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Abstract

We construct a model for the string group as an infinite-dimensional Lie group. In a

second step we extend this model by a contractible Lie group to a Lie 2-group model.

To this end we need to establish some facts on the homotopy theory of Lie 2-groups.

Moreover, we provide an explicit comparison of string structures for the two models.
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1 Introduction

String structures and the string group play an important role in algebraic topology [He08b,
Lu09, BN09], string theory [Ki87, FM06] and geometry [Wi88, St96]. The group String is
defined to be a 3-connected cover of the spin group or, more generally of any simple simply
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1 INTRODUCTION 2

connected compact Lie group G [ST04]. This definition fixes only its homotopy type and
makes abstract homotopy theoretic constructions possible. But for geometric applications
these models are not very well suited, one is rather interested in concrete models that carry,
for instance, topological or even Lie-group structures.

There is a direct cohomological argument showing that String
G
cannot be a finite CW -

complex or a finite-dimensional manifold (see Corollary 3.3), so the best thing one can hope
for is a topological group or an infinite-dimensional Lie group. There have been various
constructions of models of String

G
as A∞-spaces or topological groups, but the question

whether an infinite-dimensional Lie group model is also possible has been open so far. One
of the main contributions of the present paper is to give an affirmative answer to this question
and provide an explicit Lie group model, based on a topological construction of Stolz [St96].

Something that is not directly apparent from the setting of the problem is that string
group models as Lie 2-groups are something more natural to expect when taking the per-
spective of string theory or higher homotopy theory into account. However, the notion of a
Lie 2-group model deserves a thorough clarification itself. We discuss this notion carefully by
establishing the relevant homotopy theoretic facts about infinite-dimensional Lie 2-groups
and promote our Lie group model String

G
to such a Lie 2-group model STRINGG.

Before we outline our construction let us briefly summarize the existing ones. One model
for String

G
can be obtained from pulling back the path fibration PK(Z, 3) → K(Z, 3) along

a characteristic map u : G → K(Z, 3). This is a standard construction of the Whitehead
tower and leads to a model of String

G
as a space. Since this construction also works for a

characteristic map BG → K(Z, 4), each 3-connected cover is homotopy equivalent to a loop
space and thus admits an A∞-structure. Taking a functorial construction of the Whitehead
tower one even obtains a model as a topological group. Unfortunately, these models are not
very tractable.

There are more geometric constructions of String
G
, for instance the one by Stolz in [St96].

The model given there has as an input the basic principal PU(H)-bundle P over G, where
H is a separable Hilbert space. Stolz then defines a model for String

G
as a topological group

together with a homomorphism String
G
→ G whose kernel is the group of continuous gauge

transformations of the bundle P . Our constructions will be based on this idea. In [ST04]
Stolz and Teichner construct a model for String

G
as an extension of G by PU(H). It is

a natural idea to equip this model with a smooth structure. But this does not work since
this extension is constructed as a pushout along a positive energy representation of the loop
group of G which is not smooth.

We now come to Lie 2-group models. One construction has been given by Henriques
[He08a], based on work of Getzler [Ge09]. Its basic idea is to apply a general integration
procedure for L∞-algebras to the string Lie 2-algebra. To make this construction work one
has to weaken the naive notion of a Lie 2-group and besides that work in the category of
Banach spaces. Similarly, the model of Schommer-Pries [SP10] realizes String

G
as a stacky

Lie 2-group, but it has the advantage of being finite-dimensional. This model is constructed
from a cocycle in Segal’s Cohomology for G [Se70].

A common thing about the above Lie 2-group models is that they are not strict, i.e., not
associative on the nose but only up to an additional coherence. This complication is not
present in the strict 2-group model of Baez, Crans, Schreiber and Stevenson from [BCSS07].

It is constructed from a crossed module Ω̂G → PeG, built out of the level one Kac-Moody
central extension Ω̂G of the loop group of G and its path space PeG. The price to pay is
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that the model is infinite dimensional, but the strictness makes the corresponding bundle
theory more tractable [NW11].

Summarizing, quite some effort has been made in constructing models for String
G
that

are as close as possible to finite-dimensional Lie groups. However, one of the most natural
questions, namely whether there exists an infinite-dimensional Lie group model for String

G

is still open. We answer this question by the following result.
Let P → G be a basic smooth principal PU(H)-bundle, i.e., [P ] ∈ [G,BPU(H)] ∼=

H3(G,Z) = Z is a generator. In Section 2 we review the fact that Gau (P ) is a Lie group
modeled on the infinite-dimensional space of vertical vector fields on P . The main result of
Section 3 is then

Theorem (Theorem 3.6). Let G be a simple, simply connected and compact Lie group, then
there exists a smooth string group model String

G
turning

Gau (P ) → String
G
→ G

into an extension of Lie groups. It is uniquely determined up to isomorphism by this property.

