
HAMBURGER BEITRÄGE
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Instituto de Matemática e Estat́ıstica Fachbereich Mathematik
Universidade de São Paulo Universität Hamburg

05508-090 São Paulo, Brazil 20146 Hamburg, Germany

yoshi@ime.usp.br schacht@math.uni-hamburg.de

Reto Spöhel§
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Abstract. Given two graphs G and H, we investigate for which functions p =
p(n) the random graph Gn,p (the binomial random graph on n vertices with edge
probability p) satisfies with probability 1 − o(1) that every red-blue-coloring of its
edges contains a red copy of G or a blue copy of H. We prove a general upper bound
on the threshold for this property under the assumption that the denser of the two
graphs satisfies a certain balancedness condition. Our result partially confirms a
conjecture by the first author and Kreuter, and together with earlier lower bound
results establishes the exact order of magnitude of the threshold for the case in
which G and H are complete graphs of arbitrary size.

In our proof we present an alternative to the so-called deletion method, which was
introduced by Rödl and Ruciński in their study of symmetric Ramsey properties of
random graphs (i.e. the case G = H), and has been used in many proofs of similar
results since then.

1. Introduction

1.1. Ramsey properties of random graphs. Ramsey properties of random graphs were stud-
ied first by Frankl and Rödl [6], and much effort has been devoted to their further investigation
since then. Perhaps most notably, Rödl and Ruciński [20, 21] established a general threshold
result that we present in the following.

For any two graphs F and H, let

F → (H)k

denote the property that every edge-coloring of F with k colors contains a monochromatic copy
of H. Throughout, we denote the number of edges and vertices of a graph G by eG and vG
respectively (sometimes also by e(G) and v(G)). We say that a graph is nonempty if it has at
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least one edge. For any graph H we define

d2(H) :=


eH − 1

vH − 2
if vH ≥ 3

1/2 if H ∼= K2

0 if eH = 0,

(1)

and set

m2(H) := max
J⊆H

d2(J) . (2)

We say that H is 2-balanced if m2(H) = d2(H), and strictly 2-balanced if in addition m2(H) >
d2(J) for all proper subgraphs J ( H. With the notation above, a slightly simplified version
of the result of Rödl and Ruciński reads as follows. (The lower bound proof given in [20] does
not cover the case where J ⊆ H maximizing d2(J) is a triangle; however, this case was settled
earlier in [18].)

Recall that in the binomial random graph Gn,p on n vertices, every edge is present with proba-
bility 0 ≤ p = p(n) ≤ 1 independently of all other edges.

Theorem 1 (Rödl and Ruciński [20, 21]). Let k ≥ 2 and H be a graph that is not a forest.
Then there exist constants c, C > 0 such that

lim
n→∞

Pr [Gn,p → (H)k] =

{
0 if p = p(n) ≤ cn−1/m2(H)

1 if p = p(n) ≥ Cn−1/m2(H),

where m2(H) is defined in (1) and (2).

We will refer to the two statements made by Theorem 1 as the 0- and the 1-statement, re-
spectively, and to the function pH(n) = n−1/m2(H) as the threshold for the Ramsey property
F → (H)k. The 1-statement of Theorem 1 is also true when H is any forest that is not a
matching; for the 0-statement however there are a few well-understood nontrivial exceptions
(see e.g. [11, Section 8.1]).

A vertex-coloring analogue of Theorem 1 was proved earlier in [18], and generalizations of
Theorem 1 to the (uniform) hypergraph setting were studied in [7, 22, 23]. Most work on
the hypergraph setting has focused on the corresponding 1-statements, i.e., on proving upper
bounds on the thresholds of the respective Ramsey properties. This line of work has been settled
quite recently by the results of [7], which imply 1-statements analogous to that of Theorem 1
for even more general settings. Similar results were reported by Conlon and Gowers [4].

1.2. Asymmetric Ramsey properties. In Theorem 1 the same graph H is forbidden in every
color class. In this paper we are concerned with the natural generalization of this setup where
a different graph is forbidden in each of the k color classes. Within classical Ramsey theory the
study of these so-called asymmetric Ramsey properties led to many interesting questions and
results; see e.g. [3].

For any graphs F,H1, . . . ,Hk, let

F → (H1, . . . ,Hk)

denote the property that every edge-coloring of F with k colors contains a monochromatic copy
of Hi in color i for some 1 ≤ i ≤ k. The threshold of this asymmetric Ramsey property was
determined for the case in which all the Hi are cycles C`i (here C` denotes the cycle of length `)
by the first author and Kreuter.

Theorem 2 ([14]). Let k ≥ 2 and 3 ≤ `1 ≤ · · · ≤ `k be integers. Then there exist constants c,
C > 0 such that

lim
n→∞

Pr [Gn,p → (C`1 , . . . , C`k)] =

{
0 if p = p(n) ≤ cn−1/m2(C`2 ,C`1 )

1 if p = p(n) ≥ Cn−1/m2(C`2 ,C`1 ) ,
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where

m2(C`2 , C`1) :=
`1

`1 − 2 + (`2 − 2)/(`2 − 1)
.

Note that the threshold does not depend on `3, . . . , `k in order of magnitude.

In the same paper, an explicit threshold function for asymmetric Ramsey properties involving
arbitrary graphs Hi is conjectured. The conjecture is stated for the two-color case, and also we
will restrict our attention to this case in the following. We will briefly return to the case with
more colors at the end of this paper.

For any two graphs G and H we let

d2(G,H) :=


eH

vH − 2 + 1/m2(G)
if eG, eH ≥ 1

0 otherwise
(3)

(where m2(G) is defined in (1) and (2)), and set

m2(G,H) := max
J⊆H

d2(G, J) . (4)

We say that H is balanced w.r.t. d2(G, ·) if m2(G,H) = d2(G,H), and strictly balanced w.r.t.
d2(G, ·) if in addition m2(G,H) > d2(G, J) for all proper subgraphs J ( H.

It can be verified that m2(G,G) = m2(G) for any graph G and, more generally, that for any
two graphs G and H with m2(G) ≤ m2(H) we have m2(G) ≤ m2(G,H) ≤ m2(H), with both
inequalities strict if 0 < m2(G) < m2(H). The conjecture in [14] is as follows.

Conjecture 3 ([14]). Let G and H be graphs that are not forests and satisfy m2(G) ≤ m2(H).
Then there exist constants c, C > 0 such that

lim
n→∞

Pr [Gn,p → (G,H)] =

{
0 if p = p(n) ≤ cn−1/m2(G,H)

1 if p = p(n) ≥ Cn−1/m2(G,H),

where m2(G,H) is defined in (3) and (4).

The assumption that G and H are not forests was not made in the original formulation of Con-
jecture 3, but without it the 0-statement fails to hold even in the symmetric case, as mentioned
above.

The threshold function stated in Conjecture 3 can be motivated as follows. Let G and H be
graphs with 0 < m2(G) < m2(H), and assume that we are looking for a red-blue-coloring of Gn,p

that contains no red copy of G and no blue copy of H. For simplicity, suppose that m2(G) =
(eG − 1)/(vG − 2) and m2(G,H) = eH/(vH − 2 + 1/m2(G)). Note that w.l.o.g. we may assign
color blue to all edges that are not contained in a copy of H — in other words, only the edges of
Gn,p that are contained in copies of H are relevant for the Ramsey property Gn,p → (G,H). We

shall call these edges H-edges in the following. By standard calculations, for p = cn−1/m2(G,H)

the expected number of H-edges in Gn,p is of order nvH−eH/m2(G,H) = n2−1/m2(G), and if these

edges behave like edges of a random graph Gn,p∗ with p∗ = c′n−1/m2(G), the expected number
of copies of G that are formed by such H-edges and contain a given edge of Gn,p is a constant
depending on c. If this constant is close to zero, the copies of G formed by H-edges in Gn,p

should be loosely scattered, and we can color one edge blue in each of these copies without
creating blue copies of H in the process. On the other hand, if this constant is large, the copies
of G formed by H-edges of Gn,p will highly intersect with each other, and, according to the
conjecture, almost surely there will be no coloring avoiding both a red copy of G and a blue
copy of H.

The reader may wonder why a similar reasoning with the roles of G and H reversed is not
equally justified. The reason is that whenever p is larger than n−1/m2(G) by an appropriate
polylogarithmic factor (in particular for p = cn−1/m2(G,H) as above), with high probability
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every edge of Gn,p is contained in a copy of G. (Recall that G is the sparser of the two graphs.)
Thus the notion of ‘G-edges’ is meaningless in our context.

