(f)

| det(f)|3 and so
√
| det(f)| = 1 in

both cases. Thus f t and so also f is a symplectic transformation or an anti-symplectic transformation.
Conversely, due to Ω = 1

2ω
2, it is clear that all symplectic and all anti-symplectic transformations of (V, ω)

stabilize Ω.
If F = C, we get f ∈ GL(V )Ω if and only if (λf t)

∗
ω = ω for λ ∈ C with λ2 = 1

det(f) . Thus λf t is

a symplectic transformation. Hence 1 = det(λf t) = 1
det(f)2 and so (f t)∗ω = ±ω, i.e. f t and so f is a

symplectic or an anti-symplectic transformation of (V, ω). Note again that it is clear that all symplectic and
all anti-symplectic transformations stabilize Ω.

The identity component of the stabilizer group is in both cases exactly the set of all symplectic transfor-
mations. Hence the associated Lie algebra is in both cases the symplectic Lie algebra sp(V, ω).

(b) Let Ω ∈ Λ4V ∗ be of length 2. By Lemma 3.7 there exists a basis e1, . . . , e6 of V such that in the dual
basis Ω = e1234 + e1256. Then Ω = ω2 ∧ ω4 with ω2 = e12, ω4 = e34 + e56 and ω4 is of length two. Setting
V2 := span(e1, e2), V4 := span(e3, e4, e5, e6) we see that ω2 ∈ Λ2V4

0, ω4 ∈ Λ2V2
0.

Let v =
∑6

i=1 αiei. A short computation shows that ((v ∧ e1)yΩ)
2 = 0 implies α2 = 0 and that

((v ∧ e2)yΩ)2 = 0 implies α1 = 0. Hence V4 ⊇ {v ∈ V |∀w ∈ V : ((v ∧ w)yΩ)2 = 0}. Another computation
shows that for v ∈ V4 we have in fact ((v∧w)yΩ)2 = 0 for any w ∈ V . Thus the identity V4 = {v ∈ V |∀w ∈
V : ((v ∧ w)yΩ)2 = 0} is true.

Let f ∈ GL(V ) such that f.Ω = (f−1)∗Ω = Ω. Of course, then also f∗Ω = Ω. This allows us to show
that V4 is an invariant subspace for f . Therefore, let v ∈ V4, w ∈ V . We have

0 = ((v ∧ f−1(w))yΩ) ∧ ((v ∧ f−1(w))yΩ) = (f−1)∗((v ∧ f−1(w))yΩ) ∧ (f−1)∗((v ∧ f−1(w))yΩ).

Now f∗Ω = Ω implies

((f−1)∗((v ∧ f−1(w))yΩ)(w2, w3) = Ω(f−1(w), v, f−1(w2), f
−1(w3))

= Ω(w, f(v), w2, w3) = ((f(v) ∧ w)yΩ)(w2, w3)

for all w2, w3 ∈ V and so (f−1)∗((v ∧ f−1(w))yΩ) = (f(v) ∧ w)yΩ. Thus also ((f(v) ∧ w)yΩ)2 = 0. Hence
f(v) ∈ V4 and V4 is an invariant subspace for f . Set g4 := f |V4 ∈ GL(V4) and define f2 ∈ GL(V2) and
h ∈ Hom(V2, V4) by the equation f |V2 = f2 + h. Then f−1|V4 = g−1

4 and f−1|V2 = f−1
2 − g−1

4 ◦ h ◦ f−1
2 . Let

v1, v2 ∈ V2 be such that ω2(v1, v2) = 1. For v3, v4 ∈ V4 we get

(g∗4ω4)(v3, v4) = ω2(v1, v2) · ω4(g4(v3), g4(v4)) = Ω(v1, v2, g4(v3), g4(v4)) = Ω(v1, v2, f(v3), f(v4))

= ((f−1)∗Ω)(v1, v2, f(v3), f(v4)) = Ω(f−1(v1), f
−1(v2), v3, v4)

= ω2(f
−1(v1), f

−1(v2)) · ω4(v3, v4) = ω2(f
−1
2 (v1), f

−1
2 (v2)) · ω4(v3, v4)

=
1

det(f2)
ω4(v3, v4).

Hence det(f2)g
∗
4ω4 = ω4.
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Let F = R. If det(f2) > 0 we have f4 :=
√
det(f2)g4 ∈ Sp(V4, ω4) whereas for det(f2) < 0 we get that

f4 :=
√
| det(f2)|g4 is an anti-symplectic transformation of (V4, ω4). This shows that the stabilizer group

GL(V )Ω is contained in

G := {f ∈ GL(V )|f |V2 = f2 + h, f2 ∈ GL(V2), h ∈ Hom(V2, V4),

f |V4 =
f4√

| det(f2)|
, f4 ∈ GL(V4), f

∗
4ω4 = sgn(det(f2))ω4}.