From now on String
G
will always refer to this particular model. The proof of the theorem

is based on [St96] and [Wo07]. We also show that String
G
is metrizable and Fréchet. This

metrizability makes the homotopy theory that we use in the sequel work due to results of
Palais [Pa66].

In Section 4 we introduce the concept of Lie 2-group models culminating in Definition
4.10. An important construction in this context is the geometric realization that produces
topological groups from Lie 2-groups. We show that geometric realization is well-behaved
under mild technical conditions, such as metrizability.

In Section 5 we then construct a central extension U(1) → Ĝ au (P ) → Gau (P ) with

contractible Ĝ au (P ). We define an action of String
G
on Ĝ au (P ) such that Ĝ au (P ) → String

G

is a smooth crossed module. Crossed modules are a source for Lie 2-groups (Example 4.3)
and in that way we obtain a Lie 2-group STRINGG.

Theorem (Theorem 5.6). STRINGG is a Lie 2-group model in the sense of Definition 4.10.

The proof of this theorem relies on a comparison of the model String
G
with the geometric

realization of STRINGG. Moreover, this direct comparison allows to derive a comparison
between the corresponding bundle theories and string structures, see Section 6. This explicit
comparison is a distinct feature of our 2-group model that is not available for the other
2-group models.

In an appendix we have collected some elementary facts about infinite dimensional man-
ifolds and Lie groups. A second appendix gives a useful characterization of smooth weak
equivalences between Lie 2-groups.

Acknowledgements We thank Chris Schommer-Pries for pointing us to Stolz’ string
group model [St96]. We also thank Helge Glöckner, Karl-Hermann Neeb, Eckhard Mein-
renken, Behrang Noohi, Friedrich Wagemann and Danny Stevenson for discussions and hints
about various aspects. Finally, we thank Urs Schreiber and Christoph Schweigert for com-
ments on the draft.
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2 Preliminaries on gauge groups

Throughout this paper Lie groups are permitted to be infinite-dimensional. More precisely,
a Lie group is a group, together with the structure of a locally convex manifold such that
the group operations are smooth, see Appendix A. The term topological group throughout
refers to a group in compactly generated spaces.

In this section the setting will be as follows:

• M is a compact manifold.

• K is a metrizable Banach–Lie group (or equivalently a paracompact Banach–Lie group).

• P is a smooth principal K-bundle over M .

Note that if P is only a continuous principal bundle, then we always find a smooth
principal bundle which is equivalent to it [MW09].

Definition 2.1. The group Aut(P ) denotes the group of K-equivariant diffeomorphisms
f : P → P . Identifying M with P/K we have a natural homomorphism

Q : Aut(P ) → Diff(M), Q(f)([p]) = [f(p)]

and we define the gauge group by Gau (P ) := ker(Q).

It will be convenient to identify Gau (P ) with C∞(P,K)K , the smooth K-equivariant
maps P → K, via

C∞(P,K)K ∋ f 7→ (p 7→ p · f(p)) ∈ Gau (P ).

If P is topologically trivial, then the left hand side C∞(P,K)K is isomorphic to C∞(M,K).
In [Wo07] it is shown that in a certain sense this remains valid if P is only locally trivial

Proposition 2.2. The group Gau (P ) ∼= C∞(P,K)K admits the structure of a Fréchet Lie-
group modeled on the gauge algebra gau(P ) := C∞(P, k)K of smooth equivariant maps P → k.
If exp : k → K is the exponential function of K, then

exp∗ : C
∞(P, k)K → C∞(P,K)K , ξ 7→ exp ◦ξ (1)

is an exponential function and a local diffeomorphism.

Proof. The proof of this proposition can be found in [Wo07, Theorem 1.11 and Lemma
1.14(c)]. We will therefore only sketch the arguments that become important in the sequel.
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Let N be a manifold with boundary (the boundary might be empty) modeled on a locally
convex space. The space C∞(N,K) can be given a topology by pulling back the compact
open topology along

C∞(N,K) →
∞∏

i=0

C0(T iN, T iK).

We refer to this topology as the C∞-topology. This also applies to the Lie algebra k of K
and induces a locally convex vector space topology on C∞(N, k). Moreover, C∞(N, k) is a
Fréchet space if N is finite-dimensional [Gl02]. If we now restrict to the case where N is
compact and if ϕ : U ⊂ K → W ⊂ k is a chart satisfying ϕ(e) = 0, then C∞(N,W ) is in
particular open in C∞(N, k) and thus

ϕ∗ : C
∞(N,U) → C∞(N,W ), γ 7→ ϕ ◦ γ (2)

defines a manifold structure on C∞(N,U). It can be shown that the (point-wise) group
structures are compatible with this smooth structure and that it may be extended to a Lie
group structure on C∞(N,K). Details of this construction can be found in [Wo06] and
[GN11].