A vertex-coloring analogue of Conjecture 3 was proved by Kreuter [17]. The only significant
progress towards proving Conjecture 3 since its publication in [14] concerns the 0-statement,
which was shown to hold for the case in which G and H are complete graphs of arbitrary fixed
sizes in [19].

The approach employed in [14] for the proof of the 1-statement of Theorem 2 is based on the
sparse version of Szemerédi’s regularity lemma (see [13, 16]). The approach via sparse regularity
can be extended to prove the 1-statement of Conjecture 3 for any two graphs G and H, provided
the so-called K LR-Conjecture [15] holds for G and H is strictly balanced w.r.t. d2(G, ·) (see [19];
additionally, Lemma 16 in [14] needs to be modified slightly to relax the condition on H from
‘2-balanced’ to ‘strictly balanced w.r.t. d2(G, ·)’). The K LR-Conjecture has been proven for
cycles of arbitrary size, and for complete graphs on up to five vertices. For references and a
comprehensive overview of the status quo of that conjecture, we refer to the survey article [8].

1.3. Our results. In this paper we prove the 1-statement of Conjecture 3 under the same
balancedness assumption for H as is needed for the approach via sparse regularity, but without
invoking the K LR-Conjecture for G. We say that a graph is a matching if it has maximum
degree at most 1.

Theorem 4 (Main result). Let G and H be graphs that are not matchings, with H strictly bal-

anced w.r.t. d2(G, ·). Then there exists a constant C > 0 such that for p = p(n) ≥ Cn−1/m2(G,H)

we have
lim
n→∞

Pr[Gn,p → (G,H)] = 1 .

Recall that we suppose that m2(G) ≤ m2(H) in Conjecture 3. One can show that the assumption
that H should be strictly balanced w.r.t. d2(G, ·) in Theorem 4 implies that m2(G) < m2(H).

Let us give an equivalent formulation of the hypothesis of strict balancedness in Theorem 4. For
every subgraph J of H, let µ(J ;n, p) be the expected number of occurences of J in Gn,p. Then H

is strictly balanced w.r.t. d2(G, ·) if and only if µ(H;n, n−1/m2(G,H)) = o(µ(J ;n, n−1/m2(G,H)))
for every proper subgraph J of H (see Remark 12 and Lemma 13(ii) below).

Our proof of Theorem 4 does not use sparse regularity at all, and has in fact more in common
with the original proof of the 1-statement for the symmetric case (Theorem 1), due to Rödl and
Ruciński, than with the proof of Theorem 2 given in [14]. We believe that a feature of interest
in our proof is that it introduces a different approach for handling certain technical difficulties
that are dealt with in the Rödl–Ruciński proof via the so called ‘deletion method’ (for details,
see Section 1.4).

Together with the lower bound results for complete graphs we already mentioned [19], our result
establishes general threshold functions for the case where G = K` and H = Kr are complete
graphs of fixed sizes ` < r.

Corollary 5. Let 3 ≤ ` < r be integers. Then there exist constants c, C > 0 such that

lim
n→∞

Pr [Gn,p → (K`,Kr)] =

{
0 if p = p(n) ≤ cn−1/m2(K`,Kr)

1 if p = p(n) ≥ Cn−1/m2(K`,Kr),

where

m2(K`,Kr) =

(
r
2

)
r − 2 + 2/(`+ 1)

.

We can use Theorem 4 to infer statements about the existence of locally sparse graphs F that
enjoy the asymmetric Ramsey property F → (G,H), similarly to those presented in [21] for
symmetric Ramsey properties. We refrain from a general statement of these results, and only
mention the following corollary, which is an asymmetric variant of Corollary 5 in [21] and can
be deduced analogously.
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Corollary 6. For all 3 ≤ ` ≤ r, there exists a constant C such for m ≥ Cn2−1/m2(K`,Kr), almost
all graphs F on n vertices with m edges that contain no copy of Kr+1 satisfy F → (K`,Kr).

We close with a deterministic consequence of Corollary 5. A graph F is called Ramsey-critical,
or simply critical, for a pair of graphs (G,H), if F → (G,H) but, for any proper subgraph F ′ of
F , the relation F ′ → (G,H) fails. The pair (G,H) is called Ramsey-finite if the class C(G,H)
of all graphs that are critical for (G,H) is finite, and Ramsey-infinite otherwise. Note that,
by definition, the Ramsey property F → (G,H) is equivalent to containing a copy of a graph
from C(G,H).

The following result was originally proved by constructive means by Burr, Erdős, and Lovasz [2].
We obtain an alternative (non-constructive) proof as an immediate consequence of Corollary 5.

Corollary 7. For all 3 ≤ ` < r, the pair (K`,Kr) is Ramsey-infinite.

Proof. It is well-known (and can be shown similarly to [11, Theorem 3.9]) that for any finite
family F , the property P = P(F) of containing a copy of a graph from F admits a threshold pF =
pF (n) such that, for any constant c > 0, the random graph Gn,p with p = cpF satisfies

0 < lim inf
n→∞

Pr [Gn,p ∈ P] ≤ lim sup
n→∞

Pr [Gn,p ∈ P] < 1 .

Corollary 5 implies that the property F → (K`,Kr) does not admit such a function pF = pF (n)
and hence Corollary 7 follows. �

1.4. An alternative to the deletion method. Our proof of Theorem 4 reuses many ideas of
the proof of the 1-statement of Theorem 1 given in [21]. However, we point out one particular
technical issue that is solved in a quite different way from [21] in our proof. Namely, at some
point in the proof one needs to control the upper tail of the random variable that counts the
number of copies of some given graph T in Gn,p.

In typical proofs of similar results (see, e.g., [7, 22, 23, 24]), this is taken care of by the so-called
deletion method (see also [12]), i.e., by allowing the deletion of a small fraction of edges to get
the desired exponentially small error probability. This is formalized in the ‘deletion lemma’ [21,
Lemma 4] (see also [11, Lemma 2.51]).

This deletion lemma is then combined with a ‘robustness lemma’ [21, Lemma 3] (see also [11,
Lemma 2.52]), which states that monotone properties (like the Ramsey properties discussed
here) that hold with probability exponentially close to 1 continue to hold with similarly high
probabilities even if an adversary is allowed to delete a small fraction of the edges. This robust-
ness lemma is needed to guarantee that the few edges that were deleted to control the number
of copies of T do not destroy other properties that are important for the proof.

In our proof we use a different and arguably simpler approach to control the number of copies
of T . Namely, we condition on the number of copies of T in Gn,p not being too large, and apply
the Harris inequality [9] (Theorem 17) to show that this only increases the probability that
other relevant properties fail to hold (and, hence, bounding the probability of such bad events
in the conditional space from above gives upper bounds for the probability of those bad events
in the original space). Thus we may work in the conditional space. The fact that the event on
which we condition holds with reasonable probability (constant probability is more than enough
here) implies that the conditional space we are considering behaves essentially like the original
space, except that with probability 1 the number of copies of T is not too large. Thus there is
no need to delete edges in our approach. We believe that many of the earlier proofs in the
field, in particular the proof given in [21] for the symmetric case (Theorem 1), can be simplified
analogously from the technical point of view.

1.5. Organization of this paper. We collect a number of definitions and auxiliary statements
in Section 2, and prove Theorem 4 in Section 3. We discuss possible extensions of our results in
Section 4.
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2. Preliminaries

2.1. Basic inequalities. We begin by stating some equalities that follow immediately from the
definitions of m2(G) and m2(G,H), and that will be used throughout this paper. Recall that
we call a graph nonempty if it has at least one edge. The definitions in (1) and (2) imply that
for any nonempty graph G and any subgraph I ⊆ G with vI ≥ 2 we have

vI −
eI

m2(G)
≥ 2− 1

m2(G)
(5)

(with equality for I = G if G is 2-balanced). Similarly, the definitions in (3) and (4) imply that
for any two nonempty graphs G and H and any subgraph J ⊆ H with vJ ≥ 2 we have

vJ −
eJ

m2(G,H)
≥ 2− 1

m2(G)
(6)

(with equality for J = H if H is balanced w.r.t. d2(G, ·)). Combining the previous two equalities
yields in particular that for any two nonempty graphs G and H we have

vG − 2 + (eG − 1)(vH − 2)− (eG − 1)eH
m2(G,H)

(6)

≥ vG − 2− eG − 1

m2(G)

(5)

≥ 0 , (7)

which will become important later on.