A direct calculation shows that each element of G stabilizes Ω. Thus G = GL(V )Ω as claimed. The elements
of GL(V )Ω which lie in the identity component (GL(V )Ω)0 are characterized by the properties det(f2) > 0
and f4 ∈ Sp(V4, ω4). Hence it follows that the associated Lie algebra L(GL(V )Ω) has the claimed form.

Finally, consider F = C. Then det(f2)g
∗
4ω4 = ω4 states that f4 := λg4 ∈ Sp(V4, ω4) for all λ ∈ C with

λ2 = det(f2). This shows that GL(V )Ω is contained in

H := {f ∈ GL(V )|f |V2 = f2 + h, f2 ∈ GL(V2), h ∈ Hom(V2, V4),

f |V4 =
f4
λ
, f4 ∈ Sp(V4, ω4), λ ∈ C, λ2 = det(f2)}.

Conversely, a simple calculation shows that each element of H stabilizes Ω. Thus GL(V )Ω = H as claimed.
Similarly to the real case we see that L(GL(V )Ω) has the stated form.

�

Lemma 4.3 and Proposition 4.1 imply the following two theorems:

Theorem 4.4. Let g be a seven-dimensional real Lie algebra with codimension one Abelian ideal u. Let e7 ∈ g\u,
ω6 ∈ Λ2u∗ be a non-degenerated two-form on u, V4 be a four-dimensional subspace of u, V2 be a complementary
two-dimensional subspace of V4 in u and ω4 ∈ Λ2V ∗

4 be a non-degenerated two-form on V4. Then:

(a) g admits a cocalibrated G2-structure if and only if g admits a cocalibrated G∗
2-structure such that u is a

non-degenerated subspace of g with respect to the induced pseudo-Euclidean metric on g and this is the case
if and only if ad(e7)|u ∈ gl(u) is similar under the action of GL(u) to an element in sp(u, ω6).

(b) g admits a cocalibrated G∗
2-structure if and only if ad(e7)|u ∈ gl(u) is similar under the action of GL(u) to

an element in sp(u, ω6) or to an element in

{f ∈ gl(V )|f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4), f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω4)}.

Theorem 4.5. Let g be a seven-dimensional complex Lie algebra with codimension one Abelian ideal u. Let e7 ∈ g\u,
ω6 ∈ Λ2u∗ be a non-degenerated two-form on u, V4 be a four-dimensional subspace of u, V2 be a complementary
two-dimensional subspace of V4 in u and ω4 ∈ Λ2V ∗

4 be a non-degenerated two-form on V4. Then:

(a) g admits a cocalibrated (G2)C-structure such that u is a non-degenerated subspace of g with respect to the
induced symmetric complex bilinear form on g if and only if ad(e7)|u ∈ gl(u) is similar under the action of
GL(u) to an element in sp(u, ω6).

(b) g admits a cocalibrated (G2)C-structure if and only if ad(e7)|u ∈ gl(u) is similar under the action of GL(u)
to an element in sp(u, ω6) or to an element in

{f ∈ gl(V )|f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4), f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω4)}.

4.2. Second reduction of the problem. Theorem 4.4 (a) states the equivalence of (a)-(c) in Theorem 1.1 and
Theorem 4.5 (a) states the equivalence of (a) and (b) in Theorem 1.2. Theorem 4.4 (b) shows that condition (b) in
Theorem 1.3 implies condition (a) in the same Theorem and Theorem 4.5 (b) shows that condition (b) in Theorem
1.4 implies condition (a) in the same Theorem. Moreover, we get from these theorems that it suffices to show that
each element in gl(u), which is similar under GL(u) to an element in sp(u, ω6), is also similar under GL(u) to an
element in

{f ∈ gl(V )|f |V2 = f2 + h, f ∈ gl(V2), h ∈ Hom(V2, V4), f |V4 = − tr(f2)

2
idV4 + f4, f4 ∈ sp(V4, ω4)}

to get that condition (a) implies condition (b) in Theorem 1.3 and Theorem 1.4, respectively. Therefore, it is
obviously useful to know something about the structure of complex Jordan normal forms of elements in sp(2n,F),
at least for n = 2 and n = 3.