The aforementioned topologies also endow the subspaces C∞(P,K)K and C∞(P, k)K with
the structure of topological groups and C∞(P, k)K with the structure of a topological Lie
algebra, both with respect to point-wise operations. The exponential function exp : k → K
is K-equivariant and, by the inverse function theorem for Banach spaces, a local diffeomor-
phism. It thus defines in particular a map

exp∗ : C
∞(P, k)K → C∞(P,K)K , ξ 7→ exp ◦ξ

Like in the case of a compact manifold with boundary N , it can be shown that this map
restricts to a bijection on some open subset of C∞(P, k)K , which then gives rise to a manifold
structure around the identity in C∞(P,K)K that can be enlarged to a Lie group structure.
The details of this are spelled out in [Wo07, Propositions 1.4 and 1.8].

Lemma 2.3. The topology underlying Gau (P ) is metrizable.

Proof. We first note that C∞(N,K) is metrizable for finite-dimensional N since C0(T iN, T iK)
is so [Bo98a, X.3.3] and countable products of metrizable spaces are metrizable. From [Wo07,
Proposition 1.8] it follows that Gau (P ) is identified with a closed subspace of C∞(

∐
Vi, K),

where Vi, ..., Vn is a cover of M such that Vi is a manifold with boundary and P |Vi
is trivial.

Since C∞(
∐

Vi, K) is metrizable, Gau (P ) is so as well.

Remark 2.4. ([Wo07, Remark 1.18]) There also is a continuous version of the gauge group,
namely the group of K-equivariant homeomorphisms P → P covering the identity on M .
This group will be denoted Gau c(P ). As above, we have that Gau c(P ) ∼= C(P,K)K and
since C(X,K) is a Lie group modeled on C(X, k) for each compact topological space X (with
respect to the compact-open topology, cf. [GN11]) the above proof carries over to show that
Gau

c(P ) is also a metrizable Lie group modeled on C(P, k)K.

Now [Wo07, Proposition 1.20] and Theorem A.5 imply

Proposition 2.5. The canonical inclusion

Gau (P ) →֒ Gau c(P ). (3)

is a homotopy equivalence.
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In the sequel we will also need the following slight variation. Consider a central extension

Z → K̂ → K

of Banach–Lie groups admitting smooth local sections. Similar to Gau (P ) ∼= C∞(P,K)K ,

the groups C∞(G,Z) and C∞(P, K̂)K possess Lie group structures, modeled on C∞(G, z)

and C∞(P, k̂)K [NW09, Appendix A], [Wo07, Theorem 1.11]. As in Proposition 2.2, charts
can be obtained from the exponential map

exp∗ : C
∞(P, k̂)K → C∞(P, K̂)K , ξ 7→ exp ◦ ξ.

Moreover this is a central extension, as we show in proposition 2.7.

Lemma 2.6. ([EG54]) If F → E → B is a fiber bundle with F and B metrizable, then E
is metrizable.

Proposition 2.7. Let Z → K̂
q
−→ K be a central extension of Banach–Lie groups, admitting

a local smooth section. Then the exact sequence of Fréchet–Lie groups

C∞(M,Z) → C∞(P, K̂)K → C∞(P,K)K (4)

admits a smooth local section. Moreover, C∞(M, K̂)K is metrizable if Z and K are so.

Proof. We have to recall some facts on the construction of the Lie group structure from
[NW09, Appendix A] and [Wo07, Proposition 1.11]. Let V1, ..., Vn be an open cover of G
such that each Vi is a manifold (with boundary) and such that there exist smooth sections
σi : Vi → P . These give rise to smooth transition functions kij : Vi ∩ Vj → K and we have
that

γ 7→ Σ(γ) := (γ ◦ σi)i=1,...,n

induces an isomorphism

C∞(P,K)K ∼= {(γi)i=1,...,n ∈

n∏

i=1

C∞(Vi, K) | γi = kij · γj · kji on Vi ∩ Vj}

If now exp: k → K restricts to a diffeomorphism exp: W → U , then we have that

W := {(γi)i=1,...,n ∈

n∏

i=1

C∞(Vi,W ) | γi = kij · γj · kji on Vi ∩ Vj}

maps under Σ−1 to an identity neighborhood Σ−1(W) on which exp∗ restricts to a diffeo-
morphism (cf. [Wo07, Proposition 1.11]). Note that we may also assume w.l.o.g. that there

exists a smooth section τ : U → K̂ of q satisfying τ(1K) = 1K̂ .
Next we choose a smooth partition of unity λi : Vi → [0, 1]. For γ ∈ Σ−1(W) we then set

Λi(γ) := exp∗(
∑

j≤i

λi · log∗(γ)) · exp∗(
∑

j<i

λi · log∗(γ))
−1

and note that we have
γ = Λn(γ) · Λn−1(γ) · · ·Λ1(γ).
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Moreover, λi(π(p)) = 0 implies Λi(γ)(p) = 1 and thus supp(Λi(γ)) ⊂ Vi. Moreover, we have
Σ(Λi(γ))i ∈ C∞(Vi,W ) by the definition of W.