2.2. H-covered copies. The following definitions will be crucial in our inductive scheme.

Definition 8. For graphs H and A, we denote by EH(A) ⊆ E(A) the union of the edge sets of
all copies of H in A. We will refer to the edges in EH(A) as the H-edges of A. Furthermore, we
say that a copy Ḡ of a graph G in EH(A) is H-covered in A if there is a family of eG pairwise
edge-disjoint copies of H in A such that each edge of Ḡ is contained in (exactly) one of these
copies.

Note that not every copy of G that is formed by H-edges of A is H-covered in A.

Definition 9. For any two graphs G and H, let F(G,H) denote the family of all graphs obtained
by taking a copy of G and embedding each of its edges into a copy of H such that these eG
copies of H are pairwise edge-disjoint (not nessarily vertex-disjoint).

We denote the graphs in F(G,H) by GH , and refer to a copy of G in GH that can be used to
construct GH as described as a central copy of G in GH (in general, for a given GH ∈ F(G,H)
such a central copy is not uniquely defined). Note that a copy of G in some graph A is H-covered
if and only if it is a central copy in a copy of some graph GH ∈ F(G,H) in A.

For any G and H and any graph GH ∈ F(G,H), let

L(GH) := vG + eG · (vH − 2)− v(GH) ≥ 0 .

Intuitively, this quantity denotes the number of vertices that are ‘lost’ because the copies of H
forming GH intersect in more vertices than specified by G. Thus we have

e(GH) = eG · eH ,

v(GH) = vG + eG · (vH − 2)− L(GH) .
(8)

Our induction is on the number of edges of G, and we will mostly need the above definitions
for a certain graph G− with e(G) − 1 edges to which we apply the induction hypothesis. The
following technical lemma will become important later on.

Lemma 10. Let G be a graph that is not a matching, let H be a nonempty graph, and fix
some subgraph G− ⊆ G with e(G−) = e(G) − 1 and v(G−) = v(G). Furthermore, let a graph
GH
− ∈ F(G−, H) with central copy G′− be given, and let g denote a vertex pair that completes
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G′− to a copy of G when inserted as an edge. Then every subgraph J ⊆ GH
− that contains the

two vertices of g satisfies

v(J)− e(J)

m2(G,H)
≥ 2− L(GH

− ) .

Proof. Note that it suffices to prove the claim for induced subgraphs J ⊆ GH
− . We consider a

fixed such subgraph J and decompose it as follows. Let E′ := E(G′−) denote the edge set of
the central copy G′−. For f ∈ E′, let Jf denote the intersection of J with the corresponding

copy of H in GH
− (the graph Jf may contain isolated vertices). Furthermore, let I0 denote the

intersection of J with G′−, and set V0 := V (I0) = V (J)∩ V (G′−), E0 := E(I0) = E(J)∩E(G′−).

Observe that the assumption that J is an induced subgraph of GH
− implies that also I0 is an

induced subgraph of G′−. Furthermore, due to our assumption that J contains the two vertices
of g, also I0 contains the two vertices of g.

Note that

e(J) =
∑
f∈E′

v(Jf )≥2

e(Jf )
(9)

and

v(J) ≥ v(I0) +
∑
f∈E′

(
v(Jf )− |f ∩ V0|

)
− L(GH

− )

≥ v(I0) +
∑
f∈E′

v(Jf )≥2

(
v(Jf )− |f ∩ V0|

)
− L(GH

− ) ,
(10)

where the first inequality is due to the fact that the big sum overcounts the actual number of
vertices of J by at most L(GH

− ) (i.e., J ⊆ GH
− ‘loses’ at most as many vertices as GH

− because of
vertex-overlapping copies of H).

Combining (9) and (10) yields that

v(J)− e(J)

m2(G,H)
≥ v(I0) +

∑
f∈E′

v(Jf )≥2

(
v(Jf )− |f ∩ V0| −

e(Jf )

m2(G,H)

)
− L(GH

− )

(6)

≥ v(I0) +
∑
f∈E′

v(Jf )≥2

(
2− |f ∩ V0| −

1

m2(G)

)
− L(GH

− )

= v(I0)− e(I0)

m2(G)
+

∑
f∈E′\E0

v(Jf )≥2
|f∩V0|≤1

(
2− |f ∩ V0| −

1

m2(G)

)
− L(GH

− ) ,

where for the equality we used that the edges f ∈ E′ = E(G′−) with |f ∩ V0| = 2 are exactly
the edges in E0 = E(I0) due to the fact that I0 is an induced subgraph of G′−. Using that
m2(G) ≥ 1, we may omit the remaining sum, and observing that adding the edge g to I0 yields
a graph I+

0 that is isomorphic to a subgraph of G, we obtain further

v(J)− e(J)

m2(G,H)
≥ v(I+

0 )− e(I+
0 )− 1

m2(G)
− L(GH

− )

(5)

≥ 2− L(GH
− ) ,

concluding the proof of Lemma 10. �
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2.3. The parameters m∗(H) and x∗(H). In this section we introduce two graph parameters
m∗(H) and x∗(H) that will play in important role in our proof. The parameter m∗(H) is a
convenient quantity to capture the concept of H being ‘its own least frequent subgraph’ that
many authors have used before (see Remark 12 below). The parameter x∗(H) is a rescaled
version of m∗(H) that is tailored to the specifics of the problem studied in this paper.

Definition 11. For any graph H with vH ≥ 3, let

m∗(H) := min
J⊆H:

2≤vJ<vH

eH − eJ
vH − vJ

(11)

and, if H is nonempty,

x∗(H) :=
m∗(H)

eH −m∗(H)(vH − 2)
. (12)

Note that for any graph H, the parameter m∗(H) is nonnegative, and that m∗(H) = 0 if and
only if H has an isolated vertex. It follows from (11) that for any nonempty graph H with vH ≥ 3
the parameter x∗(H) as defined in (12) is well-defined and positive. Note that solving (12) for
m∗(H) yields

m∗(H) =
eH

vH − 2 + 1/x∗(H)
, (13)

which connects m∗(H) to d2(G,H) as defined in (3). More specifically, the point here is that
comparing m∗(H) to d2(G,H) can be formulated equivalently as comparing x∗(H) to m2(G).

Remark 12. It follows from the definition of m∗(H) in (11) that

vJ −
eJ

m∗(H)
≥ vH −

eH
m∗(H)

,

for all subgraphs J ⊆ H with vJ ≥ 2. Thus for p ≤ n−1/m∗(H) we have nvJpeJ ≥ nvHpeH for
all such J , which means that the expected number of copies of H in Gn,p does not exceed the
expected number of copies of any subgraph J ⊆ H with vJ ≥ 2 by more than a constant factor.

In some sense, both m∗(H) and x∗(H) measure ‘how balanced’ H is. Below we will prove some
general results that make this precise. These will in particular imply the following lemma, which
restates the hypothesis of Theorem 4 in two alternative forms that are more convenient for us.

Lemma 13. For any two nonempty graphs G and H with vH ≥ 3, the following statements are
equivalent.

(i) H is strictly balanced w.r.t. d2(G, ·),
(ii) m2(G,H) < m∗(H),

(iii) m2(G) < x∗(H).

Lemma 13 will be proved in Sections 2.3.1 and 2.3.2 below.

2.3.1. The parameter m∗(H) and general density measures. For arbitrary (possibly negative)
values a ≤ 1 and b < 2, we define for any graph H the density measure

da,b(H) :=


eH − a
vH − b

if eH ≥ 1

0 otherwise,
(14)

and set
ma,b(H) := max

J⊆H
da,b(J) .

As usual we say that H is balanced w.r.t. da,b if ma,b(H) = da,b(H), and strictly balanced w.r.t.
da,b if in addition ma,b(H) > da,b(J) for all proper subgraphs J ( H.

The next lemma implies in particular the equivalence of (i) and (ii) in Lemma 13, observing
that, for any fixed nonempty graph G, the parameter d2(G,H) defined in (3) is a density measure
as in (14) (with a = 0 and b = 2− 1/m2(G)).
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Lemma 14. Let da,b be a density measure as in (14). A graph H with vH ≥ 3 is balanced
w.r.t. da,b if and only if m∗(H) ≥ da,b(H) (or, equivalently, if and only if m∗(H) ≥ ma,b(H)).
Similarly, a graph H with vH ≥ 3 is strictly balanced w.r.t. da,b if and only if m∗(H) > da,b(H)
(or, equivalently, if and only if m∗(H) > ma,b(H)).