Moreover, it remains to prove the equivalence of the last condition in Theorem 1.1 - 1.4 to one of the previous
ones. This last condition is also expressed in properties of the complex Jordan normal form of ad(e7)|u. This should
be enough motivation to recall the following well-known results, see e.g [9, Theorem 2.7] or also [10, Theorem 2.4]
for F = R, on the complex Jordan normal forms of elements in sp(2n,F):
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Proposition 4.6. Let (V, ω) be a symplectic vector space over F ∈ {R,C}. Then a linear transformation f ∈ GL(V )
is similar under the action of GL(V ) to an element in sp(V, ω) if and only if the complex Jordan normal form of
f has the property that for all m ∈ N and all 0 6= λ the number of Jordan blocks of size m with λ on the diagonal
equals the number of Jordan blocks of size m with −λ on the diagonal and the number of Jordan blocks of size
2m− 1 with 0 on the diagonal is even.

Proof of Theorem 1.1 - 1.4. Theorem 4.4, Theorem 4.5 and Proposition 4.6 imply Theorem 1.1 and Theorem 1.2.
We remarked before Proposition 4.6 what is left to prove Theorem 1.3 and Theorem 1.4. But now, since conditions

(c) and (d) in Theorem 1.1 and conditions (b) and (c) in Theorem 1.2 are equivalent, respectively, we may and will
proceed as follows to finish the proof of Theorem 1.3 and Theorem 1.4:

• First step: Show that condition (d) in Theorem 1.1 implies condition (c) in Theorem 1.3 and, similarly, that
condition (c) in Theorem 1.2 implies condition (c) in Theorem 1.4.

• Second step: Show that the conditions (c) and (b) in Theorem 1.3 are equivalent and, similarly, that the
conditions (c) and (b) in Theorem 1.4 are equivalent.

First step:
Let A ∈ C6×6 be a matrix in complex Jordan normal form such that for all m ∈ N and all 0 6= λ ∈ C the number

of Jordan blocks of size m with λ on the diagonal is the same as the number of Jordan blocks of size m with −λ on
the diagonal and the number of Jordan blocks of size 2m− 1 with 0 on the diagonal is even.

Number consecutively the diagonal elements of the complex Jordan normal form by λ1, . . . , λ6 and the Jordan
blocks of the complex Jordan normal form by 1, . . . ,m, both from the upper left to the lower right. Let JB(i)
for all i = 1, . . . , 6 be the number of the Jordan block in which the corresponding generalized eigenvector lies.
The assumptions on A imply that we can portion {1, . . . , 6} in the following way into three subsets I1, I2, I3 of
cardinality two:

• We can group the Jordan blocks with non-zero diagonal elements into pairs of Jordan blocks of the same
size with λ and −λ, λ 6= 0 on the diagonal. Construct now subsets I1, . . . , Ir of cardinality two by going
successively through all these pairs of Jordan blocks and putting successively the two indices corresponding
to the first,. . ., l-th, . . . diagonal element in the two Jordan blocks in one Ik. By the index i corresponding
to the l-th diagonal element in a certain Jordan block we mean that i ∈ {1, . . . , 6} such the i-th diagonal
element of the big matrix A is the the l-th diagonal element in the Jordan block.

• Similarly, we can group the Jordan blocks with zero on the diagonal and of odd size into pairs of the same
size and construct subsets Ir+1, . . . , Is taking successively all these pairs of Jordan blocks and putting again
the two indices corresponding to the first,. . ., l-th, . . . diagonal element in the two Jordan block in one Ik.

• Finally, we construct subsets Is+1, . . . , I3 by taking successively the Jordan blocks with 0 in the diagonal of
even size and putting together the two indices corresponding to the (2l− 1)-th and 2l-th diagonal element.

By construction,
∑

i∈Ik
λi = 0 for all k = 1, 2, 3 and so condition (i) in Theorem 1.3 (c) and Theorem 1.4 (c)

is fulfilled, respectively. Moreover, if i1 ∈ I1, i2 ∈ I2 are such that JB(i1) = JB(i2), then by construction also
JB(j1) = JB(j2) for the unique jk ∈ Ik such that Ik = {ik, jk} for k = 1, 2. This show that also condition (ii) in
Theorem 1.3 (c) and Theorem 1.4 (c) is fulfilled, respectively. Finally, we prove that also condition (iii) in Theorem
1.3 (c) and Theorem 1.4 (c) is fulfilled, respectively. By symmetry we may assume that there is i2 ∈ I2 such that
JB(i1) = JB(j1) = JB(i2), {i1, j1} = I1. Then λi1 + λj1 = 0 and λi1 = λj1 = λi2 imply 0 = λi1 = λj1 = λi2 . By
construction, JB(j1) = JB(j2) = JB(i2) = JB(i1) and so λj2 = 0 for j2 ∈ I2, j2 6= i2. This finishes the proof of the
first part.