We now use all the data that we collected so far to define lifts of each Λi(γ). To this
end we first introduce functions ki : P |V i

→ K, defined by p = σi(π(p)).ki(p). Then the
assignment

P |Vi
∋ p 7→ ki(p).τ (Σ(Λi(γ))i(π(p))) (5)

is smooth since τ and Σ(Λi(γ))i are so and equivariant since ki is so. Moreover, (5) vanishes
on a neighborhood of each point in ∂Vi since λi and thus τ ◦Σ(Λi(γ))i do so. Consequently,
we may extend (5) by e

K̂
to all of P , defining a lift Θi(γ) of Λi(γ). Indeed, we have for

p ∈ π−1(Vi)

q(Θi(γ)(p)) = q (ki(p).τ (Σ(Λi(γ))i(π(p)))) = ki(p).q (τ(Σ(Λi(γ))i(π(p)))) =

ki(p).Σ(Λi(γ))i(π(p)) = ki(p).Λi(γ)(σi(π(p))) = Λi(σi(π(p)).ki(p)) = Λi(γ)(p)

and for p /∈ π−1(Vi) we have q(Θi(γ)(p)) = q(eK̂) = eK = Λi(γ)(p). Eventually,

Θ(γ) := Θn(γ) ·Θn−1(γ) · · ·Θ1(γ)

defines a lift of γ, since we have

q∗(Θn(γ) ·Θn−1(γ) · · ·Θ1(γ)) = q∗(Θn(γ)) · q∗(Θn−1(γ)) · · · q∗(Θ1(γ)) =

Λn(γ) · · ·Λn−1(γ) · · ·Λ1(γ) = γ.

Since Θi(γ) is constructed in terms of push-forwards of smooth maps, it depends smoothly
on γ and so does Θ(γ).

The previous argument shows in particular that (4) is a fiber bundle (cf. A.1). As in
Lemma 2.3 one sees that C∞(M,Z) is metrizable if Z is so, and thus the last claim follows
from Lemma 2.6.

Remark 2.8. Note that all results of this section remain valid in more general situations.
For instance, if we replace K by an arbitrary Lie group with exponential function that is a
local diffeomorphism, then Gau (P ) is a Lie group, modeled on gau(P ). Moreover, (1) still
defines an exponential function which itself is a local diffeomorphism. If, in addition, K is
metrizable, then the proof of Lemma 2.3 shows that Gau (P ) is also metrizable.

Proposition 2.7 generalizes to the situation where Z → K̂ → K is a central extension of
Lie groups for which K̂ and K have exponential functions that are local diffeomorphisms.
Since its proof only uses the fact that K̂ → K has a smooth local section, (4) still admits a
smooth local section in this case.

This shows in particular that the construction applies to the smooth principal bundle
ΩG → PG → G, where ΩG denotes the group of smooth loops (as for instance in [BCSS07,

Section 3]) and the universal central extension U(1) → Ω̂G → ΩG.

3 The string group as a smooth extension of G

In this section we want the give a smooth model for the string group. Our construction is
mainly based on [St96, Section 5]. By smooth model of the string group we mean a smooth
3-connected cover of a compact Lie-group G which is a Lie group itself. We are mainly
interested in the case G = Spin(n) but we define more generally:
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Definition 3.1. Let G be a compact, simple and simply connected Lie group. A smooth
string group model for G is a Lie group Ĝ together with a smooth homomorphism

Ĝ
q
−→ G

such that q is a Serre fibration, πk(Ĝ) = 0 for k ≤ 3 and that πi(q) is an isomorphism for
i > 3.

Proposition 3.2 (Cartan [Ca36]). Let G be a compact, simple and simply-connected Lie
group. Then

π2(G) = 0 and π3(G) ∼= H3(G,Z) ∼= Z.
Corollary 3.3. If Ĝ

q
−→ G is a smooth string group model, then

1. ker(q) is a K(Z, 2) (i.e., πk(ker(q)) ∼= Z for k = 2 and vanishes for k 6= 2);

2. Ĝ cannot be finite-dimensional.