For the proof we use the following elementary observation, which we state separately for further
reference.

Fact 15. For a, c ∈ R and b > d > 0, we have

c

d
≤ a

b
⇐⇒ a− c

b− d
≥ a

b

and, similarly,
c

d
<
a

b
⇐⇒ a− c

b− d
>
a

b
.

Proof of Lemma 14. Observe that H is balanced w.r.t. da,b if and only if for all subgraphs J ⊆ H
with vJ ≥ 2 we have

eJ − a
vJ − b

≤ eH − a
vH − b

(note that this condition is always satisfied for graphs J with vJ ≥ 2 and eJ = 0). By Fact 15,
this is equivalent to the requirement that

eH − eJ
vH − vJ

=
(eH − a)− (eJ − a)

(vH − b)− (vJ − b)
Fact 15
≥ eH − a

vH − b
for all subgraphs J ⊆ H with 2 ≤ vJ < vH , i.e., to m∗(H) ≥ da,b(H).

The statement for ‘strictly balanced’ follows analogously using the second statement of Fact 15.
�

2.3.2. The parameter x∗(H) and the asymmetric 2-density. We now use Lemma 14 to derive
the next lemma, which states the equivalence of (i) and (iii) in Lemma 13.

Lemma 16. Let G be a nonempty graph. A nonempty graph H with vH ≥ 3 is balanced w.r.t.
d2(G, ·) if and only if m2(G) ≤ x∗(H). Similarly, a nonempty graph H with vH ≥ 3 is strictly
balanced w.r.t. d2(G, ·) if and only if m2(G) < x∗(H).

Proof. For any x > 0 and any graph H with vH ≥ 2, let

d2(x,H) :=


eH

vH − 2 + 1/x
if eH ≥ 1

0 otherwise,
(15)

and set

m2(x,H) := max
J⊆H

d2(x, J) .

Note that d2(m2(G), H) as defined in (15) coincides with d2(G,H) as defined in (3), and that,
according to (13), for any nonempty graph H with vH ≥ 3 we have

m∗(H) = d2(x∗(H), H) . (16)

With Lemma 14 we obtain that H is balanced w.r.t. d2(G, ·) if and only if

d2(x∗(H), H)
(16)
= m∗(H)

L. 14
≥ d2(G,H) = d2(m2(G), H) .

Since the function d2(x,H) is monotone increasing in x, this is equivalent to m2(G) ≤ x∗(H),
as claimed.

The statement for ‘strictly balanced’ follows analogously using the second statement of Lemma 14.
�
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2.4. Other preliminaries. As already mentioned, we will make crucial use of the Harris in-
equality [9] (which also arises as a special case of the FKG inequality [5] and various other
related inequalities).

Throughout, we will assume that the random graph Gn,p is generated on the vertex set [n] =
{1, . . . , n}. For the purposes of this paper, a graph property is a family of labelled graphs on the
vertex set [n] (which is not necessarily closed under isomorphism), where n will be clear from
the context. We say that a graph property A is decreasing if for any two graphs G and H on
vertex set [n] the following holds: if G ∈ A and H ⊆ G, we also have H ∈ A. Similarly, we
say that a graph property A is increasing if for any two graphs G and H on vertex set [n] the
following holds: if G ∈ A and H ⊇ G, we also have H ∈ A. Note that the complement of a
decreasing property is increasing, and vice versa.

Theorem 17 (Harris [9]). For any two decreasing (increasing) graph properties A and B and
any n ∈ N and 0 ≤ p ≤ 1, we have

Pr[Gn,p ∈ A ∩ B] ≥ Pr[Gn,p ∈ A] Pr[Gn,p ∈ B] ,

or, equivalently if Pr[Gn,p ∈ B] > 0,

Pr[Gn,p ∈ A |Gn,p ∈ B] ≥ Pr[Gn,p ∈ A] .

Clearly, it follows from Theorem 17 that, for the binomial random graph Gn,p the probability of
any decreasing (respectively, increasing) event A does not decrease if we condition on another
decreasing (respectively, increasing) event B.

Janson’s inequality is a very useful tool in probabilistic combinatorics. In many cases, it yields
an exponential bound on lower tails where the second moment method only gives a considerably
weaker bound. Here we formulate a version tailored to random graphs.

Theorem 18 (Janson [10]). Consider a family H = {Hi | i ∈ I} of subgraphs of the complete
graph on the vertex set [n]. For each Hi ∈ H, let Xi denote the indicator random variable for
the event Hi ⊆ Gn,p, and, for each ordered pair (Hi, Hj) ∈ H × H with i 6= j, write Hi ∼ Hj

if Hi and Hj are not edge-disjoint. Let

X =
∑
Hi∈H

Xi ,

µ = E[X] =
∑
Hi∈H

pe(Hi) ,

∆ =
∑

(Hi,Hj)∈H×H
Hi∼Hj

E[XiXj ] =
∑

(Hi,Hj)∈H×H
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj) .

Then for all 0 ≤ δ ≤ 1 we have

Pr[X ≤ (1− δ)µ] ≤ e
− δ2µ2

2(µ+∆) .

Often Janson’s inequality is applied with H being the family of all copies of some given fixed
graph H in the complete graph Kn. The concept of (%, d)-denseness will allow us to derive very
similar results when applying Janson’s inequality with H being the family of all copies of H in
a graph F ⊆ Kn that is not necessarily complete.

Definition 19. For any % > 0 and 0 < d ≤ 1, a graph F on vertex set [n] is said to be
(%, d)-dense if for every subset V ⊆ [n] with |V | ≥ %n we have

e(F [V ]) ≥ d
(
n

2

)
,

where F [V ] denotes the subgraph induced by F on V .

We will use the following fact (for a proof see e.g. [21]).
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Lemma 20. For all 0 < d ≤ 1 and ` ≥ 1, there exist positive constants %, n0 and c0 such that
every (%, d)-dense graph on n ≥ n0 vertices contains at least c0n

` complete subgraphs K`.

2.5. Edge-disjoint copies. The tools and definitions presented in the previous section come
together in the following technical lemma, which states that under the appropriate assumptions,
a random subgraph of a (%, d)-dense graph contains a large family of pairwise edge-disjoint copies
of a given graph H. The key idea of applying Turán’s Theorem to a suitably defined auxiliary
graph is due to Kreuter [17]. We will use Turán’s Theorem in the following form (see e.g. [1,
p. 282]).

Theorem 21 (Turán). Let G be a graph. Then G has an independent set of size at least

v(G)2

v(G) + 2e(G)
.

Lemma 22. Let H be a nonempty graph with vH ≥ 3. For any 0 < d ≤ 1, there exist positive
constants %, n0 and b such that for n ≥ n0 and p ≤ n−1/m∗(H) the following holds: If F ⊆ Kn

is a (%, d)-dense graph on n vertices, then, with probability at least 1 − 2−bn
vH peH+1, the graph

F ∩Gn,p contains a family of at least bnvHpeH pairwise edge-disjoint copies of H.

Note that for p = o(n−1/m∗(H)) we have nvHpeH = o(n2p) (recall Remark 12), so the error
probability in Lemma 22 is not as high as it may look like at first glance.

Proof of Lemma 22. Let

% := %(vH , d) , n0 := n0(vH , d) , c0 := c0(vH , d) ≤ 1 (17)

denote the constants obtained by applying Lemma 20 with ` := vH and d. We shall prove
Lemma 22 for % and n0 as defined in (17) and

b :=
c2

0

16v
2
H+1

. (18)

Let F be a (%, d)-dense graph on n ≥ n0 vertices be given, and set

A :=

{
K ⊆ Kn

∣∣∣∣F ∩K contains a family of at least bnvHpeH pairwise
edge-disjoint copies of H

}
. (19)

Note that A is increasing. Our goal is to bound Pr[Gn,p ∈ ¬A] from above.