Second step:
For this part of the proof, note that we follow that standard convention on the form of Jordan blocks which puts

the 1s on the superdiagonal.
We first show that condition (b) implies condition (c) in Theorem 1.3 and in Theorem 1.4, respectively. Let

f := ad(e7)|u, e7 ∈ g\u. We may assume that we have a four-dimensional invariant subspace V4 ⊆ u and a
two-dimensional complementary subspace V2 ⊆ u such that f |V2 = f2 + h, f2 ∈ gl(V2), h ∈ Hom(V2, V4) and

f |V4 = f4 − tr(f2)
2 idV4 with f4 ∈ sp(V4, ω) for some non-degenerated two-form ω on V4. Choose a Jordan basis

v1, . . . , v4 of f4 and denote by µ1, . . . , µ4 the corresponding diagonal elements. To simplify notation we will say
in the following that certain vectors u1, . . . , us are a Jordan basis of a linear map if they there is a permutation
making them into a Jordan basis. Then Proposition 4.6 tells us that we may assume µ1 = −µ2 and µ3 = −µ4. Set

λi := µi − tr(f2)
2 . The vectors v1, . . . , v4 are also a Jordan basis of f |V4 such that vi and vj are in one Jordan block

for f4 with µi on the diagonal if and only if vi and vj are in one Jordan block for f |V4 with λi on the diagonal. By
[6, Theorem 4.1.4] there is a Jordan basis w1, . . . , w6 of f such that for all i, j ∈ {1, . . . , 4} the vectors vi and vj are
in the same Jordan block for f |V4 with λi on the diagonal if and only if wi and wj are in the same Jordan block for
f with λi on the diagonal. Since the characteristic polynomial of f is the product of the characteristic polynomials
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of f |V4 and f2, the Jordan base vectors w5 or w6 are in Jordan blocks with λ5 or λ6 on the diagonal, respectively,
where λ5, λ6 are the roots of the characteristic polynomial of f2. In particular, tr(f2) = λ5 + λ6. This allows us
now to prove that condition (i)-(iii) in Theorem 1.3 (c) and Theorem 1.4 (c) is fulfilled, respectively.

• We get

λ1 + λ2 = µ1 + µ2 − tr(f2) = −λ5 − λ6, λ3 + λ4 = µ3 + µ4 − tr(f2) = −λ5 − λ6,

which is exactly condition (i).
• If wi1 and wi2 are in one Jordan block for f with λi1 on the diagonal for i1 ∈ {1, 2}, i2 ∈ {3, 4}, then vi1
and vi2 are in one Jordan block for f4 with µi1 on the diagonal. We may have µi1 = µi2 = 0. If this is not
the case, Proposition 4.6 implies that f4 has to contain two Jordan blocks of size two, one with µi1 and the
other with −µi1 on the diagonal and so vj1 , vj2 are in one Jordan block for those j1, j2 with {i1, j1} = {1, 2},
{i2, j2} = {3, 4}. Hence λi1 = λi2 = −λ5+λ6

2 or also wj1 , wj2 are in one Jordan block. This is condition (ii).
• If w1, w2 and wi2 for some i2 ∈ {3, 4} or wi1 , w3 and w4 for some i1 ∈ {1, 2} are in one Jordan block for f

with λ on the diagonal, then v1, v2 and vi2 or vi1 , v3 and v4 are in one Jordan block for f4 with λ+ λ5+λ6

2
on the diagonal. But then Proposition 4.6 tells us that v1, v2, v3 and v4 are in one Jordan block for f4 with
0 on the diagonal. Hence w1, w2, w3, w4 are in one Jordan block for f with −λ5+λ6

2 on the diagonal. This
is condition (iii).