Proof. 1. This follows from the long exact homotopy sequence.

2. If Ĝ were finite-dimensional, then it would have ker(q) as a closed Lie subgroup. But
by 1. we have H2n(ker(q),Z) ∼= H2n(K(Z, 2),Z) ∼= Z, a contradiction.

Now we come to the construction of our string group model. Let H be an infinite-
dimensional separable Hilbert space. Then it is well known that the projective unitary
group PU(H), together with the norm topology is a K(Z, 2) [Ku65], so that BPU(H) is a
K(Z, 3). Thus isomorphism classes of PU(H)-bundles over a manifold M are in bijection
with H3(M,Z).

Now there is a canonical generator 1 ∈ H3(G,Z). Let P → G be a principal PU(H)-
bundle over G that represents this generator. Note that PU(H) is a Banach–Lie group (see
[GN03] and references therein) which is paracompact by [Du66, Theorem VIII.2.4] and [Br72,
Theorem I.3.1]. In particular, it is metrizable. We can choose P to be smooth [MW09] and
apply the results from Section 2. Recall in particular the map

Q : Aut(P ) → Diff(G)

that sends a bundle automorphism to its underlying diffeomorphism of the base.

Definition 3.4. Let G be connected, simple and simply connected and P → G represent
the generator 1 ∈ H3(G,Z). Then we set

String
G
:= {f ∈ Aut(P ) | Q(f) ∈ G ⊂ Diff(G)}

where the inclusion G →֒ Diff(G) sends g to left multiplication with g. In other words:
String

G
is the group consisting of bundle automorphisms that cover left multiplication in G.

Note that there is also a continuous version of String
G
, given by

String
c

G
:= {f ∈ Homeo(P ) | f is K-equivariant and Q(f) ∈ G ⊂ Diff(G)}.

The motivation for constructing a smooth model for the String group as in the present paper
now comes from the following fact [St96]. For the sake of completeness we include (a part
of) the proof here.
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Proposition 3.5 (Stolz). The fibration Q : String c
G
→ G is a 3-connected cover of G, i.e.

πi(String
c

G
) = 0 for i ≤ 3 and πi(Q) is an isomorphism for i > 3.

Proof. Pick a point in the fiber p ∈ P over 1 ∈ G. Let ev be the evaluation that sends a
bundle automorphisms f to f(p). Then we obtain a diagram

Gau
c(P ) //

ev

��

String
c

G

ev

��

Q
// G

id

��

PU(H) // P π
// G

Now [St96, Lemma 5.6] asserts that ev : Gau c(P ) → PU(H) is a (weak) homotopy equiv-
alence. The long exact homotopy sequence and the Five Lemma then show that then
ev : String c

G
→ P is also a homotopy equivalence. Hence it remains to show that P → G is

a 3-connected cover. By definition of P its classifying map

p : G −→ BPU(H) ≃ K(Z, 3)
is a generator ofH3(G,Z), hence it induces isomorphisms on the first three homotopy groups.
Thus the pullback P ∼= p∗EPU(H) of the contractible space EPU(H) kills exactly the first
three homotopy groups, i.e. P is a 3-connected cover.

In the rest of this section we want to prove the following modification and enhancement
of the preceding proposition. For its formulation recall that an extension of Lie groups is
a sequence of Lie groups A → B → C such that B is a smooth locally trivial principal
A-bundle over C [Ne07].

Theorem 3.6. String
G
is a smooth string group model according to Definition 3.1. More-

over, String
G
is metrizable and there exists a Fréchet–Lie group structure on String

G
, unique

up to isomorphism, such that

Gau (P ) → String
G
→ G (6)

is an extension of Lie groups.

Proof. We first show existence of the Lie group structure. To this end we recall that there
exists an extension of Fréchet–Lie groups

Gau (P ) → Aut(P )0 → Diff(G)0, (7)

where Aut(P )0 is the inverse image Q−1(Diff(G)0) of the the identity component Diff(M)0
[Wo07, Theorem 2.14]. The embedding G →֒ Diff(G)0 given by left translation gives by the
exponential law [GN11] a smooth homomorphism of Lie groups since the multiplication map
G×G → G is smooth. Pulling back (7) along this embedding then yields the extension (6).
Moreover, String

G
is metrizable by Lemma 2.3 and Lemma 2.6.