Denote byH the family of all copies of H in F . By our choice of constants in (17), the assumption
that F is (%, d)-dense yields with Lemma 20 that there are at least c0n

vH complete graphs of
order vH in F . In particular, we have

|H| ≥ c0n
vH . (20)

We will apply Janson’s inequality (Theorem 18) to the family H. For any graph K ⊆ Kn, we
let H(K) ⊆ H denote the family of all copies of H in F ∩ K. We obtain for µ as defined in
Theorem 18 that

µ = E[|H(Gn,p)|] = |H| · peH
(20)

≥ c0n
vHpeH . (21)

Let S be the family of all pairwise nonisomorphic graphs that are unions of two copies of H
that intersect in at least one edge. For a fixed graph S ∈ S, let J denote the intersection of the
two copies of H. Owing to the assumption that p ≤ n−1/m∗(H), we obtain for any nonempty
subgraph J ⊆ H that

nvH−vJpeH−eJ ≤ nvH−vJ−(eH−eJ )/m∗(H)
(11)

≤ 1 , (22)

which implies that for any S ∈ S we have

nvSpeS = n2vH−vJp2eH−eJ
(22)

≤ nvHpeH . (23)
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As there are at most nvS copies of S in F , and since each such copy corresponds to at most

((vS)vH )2 ≤ (2vH)2vH ≤ 4v
2
H pairs (Hi, Hj) ∈ H ×H, i 6= j with Hi ∪Hj

∼= S, we obtain for ∆
as defined in Theorem 18 that

∆ =
∑
S∈S

∑
(Hi,Hj)∈H×H

Hi∪Hj∼=S

peS

≤ 4v
2
H

∑
S∈S

nvSpeS

(23)

≤ 16v
2
H nvHpeH ,

(24)

where in the last step we bounded |S| by the number of graphs on at most 2vH vertices, which

in turn is bounded by
∑2vH

i=2 2(i2) ≤ 2(2vH
2 )+1 ≤ 22v2

H .

Consider now the property

E :=
{
K ⊆ Kn

∣∣∣ |H(K)| ≥ µ/2
}
. (25)

By Janson’s inequality (Theorem 18) we have

Pr[Gn,p ∈ ¬E ] ≤ exp

(
− µ2

8(µ+ ∆)

)
≤ exp

(
− 1

16
·min

{
µ,
µ2

∆

})
(21), (24)

≤ exp

(
− 1

16
min

{
c0,

c2
0

16v
2
H

}
nvHpeH

)
(18)

≤ exp(−bnvHpeH ) ,

(26)

where in the second to last step we also used that c0 ≤ 1 (see (17)).

For a given graph K ⊆ Kn, consider the auxiliary graph G̃ = G̃(K) on the vertex set V (G̃) =
H(K), in which two vertices are connected by an edge if and only if those two copies of H are
not edge-disjoint.

Note that

E[e(G̃(Gn,p))] = ∆/2

for ∆ as in (24) (the factor 1/2 is due to the fact that the sum in (24) is over ordered pairs).
Thus for the property

D :=
{
K ⊆ Kn

∣∣∣ e(G̃(K)) ≤ ∆
}
, (27)

we obtain with Markov’s inequality that

Pr[Gn,p ∈ D] ≥ 1/2 . (28)

By definition of the auxiliary graph G̃ = G̃(K), any independent set in G̃ corresponds to a

family H̃ ⊆ H(K) of pairwise edge-disjoint copies of H in F ∩K. Thus our definitions of D and
E imply with Turán’s Theorem (Theorem 21) that any graph K ∈ D ∩ E contains a subfamily

H̃ ⊆ H(K) of pairwise edge-disjoint copies of H of size at least

|H̃|
Thm. 21
≥ v(G̃)2

v(G̃) + 2e(G̃)
≥ 1

2
·min

{
v(G̃),

v(G̃)2

2e(G̃)

}
(25),(27)

≥ 1

16
min

{
4µ,

µ2

∆

}
≥ bnvHpeH , (29)

where the last inequality follows analogously to (26). In other words, we have just shown that

D ∩ E ⊆ A
or, equivalently,

¬A ∩ D ⊆ ¬E . (30)
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Since ¬A and D are both decreasing, we obtain with the Harris inequality (Theorem 17) that

Pr[Gn,p ∈ ¬A]
Thm. 17
≤ Pr[Gn,p ∈ ¬A |Gn,p ∈ D]

(28)

≤ 2 Pr[Gn,p ∈ ¬A ∩ D]
(30)

≤ 2 Pr[Gn,p ∈ ¬E ]

(26)

≤ 2 exp(−bnvHpeH ) ≤ 21−bnvH peH ,

as claimed. �

3. Proof of Theorem 4

As already mentioned, our proof of Theorem 4 proceeds by induction on e(G), whereas H
is considered fixed. In order for this induction to work, we will prove the following stronger
statement. Recall that we introduced the set of H-edges EH(Gn,p) and the notion of H-covered
copies in Definition 8.

Lemma 23 (Main lemma). Let H be a nonempty graph with vH ≥ 3. For any nonempty graph
G satisfying m2(G) < x∗(H) there exist positive constants a, b, C, and n0 such that for n ≥ n0

and

Cn−1/m2(G,H) ≤ p ≤ n−1/m∗(H) , (31)

with probability at least 1−2−bn
vH peH , every red-blue-coloring of EH(Gn,p) that does not contain

a blue copy of H contains at least anvG(nvH−2peH )eG many H-covered red copies of G.

Note that, because of (8), the number of H-covered red copies of G guaranteed by Lemma 23
is of the same order of magnitude as the expected number of copies of graphs from F(G,H) (as
defined in Definition 9) in Gn,p.

Remark 24. For the two-color case studied here, it would be sufficient to prove the statement of
Lemma 23 with an error probability of 2−Θ(n) instead of 2−Θ(nvH peH ) (see (72) below). However,
our arguments yield the latter for free, and this is also what would be needed to extend our
inductive approach to more than two colors.

Lemma 23 implies Theorem 4 as follows.

Proof of Theorem 4. Owing to Lemma 13, G and H as in Theorem 4 satisfy the hypothesis of
Lemma 23. We will prove Theorem 4 for the constant C = C(G,H) guaranteed by Lemma 23.

By monotonicity it suffices to prove the theorem for p = p(n) := Cn−1/m2(G,H). Again due to

Lemma 13, this is smaller than n−1/m∗(H) for n large enough, and thus Lemma 23 is applicable
for this p = p(n). Clearly, if the event in Lemma 23 holds then we have in particular that
Gn,p → (G,H). Furthermore, due to (6) and the assumption that G is not a matching, nvHpeH

is a growing function of n. Hence the probability stated in Lemma 23 is indeed 1 − o(1), and
Theorem 4 is proved. �

3.1. Proof of Lemma 23. It remains to prove Lemma 23, which we will do in the remainder
of this section. Our main proof hinges on two fairly involved statements (Claim 25 and Claim 26
below), whose proofs are deferred to Section 3.2 and Section 3.3, respectively.

As already mentioned, we proceed by induction on e(G). Our induction base is the case where
G is a matching.

Proof of Lemma 23: induction base; G is a matching. W.l.o.g. we may assume that G contains
no isolated vertices, i.e., that vG = 2eG. Let

% := %(H, 1) , n′ := n0(H, 1) , b′ := b(H, 1) (32)
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denote the constants obtained by applying Lemma 22 forH and d := 1. We shall prove Lemma 23
for

a = a(G,H) :=

(
b′

(2eG)vH

)eG

, (33)

b = b(G,H) :=
b′

(log2 eG + 2) · (2eG)vH
, (34)

C = C(G,H) := b−1/eH , (35)

n0 = n0(G,H) := (2eG) · n′ . (36)

Note that for any n ≥ 1 we have

1 = n2−1/m2(G)
(6),(35)

≤ bCeHnvH−eH/m2(G,H)
(31)

≤ bnvHpeH . (37)

Fix eG pairwise disjoint sets V1, . . . , VeG ⊆ [n] of size

ñ := bn/eGc ≥ n/(2eG) (38)

each, and note that the graphs Gn,p[Vi] induced by Gn,p on these sets behave like independent
random graphs Gñ,p, where ñ ≥ n′ due to our choice of n0 in (36).