Finally we show that condition (c) implies condition (b), both in Theorem 1.3 as in Theorem 1.4. Let A ∈ C6×6 be
in complex Jordan normal form and assume that it fulfills all the conditions in Theorem 1.3 (c) or in Theorem 1.4 (c),
respectively. We number consecutively the diagonal elements of the complex Jordan normal form by λ1, . . . , λ6 and
the Jordan blocks of the complex Jordan normal by 1, . . . ,m, both from the upper left to the lower right and denote
by JB(i) for all i = 1, . . . , 6, the number of the Jordan block in which the corresponding generalized eigenvector
lies. Let I1, I2 and I3 be a partition of {1, . . . , 6} as in condition (c). We may assume that JB(ik) = JB(i3) for
ik ∈ Ik, k = 1, 2, i3 ∈ I3 implies ik < i3 simply by redefining Ik and I3 if this is not the case (note therefore that
λik = λi3 ). Set V2 := span(ei|i ∈ I3) and V4 := span(ej |j ∈ I1 ∪ I2). Since JB(ik) = JB(i3) for ik ∈ Ik, k = 1, 2,
i3 ∈ I3 implies ik < i3, V4 is an invariant subspace for A. That means there are A2 ∈ gl(V2), H ∈ Hom(V2, V4)
and A4 ∈ gl(V4) such that A|V2 = A2 +H and A|V4 = A4. Moreover, A4 is in complex Jordan normal form and so

B := A|V4 +
tr(A2)

2 I4 is also in complex Jordan normal form. We claim that B ∈ sp(4,F). We have to check that B
fulfills all the conditions in Proposition 4.6. We use the conditions (i)-(iii) Theorem 1.3 (c) and in Theorem 1.4 (c),
which give us information on the structure of A, and discuss what this implies for the structure of B. First, note

that tr(A2) =
∑

i∈I3
λi implies that the diagonal elements of B are given by µj = λj +

∑
i∈I3

λi

2 , j ∈ I1 ∪ I2. Then:

• Condition (i) states that if there is a diagonal element of B with value µ = λ+
∑

i∈I3
λi

2 , then there is always

a different diagonal element of B with value −∑i∈I3
λi − λ+

∑
i∈I3

λi

2 = −
(
λ+

∑
i∈I3

λi

2

)
= −µ.

• Condition (ii) implies that if B contains a Jordan block of size 2 with µ = λ+
∑

i∈I3
λi

2 on the diagonal, then

λ = −
∑

i∈I3
λi

2 , i.e. µ = 0, or it also contains another Jordan block of size 2 with −∑i∈I3
λi−λ+

∑
i∈I3

λi

2 =
−µ on the diagonal.

• Condition (iii) states that there cannot be any Jordan block of size 3 in B and there can only be a Jordan
block of size 4 in B if the diagonal elements are equal to 0.

If there is a Jordan block of size 1 in B with µ on the diagonal, then by condition (i) there has to be another Jordan
block with −µ on the diagonal. If this Jordan block would have size more than one, then condition (iii) implies
that it has to have size two and condition (ii) shows µ = 0. But then there has to be another Jordan block of size
1 with 0 on the diagonal. This shows that for each Jordan block of size 1 in B with µ on the diagonal there has to
be a different Jordan block of size 1 with −µ on the diagonal.

Altogether we showed that for each Jordan block of size m in B with 0 6= µ on the diagonal there is a Jordan
block of size m in B with −µ on the diagonal and that the number of Jordan blocks of size 2m− 1 with 0 on the
diagonal is even. Thus Proposition 4.6 implies the statement. �

A seven-dimensional F-Lie algebra, F ∈ {R,C}, with six-dimensional Abelian ideal u is nilpotent if and only if
ad(e7)|u is nilpotent for e7 ∈ g\u and this is the case if and only if the diagonal elements in the complex Jordan
normal form are all 0. Thus, for each partition n1 + . . .+ nk = 6 of 6 with n1, . . . , nk ∈ {1, . . . , 6}, n1 ≥ . . . ≥ nk

there is exactly one nilpotent Lie algebra, namely that one whose complex Jordan normal form has Jordan blocks
of sizes n1, . . . , nk, and these are all nilpotent seven-dimensional F-Lie algebras with six-dimensional Abelian ideal.
Therefore, in total we have 11 such nilpotent Lie algebras in both cases. All of them have rational structure

constants so each of them admits a cocompact lattice. Hence, if g admits a cocalibrated G
(∗)
2 -structure, we get a
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compact manifold with cocalibrated G
(∗)
2 -structure. We end this article by noting what Theorem 1.3 (c), Theorem

1.4 and Theorem 1.1 (d) imply for these nilpotent Lie algebras.

Corollary 4.7. Let g be a nilpotent F-Lie algebra of dimension seven with six-dimensional Abelian ideal u. Then:

(a) If F = R, then g admits a cocalibrated G2-structure if and only if the Jordan blocks in the complex Jordan
normal form of ad(e7)|u, e7 ∈ g\u, do not have the sizes (5, 1) or (3, 2, 1) or (3, 1, 1, 1).

(b) If F = R, then g admits a cocalibrated G∗
2-structure.

(c) If F = C, then g admits a cocalibrated (G2)C-structure.
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