We now discuss the uniqueness assertion, so let Gau (P ) → Hi
qi
−→ G for i = 1, 2 be two

extensions of Lie gropus. The requirement for it to be a locally trivial smooth principal
bundle is equivalent to the existence of a smooth local section of qi and we thus obtain a
derived extension of Lie algebras

gau(P ) → L(Hi)
L(qi)
−−−→ g.
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The differential of the local smooth section implements a linear continuous section of L(qi)
and thus we have a (non-abelian) extension of Lie algebras in the sense of [Ne06]. Now the
equivalence classes of such extensions are parametrized by H2(g, z(gau(P ))) [Ne06, Theorem
II.7]. Since gau(P ) = C∞(P, pu(H))K we clearly have z(gau(P )) = C∞(P, z(pu(H)))K ,
which is trivial since z(pu(H)) is so. Consequently, we have a morphism

gau(P ) // L(H1) //

ϕ

��

g

gau(P ) // L(H2) // g

of extensions of Lie algebras. The long exact homotopy sequence for the fibration Gau (P ) →

Hi
q
−→ G shows that Hi is 1-connected, and so ϕ integrates to a morphism

Gau (P ) // H1
//

Φ

��

G

Gau (P ) // H2
// G

of Lie groups. Since Φ makes this diagram commute it is automatically an isomorphism.
It remains to show that String

G
is a smooth model for the String group. We have the

following commuting diagram

Gau (P ) //

��

String
G

��

// G

Gau
c(P ) // String

c

G
// G

.

By Proposition 2.5 the inclusion Gau (P ) →֒ Gau c(P ) is a homotopy equivalence. Since,
furthermore, String

G
→ G and String c

G
→ G are bundles, they are in particular fibrations

and we obtain long exact sequences of homotopy groups. Applying the Five Lemma we see
that the maps πn(String G) → πn(String

c

G
) are isomorphisms for all n. By Proposition 3.5

we know that String c
G
is a 3-connected cover, hence also String

G
.

Remark 3.7. Note that the proof of the uniqueness assertion only used the fact that the
center of gau(P ) is trivial. In fact, this shows that for an arbitrary (regular) Lie group H
which is a K(Z, 2) and has trivial z(L(H)) there exists, up to isomorphism, at most one Lie

group Ĥ, together with smooth maps H → Ĥ and Ĥ → G turning

H → Ĥ → G

into an extension of Lie groups. Moreover, the proof shows that the uniqueness is not only
up to isomorphism of Lie groups, but even up to isomorphism of extensions.

4 2-groups and 2-group models

One of the main problems about string group models is that they are not very tightly deter-
mined. In fact, the underlying space is just determined up to weak homotopy equivalence.
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This implies that the group structure can only be determined up to A∞-equivalence and the
smooth structure is not determined at all. Part of this problem is that there is in general
not a good control about the fiber of String

G
→ G, only the underlying homotopy type is

determined to be a K(Z, 2).
Some of the problems can be cured by using 2-group models. This setting allows to

fix the fiber more tightly. In particular there is a nice model of K(Z, 2) as a 2-group, see
Example 4.3 below and weak equivalences of 2-groups are more restrictive than homotopy
equivalences of their geometric realizations. We first want to recall quickly the definition and
some elementary properties of 2-groups. We restrict our attentention to strict Lie 2-groups
in this paper which for simplicity we just call Lie 2-groups.

Definition 4.1. A (strict) Lie 2-group is a category G such that the set of objects G0 and
the set of morphisms G1 are Lie groups, all structure maps

s, t : G1 → G0 i : G0 → G1 and ◦ : G1 ×G0
G1 → G1

are Lie group homomorphisms and s, t are submersions1. In the case that G0 and G1 are
metrizable, we call G a metrizable Lie 2-group. A morphism between 2-groups is a functor
f : G → G ′ that is a Lie group homomorphism on the level of objects and on the level of
morphisms.

One reason to consider 2-groups here is that they can serve as models for topological
spaces by virtue of the following construction.

Definition 4.2. Let G be a Lie 2-group. Then the nerve NG of the category G is a simplicial
manifold by Proposition A.3. Using this we define the geometric realization of G to be the
geometric realization of the simplicial space NG, i.e., the coend

∫ [n]∈∆

(NG)n ×∆[n] =
⊔

n

(NG)n ×∆[n] / ∼ .

Note that the coend is taken in the category of compactly generated spaces.

Example 4.3. 1. Consider the category BU(1) with one object and automorphisms given
by the group U(1). This is clearly a Lie 2-group. The geometric realization |BU(1)|
is the classifying space BU(1), hence a K(Z, 2). The 2-group BA exists moreover for
each abelian Lie group A.

2. If G is an arbitrary Lie group, then it gives rise to a 2-group by considering it as
category with only identity morphisms. More precisely, in this case G0 = G1 = G and
all structure maps are the identity.