Due to our choice of constants in (32) and observing that the complete graph Kñ is (%, 1)-dense,
we obtain with Lemma 22 and the union bound that for n ≥ n0, with probability at least

1− eG · 21−b′ñvH peH ≥ 1− 2log2 eG+1−(b′/(2eG)vH )nvH peH

(34)
= 1− 2log2 eG+1−(log2 eG+2)bnvH peH

(37)

≥ 1− 2−bn
vH peH ,

each of the graphs Gn,p[Vi] contains a family of at least b′ñvHpeH pairwise edge-disjoint copies of
H. To avoid creating a blue copy of H, one edge from each of these copies needs to be colored
red. Thus in every red-blue-coloring of EH(Gn,p) there is either a blue copy of H or we can
obtain at least (

b′ñvHpeH
)eG (33), (38)

≥ an2eG(nvH−2peH )eG = anvG(nvH−2peH )eG

many red matchings by picking exactly one H-covered red edge from each of the graphs Gn,p[Vi],
1 ≤ i ≤ eG. By definition, these red matchings are H-covered red copies of G. �

Before giving the proof of the induction step, let us give an informal outline of the key proof
ideas. As already mentioned, our approach can be seen as a refinement of the proof for the
symmetric case given by Rödl and Ruciński in [21]. We will generate Gn,p in two rounds, i.e., as
the union of two independent binomial random graphs Gn,p1 and Gn,p2 on the same vertex set.
Let G− denote a fixed subgraph of G with e(G)− 1 edges and v(G) vertices. By the induction
hypothesis, with high probability every coloring of the H-edges of the first round that does not
contain a blue copy of H contains ‘many’ H-covered red copies of G−. Each of those induces a
vertex pair that will complete a red copy of G if it is sampled as an edge of the second round and
is colored red. In our argument we will consider vertex pairs that complete not only one, but
‘many’ red copies of G− to copies of G. We will call the graph spanned by these edges the base
graph Γ(h) of a given coloring h of EH(Gn,p1), the H-edges of the first round. Our main goal
when analyzing the first round is to show that, with suitably high probability, the base graph
Γ(h) is (%, d)-dense for every coloring h of EH(Gn,p1) (for appropriately chosen parameters % and
d). Once this is shown, we may apply Lemma 22 to find ‘many’ pairwise edge-disjoint copies of
H in Γ(h) ∩Gn,p2 , the random subgraph of Γ(h) spanned by the edges of the second round. In
order to avoid creating a blue copy of H, one edge from each such copy needs to be colored red,
which by definition of the base graph Γ(h) creates ‘many’ H-covered red copies of G.

For this approach to work, the arguments of the second round need to work for all possible
colorings of the H-edges of the first round simultaneously. In order to infer this with the
union bound, we need that for a fixed coloring h of the first round, the second round fails with
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probability exponentially small in the number of H-edges. Here it is crucial that we only consider
colorings of the H-edges of the first round, as the error probability for the second round is not
small enough to beat the number of colorings of all edges of the first round!

Proof of Lemma 23: induction step; G is not a matching. Throughout, we denote by G− an ar-
bitrary fixed subgraph of G with e(G) − 1 edges and v(G) vertices. Note that we imposed no
balancedness restricion on G, and hence both G and G− may be disconnected and even contain
isolated vertices.

We start by fixing all constants needed in the proof. Throughout the following, by a(G−, H)
etc we denote the constants guaranteed inductively by Lemma 23.

Let
` := 2

(
vG + (eG − 1)(vH − 2)

)
, (39)

and set

d :=
a(G−, H)2

12 · 2`2 · `2vG
. (40)

Let
% := %(H, d) , n′ := n0(H, d) , b′ := b(H, d) (41)

denote the constants obtained by applying Lemma 22 for H and d. Set

cΓ := %(vG−2)+(eG−1)(vH−2) · a(G−, H) (42)

and

C1 := max

{
C(G−, H),

(
3

cΓ

) 1
eH (eG−1)

}
. (43)

Fix α > 0 small enough such that

αeH ≤ b′

16eH
and (1− α)eH ≥ 1/2 , (44)

and set

b1 :=
1

2
b(G−, H)%vHαeH , (45)

b2 := b′/4 . (46)

We shall prove Lemma 23 for

a = a(G,H) := (b′/2) · cΓ · α(eG−1)eH , (47)

b = b(G,H) :=
1

2
min{b1, b2/2} , (48)

C = C(G,H) := max

{
C1

α · %1/m2(G,H)
, b−1/eH

}
, (49)

n0 = n0(G,H) := max

{
n0(G−, H)

%
, n′
}

. (50)

Let n ≥ n0 and p as in (31) be given, and set

p1 := αp , p2 :=
p− p1

1− p1
. (51)

Note that
(1− α)p ≤ p2 ≤ p . (52)

Throughout the proof we will identify Gn,p with the union of two independent random graphs
Gn,p1 and Gn,p2 on the same vertex set [n] = {1, . . . , n}. Note that indeed each edge of Kn is
included in Gn,p1 ∪Gn,p2 with probability

1− (1− p1)(1− p2)
(51)
= p
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independently.

As G is not a matching, we have m2(G) ≥ 1, and consequently for any n ≥ 1 that

n ≤ n2−1/m2(G)
(6),(49)

≤ bCeHnvH−eH/m2(G,H)
(31)

≤ bnvHpeH . (53)

Next we define a number of graph properties to formalize the ideas outlined above. Throughout,
A,B, C etc. denote ‘good’ properties, i.e., properties that are desirable in our proofs.

Let

A :=

K ⊆ Kn

∣∣∣∣∣∣
Every red-blue-coloring of EH(K) that does not
contain a blue copy of H contains at least
anvG(nvH−2peH )eG many H-covered red copies of G

 , (54)

and note that A is an increasing graph property. Our goal is to bound Pr[Gn,p ∈ ¬A] from
above.

For any graph K ⊆ Kn (representing a fixed outcome of Gn,p1) and any red-blue coloring h of
EH(K), set

AK,h :=

K ′ ⊆ Kn

∣∣∣∣∣∣
Every extension of h to EH(K ∪ K ′) that does
not contain a blue copy of H contains at least
anvG(nvH−2peH )eG many H-covered red copies of G

 . (55)

Note that AK,h is increasing for any fixed K and h.

Let

z := cΓ · nvG−2
(
nvH−2peH1

)eG−1
. (56)

where cΓ is defined in (42). For any graph K ⊆ Kn (again representing a fixed outcome of Gn,p1)
and any red-blue-coloring h of EH(K), set

Γ(K,h) :=

{
e ∈

(
[n]
2

) ∣∣∣∣ e completes at least z many H-covered copies of G−
in EH(K) that are colored red in h to copies of G

}
. (57)

We will refer to the graph ([n],Γ(K,h)) ⊆ Kn as the base graph determined by the coloring h.
Further, let

B :=

K ⊆ Kn

∣∣∣∣∣∣
For every red-blue-coloring h of EH(K) that does not
contain a blue copy of H, the base graph Γ(K,h) is
(%, d)-dense

 , (58)

where d and % are defined in (40) and (41). Note that B is an increasing graph property. Finally,
let

C :=
{
K ⊆ Kn

∣∣∣ |EH(K)| ≤ 2eH · nvHpeH1
}
, (59)

and note that C is a decreasing graph property.

We will prove the following two claims.

Claim 25. We have

Pr[Gn,p1 ∈ ¬B] ≤ 2−b1 nvH peH .

Claim 26. For every K ∈ B and every red-blue-coloring h of EH(K), we have

Pr[Gn,p2 ∈ ¬AK,h] ≤ 2−b2 nvH peH .

Claim 25 and Claim 26 imply Lemma 23 as follows. Recall that our goal is to bound Pr[Gn,p ∈
¬A] from above, and that we generate Gn,p as the union of two independent random graphs
Gn,p1 and Gn,p2 .

As the expected number of copies of H in Gn,p1 is bounded by nvHpeH1 , Markov’s inequality
yields for C defined in (59) that

Pr[Gn,p1 ∈ C] ≥ 1/2 . (60)
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For any graph K ′ ⊆ Kn (representing a fixed outcome of Gn,p2) we set

AK′ :=
{
K ⊆ Kn

∣∣∣K ∪K ′ ∈ A} ,

where A is defined in (54). As A is increasing, also the property AK′ is increasing for any K ′ ⊆
Kn. Thus its complement is decreasing, and we obtain with the Harris inequality (Theorem 17)
that for any K ′ ⊆ Kn we have

Pr[Gn,p1 ∈ ¬AK′ ]
Thm. 17
≤ Pr[Gn,p1 ∈ ¬AK′ |Gn,p1 ∈ C]

(60)

≤ 2 Pr[Gn,p1 ∈ ¬AK′ ∩ C] . (61)

Using the independence of Gn,p1 and Gn,p2 and the law of total probability, we can infer that

Pr[Gn,p ∈ ¬A] =
∑

K′⊆Kn

Pr[Gn,p1 ∈ ¬AK′ ] · Pr[Gn,p2 = K ′]

(61)

≤ 2

 ∑
K′⊆Kn

Pr[Gn,p1 ∈ ¬AK′ ∩ C] · Pr[Gn,p2 = K ′]


= 2 Pr[(Gn,p ∈ ¬A) ∧ (Gn,p1 ∈ C)] .

(62)

Thus it suffices to bound the last probability. Again by the law of total probability, we have

Pr[(Gn,p ∈ ¬A) ∧ (Gn,p1 ∈ C)]
= Pr[(Gn,p ∈ ¬A) ∧ (Gn,p1 ∈ ¬B ∩ C)]

+
∑

K∈B∩C
Pr[Gn,p ∈ ¬A |Gn,p1 = K] Pr[Gn,p1 = K]

≤ Pr[Gn,p1 ∈ ¬B] + max
K∈B∩C

Pr[Gn,p ∈ ¬A |Gn,p1 = K] .

(63)

Observe that if Gn,p1 = K we have Gn,p ∈ ¬A if and only if Gn,p2 ∈
⋃

h ¬AK,h, where the

union is over all 2|EH(K)| red-blue colorings h of EH(K). Together with the independence of
Gn,p1 and Gn,p2 it follows that for any K ⊆ Kn we have

Pr[Gn,p ∈ ¬A |Gn,p1 = K] = Pr[Gn,p2 ∈
⋃

h ¬AK,h] .

If in addition K is in C as defined in (59), we obtain with

|EH(K)|
(59)

≤ 2eH · nvHpeH1
(44),(51)

≤ (b′/8)nvHpeH
(46)
= (b2/2)nvHpeH

and the union bound that

Pr[Gn,p ∈ ¬A |Gn,p1 = K] ≤ 2(b2/2)nvH peH ·max
h

Pr[Gn,p2 ∈ ¬AK,h] , (64)

where the maximum is over all red-blue colorings h of EH(K).

Combining (62), (63), and (64), we obtain that

Pr [Gn,p ∈ ¬A] ≤ 2

(
Pr[Gn,p1 ∈ ¬B] + 2(b2/2)nvH peH max

K∈B, h
Pr[Gn,p2 ∈ ¬AK,h]

)
Cl. 25, Cl. 26
≤ 2

(
2−b1n

vH peH + 2−(b2/2)nvH peH
)

≤ 4 · 2−min{b1,b2/2}nvH peH (48)
= 22−2bnvH peH ≤ 2−bn

vH peH ,

where in the last step we used that 2 ≤ bnvHpeH due to (53). �

It remains to prove Claim 25 and Claim 26.
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3.2. Proof of Claim 25. We start with the proof of Claim 25, which concerns the ‘probability
of failure’ of the first round Gn,p1 .

Proof of Claim 25. In order to verify that a graph F ⊆ Kn is (%, d)-dense, an averaging argument
shows that it suffices to check that every set V ⊆ [n] of size

ñ := d%ne (65)

contains at least d
(
ñ
2

)
edges of F (see [21]).

For any graph K ⊆ Kn (representing a fixed outcome of Gn,p1), any red-blue-coloring h of
EH(K), and any set V ⊆ [n], |V | = ñ, set

Γ(K,h, V ) :=

{
e ∈

(
V
2

) ∣∣∣∣ e completes at least z many H-covered copies of G−
in EH(K[V ]) that are colored red in h to copies of G

}
, (66)

where z is defined in (56), and define

BV :=

{
K ⊆ Kn

∣∣∣∣For every red-blue-coloring h of EH(K) that does not
contain a blue copy of H, we have |Γ(K,h, V )| ≥ dñ2

}
. (67)

Note that BV is increasing.

For a fixed set V ⊆ [n], |V | = ñ, and for any red-blue coloring h of EH(K), let kG−(K,h, V )
denote the total number of H-covered red copies of G− in EH(K[V ]), and set

AV :=

K ⊆ Kn

∣∣∣∣∣∣
For every red-blue-coloring h of EH(K) that does not con-
tain a blue copy of H, we have
kG−(K,h, V ) ≥ a(G−, H) · ñvG(ñvH−2peH1 )eG−1

 . (68)

Note that AV is increasing.

Recall that H-covered copies of G− are copies of G− that are a central copy in a copy of a graph
GH
− ∈ F(G−, H) as defined in Definition 9. Let T be the family of all pairwise nonisomorphic

graphs T which are unions of two graphs from F(G−, H), say GH
1− and GH

2−, such that some

vertex pair g ∈
(
V (T )

2

)
completes both a central copy in GH

1− and a central copy in GH
2− to a copy

of G. For any graph K ⊆ Kn and any set V ⊆ [n], |V | = ñ, let kT (K,V ) denote the number of
copies of graphs from T in K[V ], and set

DV :=
{
K ⊆ Kn

∣∣∣ kT (K,V ) ≤ 2`
2
ñ2vG−2(ñvH−2peH1 )2(eG−1)

}
. (69)

Note that DV is decreasing.

We will show the following three statements.

Fact 27. For every fixed set V ⊆ [n], |V | = ñ, we have Pr[Gn,p1 ∈ ¬AV ] ≤ 2−2b1 nvH peH .

Fact 28. For every fixed set V ⊆ [n], |V | = ñ, we have Pr[Gn,p1 ∈ DV ] ≥ 1/2.

Fact 29. For every fixed set V ⊆ [n], |V | = ñ, we have AV ∩ DV ⊆ BV .

With these statements in hand, Claim 25 can be deduced as follows.

Note that Fact 29 is equivalent to

¬BV ∩ DV ⊆ ¬AV .

Since ¬BV and DV are both decreasing, we obtain with the Harris inequality (Theorem 17) that

Pr[Gn,p1 ∈ ¬BV ]
Thm. 17
≤ Pr[Gn,p1 ∈ ¬BV |Gn,p1 ∈ DV ]

Fact 28
≤ 2 Pr[Gn,p1 ∈ ¬BV ∩ DV ]

Fact 29
≤ 2 Pr[Gn,p1 ∈ ¬AV ]

Fact 27
≤ 21−2b1 nvH peH .

(70)
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By definition of B and BV (see (58) and (67)), we have

¬B ⊆
⋃

V⊆[n]:
|V |=ñ

¬BV . (71)

Taking the union bound over all sets V ⊆ [n] with |V | = ñ we obtain

Pr[Gn,p1 ∈ ¬B]
(71)

≤
∑

V⊆[n]:
|V |=ñ

Pr[Gn,p1 ∈ ¬BV ]
(70)

≤ 2n+1−2b1 nvH peH ≤ 2−b1n
vH peH , (72)

where in the last step we used that n+ 1 ≤ b1nvHpeH due to (53) and (48). �

It remains to prove Facts 27, 28, and 29. For all these proofs, note that Gn,p1 [V ] behaves exactly
like a binomial random graph Gñ,p1

, and that

p1

(31), (51)

≥ αCn−1/m2(G,H)
(49), (65)

≥ C1 ñ
−1/m2(G,H) . (73)

Proof of Fact 27. By monotonicity of the 2-density and by the assumption on G in Lemma 23,
we have m2(G−) ≤ m2(G) < x∗(H). Moreover, by our choice of constants, we have

ñ
(65)

≥ %n0

(50)

≥ n0(G−, H)

and

C(G−, H)ñ−1/m2(G−,H)
(43),(73)

≤ p1

(31), (51)

≤ αn−1/m∗(H) ≤ ñ−1/m∗(H) .

Thus we may apply the induction hypothesis to Gn,p1 [V ] to infer

Pr[Gn,p1 ∈ ¬AV ] ≤ 2−b(G−,H) ñvH p
eH
1

(45),(51),(65)

≤ 2−2b1 nvH peH

recalling the definition of AV in (68). �

Proof of Fact 28. Consider a fixed graph T ∈ T as defined before (69), and let J := GH
1− ∩GH

2−
denote the intersection of the two graphs from F(G−, H) forming T . We obtain with Lemma 10
that

ñv(J)p
e(J)
1

(73)

≥ ñv(J)−e(J)/m2(G,H)
L.10
≥ ñ2−L(GH1−) , (74)

where in the first step we also used that C1 ≥ 1. Thus the expected number of copies of T in
Gn,p1 [V ] is bounded by

ñv(T )p
e(T )
1

(74)

≤ ñv(GH1−)+v(GH2−)−2+L(GH1−)p
e(GH1−)+e(GH2−)

1

(8)
= ñ2

(
vG+(eG−1)(vH−2)

)
−2−L(GH2−)p

2(eG−1)eH
1

≤ ñ2vG−2(ñvH−2peH1 )2(eG−1) ,

where in the last step we used that L(GH
2−) is nonnegative. Thus in total the expected number

of graphs from T in Gn,p1 [V ] is at most

2`
2−1 · ñ2vG−2(ñvH−2peH1 )2(eG−1)

where we bounded |T | by the number of graphs on at most ` vertices (recall (39)), which in turn

is bounded by `2(`2) ≤ 2`
2−1.