3. Let K
∂
−→ L be a smooth crossed module of groups ([Ne07, Definition 3.1]). Then we

can form a Lie 2-group G using the Lie groups G0 := L and G1 := K ⋊L together with
the smooth maps s(k, l) = l, t(k, l) = ∂(k)l, i(l) = (1, l) and (k, l) ◦ (k′, l′) = (kk′, l).
Up to some technicalities, each Lie 2-group arises from a crossed module in this way.

Lemma 4.4. If G is a metrizable Lie 2-group, then

1Submersion in the sense that it is locally a projection, see Appendix A
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1. all spaces NGn have the homotopy type of a CW complex;

2. the nerve NG is good, i.e. all degeneracies are closed cofibrations;

3. the nerve NG is proper, i.e Reedy cofibrant as a simplicial space (with respect to the
Strøm model structure);

4. the canonical map from the fat geometric realization ‖NG‖ to the ordinary geometric
realization |G| is a homotopy equivalence;

5. the geometric realization |G| has the homotopy type of a CW-complex.

Proof. 1) First note that all the spaces (NG)n are subspaces of (G1)
n and thus are metrizable.

Hence by Theorem A.5 they have the homotopy type of a CW-complex.
2) Again using the fact that all (NG)n are metrizbable and [Pa66, Theorem 7] we see

that they are well-pointed in the sense that the basepoint inclusion is a closed cofibration.
A statment of Roberts and Stevenson [RS11, Proposition 18] then shows that NG is good,
i.e., degeneracy maps are closed cofibrations. We roughly sketch a variant of their argument
here: By the fact that G is a 2-group we can write the nerve as

· · ·
//
//
//
//
ker(s)× ker(s)× G0

//
//
// ker(s)× G0

//
// G0

where the decomposition is a decomposition on the level of topological spaces. Hence to show
that the degeneracies are closed cofibrations it suffices to show that ker(s) is well-pointed.
But it is a retract of G1 = G0 × ker s hence well pointed by the fact that G1 is well pointed.

3) Now we know that NG is good and in this case [Le82, Corollary 2.4(b)] implies that
NG is also proper.

4) By [Se74, Proposition A1] (resp [tD74, Proposition 1]) the fat and the ordinary geo-
metric realizations are homotopy equivalent.

5) Since all the spaces (NG)n have the homotopy type of a CW-complex, also the fat
geometric realization has the homotopy type of a CW complex [Se74, Proposition A1]. Thus
also the ordinary realization by 4).

Proposition 4.5. If G and G ′ are metrizable Lie 2-groups and f : G → G ′ is a homomor-
phism that is a weak homotopy equivalence on objects and morphisms, then

|f | : |G| → |G ′|

is a homotopy equivalence.

Proof. First note that Nf : NG → NG ′ is a levelwise weak homotopy equivalence. For the
first two layers this is the assumption and for the rest it follows again from the product
structure of the nerves given in the proof of Lemma 4.4 and the fact that Nf is also a
product map. Then using [Ma74, Proposition A4] and the fact that NG and NG ′ are
proper we conclude that also |f | : |G| → |G ′| is a weak homotopy equivalence. But since
the geometric realizations have the homotopy type of a CW-complex, Whitehead’s theorem
shows that |f | is an honest homotopy equivalence.

For smooth groupoids there is a notion of weak equivalence which is inspired by equiva-
lence of the associated stacks, see e.g. [Me03, Definition 58 and Proposition 60]. We adopt
this for 2-groups.

Definition 4.6. A morphism f : G → G ′ of Lie 2-groups is called smooth weak equivalence
if the following conditions are satisfied:
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1. it is smoothly essentially surjective: the map

s ◦ pr2 : G0 f0×t G
′
1 → G ′

0

is a surjective submersion.

2. it is smoothly fully faithful: the diagram

G1
f1

//

s×t

��

G ′
1

s×t

��

G0 × G0 f0×f0

// G ′
0 × G ′

0

is a pullback diagram.

Proposition 4.7. Let f : G → G ′ be a smooth weak equivalence between metrizable 2-groups.
Then |f | : |G| → |G ′| is a homotopy equivalence.

Proof. A smooth weak equivalence between 2-groups is in particular a topological weak
equivalence of the underlying topological groupoids. But then Theorem 6.3 and Theorem
8.2. of [No10] together imply that the induced morphism ‖f‖ : ‖G‖ → ‖G ′‖ between the fat
geometric realizations is a weak equivalence. Again by the fact the the fat realizations are
homotopy equivalent to the geometric realizations this completes the proof.

Definition 4.8. If G is a Lie 2-group, then we denote by π0G the group of isomorphism
classes of objects in G and by π1G the group of automorphisms of 1 ∈ G0. Note that π1G is
abelian. We call G smoothly separable if π1G is a split Lie subgroup2 of G1 and π0G carries
a Lie group structure such that G0 → π0G is a submersion.