Fact 28 now follows with Markov’s inequality, recalling the definition of DV in (69). �

Proof of Fact 29. Consider a fixed set V ⊆ [n], |V | = ñ, and an arbitrary graph K ⊆ Kn. For

any red-blue-coloring h of EH(K) and for every edge e ∈
(
V
2

)
, let

xe = xe(K,h, V ) :=

∣∣∣∣{G− ∣∣∣∣G− is an H-covered copy of G− in EH(K[V ]) that is
colored red in h, and e completes G− to a copy of G

}∣∣∣∣ .
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Note that, by our definition of Γ(K,h, V ) in (66)), for all e ∈ Γ(K,h, V ) we have

xe ≥ z
(56),(73)

≥ cΓC
eH(eG−1)
1 nvG−2(nvH−2ñ−eH/m2(G,H))eG−1

(7),(43)

≥ 3 , (75)

where in the second inequality we also used that ñ ≤ n.

We will show that if K is in AV , we have∑
e∈Γ(K,h,V )

xe ≥
a(G−, H)

2
· ñvG(ñvH−2peH1 )eG−1 (76)

for every coloring h of EH(K) that contains no blue copy of H, and that if K is in DV , we have∑
e∈Γ(K,h,v)

(
xe
2

)
≤ 2`

2
`2vG · ñ2vG−2(ñvH−2peH1 )2(eG−1) (77)

for every coloring h of EH(K).

As by Jensen’s inequality we have∑
e∈Γ(K,h,V )

(
xe
2

)
≥
∣∣Γ(K,h, V )

∣∣(∣∣Γ(K,h, V )
∣∣−1∑

e∈Γ(K,h,V ) xe

2

)
(75)

≥
(
∑

e∈Γ(K,h,V ) xe)
2

3
∣∣Γ(K,h, V )

∣∣ , (78)

(where in the second inequality we used that
(
x
2

)
≥ x2/3 for x ≥ 3), (76) and (77) will imply

that for any K ∈ AV ∩ DV we have∣∣Γ(K,h, V )
∣∣ (78)

≥
(
∑

e∈Γ(K,h,V ) xe)
2

3
∑

e∈Γ(K,h,V )

(
xe
2

) (76),(77)

≥ a(G−, H)2

12 · 2`2 · `2vG
· ñ2 (40)

= dñ2

for every coloring h of EH(K) that does not contain a blue copy of H, i.e., that K satisfies BV
as defined in (67).

It remains to show (76) and (77). To verify (76), recall that kG−(K,h, V ) denotes the total
number of H-covered red copies of G− in EH(K[V ]). Since every such copy contributes to at
least one of the xe, we have ∑

e∈(V2)

xe ≥ kG−(K,h, V ) . (79)

Note that

z
(56)
= cΓ · nvG−2(nvH−2peH1 )eG−1

(42), (65)

≤ a(G−, H) · ñvG−2(ñvH−2peH1 )eG−1 . (80)

Since by definition of Γ(K,h, V ) we have xe < z for all e ∈
(
V
2

)
\ Γ(K,h, V ) (recall (66)), it

follows that ∑
e∈Γ(K,h,V )

xe
(79)

≥ kG−(K,h, V )−
∑

e∈(V2)\Γ(K,h,V )

xe

≥ kG−(K,h, V )−
(
ñ

2

)
· z

(80)

≥ kG−(K,h, V )− a(G−, H)

2
· ñvG(ñvH−2peH1 )eG−1 .

It follows from the definition of AV in (68) that indeed (76) holds for every coloring h of EH(K)
that contains no blue copy of H if K is in AV .

To verify (77), recall that every H-covered copy of G− is contained in a copy of a graph GH
− ∈

F(G−, H) (see Definition 8 and Definition 9). It follows with the definition of kT (K,V ) (see the
paragraph before (69)) that ∑

e∈(V2)

(
xe
2

)
≤ `2vG kT (K,V ) , (81)
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where ` is as defined in (39). Here the constant `2vG follows from the fact that a given copy of
some T ∈ T contributes at most ((vT )vG)2 ≤ (vT )2vG ≤ `2vG to the sum.

Consequently, if K ∈ DV , the definition of DV in (69) implies that∑
e∈Γ(K,h,v)

(
xe
2

)
≤
∑

e∈(V2)

(
xe
2

)
(69), (81)

≤ 2`
2
`2vG · ñ2vG−2(ñvH−2peH1 )2(eG−1)

for every coloring h of EH(K), as claimed in (77). �

3.3. Proof of Claim 26. It now remains to prove Claim 26.

Proof of Claim 26. Consider a fixed graph K ∈ B and a fixed red-blue-coloring h of EH(K). By
definition of the event B (recall (58)), the graph Γ(K,h) is (%, d)-dense.

Note that due to (44) and (52) we have

b′nvHpeH2 ≥ (b′/2)nvHpeH . (82)

Thus Lemma 22 yields with (31) and our choice of constants in (41) and (50) that with probability
at least

1− 21−b′nvH p
eH
2

(82),(46)

≥ 1− 21−2b2n
vH peH ≥ 1− 2−b2n

vH peH

(where in the last step we used that 1 ≤ bvHpeH ≤ b2n
vHpeH due to (53) and (48)), the graph

Γ(K,h) ∩Gn,p2 contains a family of at least b′nvHpeH2 pairwise edge-disjoint copies of H.

To avoid creating a blue copy of H, one edge from each of these copies needs to be colored red,
and by the definition of Γ(K,h) (see (57)), each such edge that is colored red creates at least z
many H-covered red copies of G. Thus any extension of h to a coloring of EH(K)∪EH(Gn,p2) ⊆
EH(K ∪Gn,p2) creates a blue copy of H or at least

b′nvHpeH2 · z
(56),(82)

≥ b′/2 · cΓ · nvHpeH · nvG−2(nvH−2peH1 )eG−1

(47), (51)
= anvG(nvH−2peH )eG

many H-covered red copies of G. Thus Gn,p2 is indeed in AK,h as defined in (55) with the
claimed probability. �

4. Concluding remarks

We believe that the proof for the two-color case given here can be extended to the setting
with more than two colors along the lines of [21]. Namely, for given graphs H1, . . . ,Hk with
m2(Hk) ≤ · · · ≤ m2(H2) < m2(H1) and H1 strictly balanced w.r.t. d2(H2, ·), one should be able

to prove that Pr[Gn,p → (H1, . . . ,Hk)] = 1 − o(1) if p ≥ Cn−1/m2(H2,H1) as follows: Clearly,
in order to prove Gn,p → (H1, . . . ,Hk) it suffices to prove Gn,p → (G, . . . , G,H), where G
denotes the disjoint union of H2, . . . ,Hk, and H := H1. Furthermore, it is not hard to see that
m2(G) = m2(H2), and consequently also m2(G,H) = m2(H2, H1). Thus it suffices to show that

Pr[Gn,p → (G, . . . , G,H)] = 1− o(1) if p ≥ Cn−1/m2(G,H). We believe that this can be done by
combining the approach via double induction (on e(G) and the number of colors k) used in [21]
with the ideas presented in this paper. Note that this implies using Lemma 1 of [21], which
relies on the regularity lemma for dense graphs.

We do not pursue this further here. In our view, a more interesting next step would be to extend
the approach taken in [7] to the asymmetric scenario, with the goal of deriving 1-statements for
more general settings, in particular for the hypergraph setting. This might also help in getting
rid of the balancedness assumption on H in the existing proofs.

An altogether different open question is the proof of the 0-statement in Conjecture 3. With
some extra work the approach in [19] can be pushed through to prove the 0-statement for



22

certain graphs G and H that are not complete, but a general proof does not seem to be within
reach of the known methods.
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