Proposition 4.9. 1. A morphism between smoothly seperable Lie 2-groups is a smooth
weak equivalence if and only if it induces Lie group isomorphisms on π0 and π1.

2. For a metrizable, smoothly seperable Lie 2-group G the sequence

|Bπ1G| → |G| → π0G

is a fiber sequence of topological groups. Moreover, the right hand map is a fiber bundle
and the left map is a homotopy equivalence to its fiber.

Proof. The first claim will be proved in Appendix B. We thus show the second. Let us
first consider the morphism q : G → π0G of 2-groups where π0G is considered as a 2-group
with only identity morphisms. Let K be the levelwise kernel of this map, i.e., K0 = ker(q0)
and K1 = ker(q1). Since q1 = q0 ◦ s it is a submersion, K0 and K1 are Lie subgroups and K
is a metrizable Lie 2-group. Then NK → NG → Nπ0G is an exact sequence of simplicial
groups. It is easy to see that the geometric realization of this sequence is also exact, e.g., by
using the fact that geometric realization preserves pullbacks [Ma74, Corollary 11.6]. Hence
we have an exact sequence of topological groups.

|K| → |G| → π0G

2Split Lie subgroup in the sense of Definition A.2
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Moreover the right hand map is a |K|-bundle since by the definition of smooth separability
it admits local sections. Thus it only remains to show that |Bπ1G| ≃ |K|. Now the inclusion
Bπ1G → K is a smooth weak equivalence, which we can either see using the first part of the
Proposition or by a direct argument. Then Proposition 4.7 shows that the realization is a
homotopy equivalence.

Definition 4.10. Let G be a compact simple and simply connected Lie group. A smooth 2-
group model for the string group is a smooth 2-group G which is smoothly seperable together
with isomophisms

π0G
∼
−→ G and π1G

∼
−→ U(1)

such that |G| → G is a 3-connected cover.

Remark 4.11. • Note that for a smooth 2-group model the geometric realization |G|
with the canonical map |G| → G is automatically a topological group model for the
string group.

• For a 2-group G with isomorphisms π0G
∼
−→ G and π1G

∼
−→ U(1) we already know from

Proposition 4.9 that |G| → G is a fibration with fiber |BU(1)| ≃ K(Z, 2). Hence the
condition that |G| → G is a 3-connected cover only ensures that it has the right level,
i.e. the connecting homomorphism in the long exact homotopy sequenceZ = π3(G) → π2(K(Z, 2)) = Z
is an isomorphism.

• Considering String
G
as a category with only identity morphisms we obtain a 2-group as

in Example 4.3. However, in this case π1String G is trivial. So it is not a 2-group model
as defined above, although its geometric realization is a topological group model.

5 The string group as a 2-group

The previous remark shows that Lie 2-group models have more structure than topological
or Lie group models for the string group. In this section we promote our Lie group model
from Section 3 to such a Lie 2-group model. Therefore the setting will be as in Section 3:
G is a compact simple, simply-connected Lie group and P → G is a smooth PU(H) bundle
that represents the generator 1 ∈ H3(G,Z) ∼= Z.

Clearly we have the central extension U(1) → U(H) → PU(H). Furthermore PU(H)
acts by conjugation on U(H). Using these maps we obtain a sequence

C∞(G,U(1)) → C∞(P, U(H))PU(H) → Gau (P ), (8)

which is a central extension of Fréchet–Lie groups by Proposition 2.7.
For the next proposition note that that each smooth function f ∈ C∞(G,U(1)) is a

quotient of a smooth function f̂ ∈ C∞(G,R) by the fact the G is simply connected. If we
identify U(1) with R/Z we may thus identify C∞(G,U(1)) with C∞(G,R)/Z.
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Lemma 5.1. If µ is the Haar measure on G, then the map

IG : C
∞(G,U(1)) → U(1), IG

[
f̂
]
:=

[∫

G

f̂ dµ

]

is a smooth group homomorphism. This map IG is invariant under the right action of G on
C∞(G,U(1)) which is given by left multiplication in the argument.

Proof. We denote by dIG : C∞(G,R) the map on Lie algebras that is given by dIG(f) :=∫
G
f dµ. First note that dIG is linear and continuous in the topology of uniform convergence

since we have |
∫
G
f dµ| ≤

∫
G
|f | dµ. It thus is also continuous in the finer C∞-topology and

in particular smooth. Furthermore it is invariant under left multiplication with G. Moreover,
dIG factors since it maps Z ⊂ C∞(G,R) to Z ⊂ R.

Now we can use the group homomorphism IG to turn the smooth extension (8) into a
U(1) extension:

Definition 5.2. We define

Ĝ au (P ) := C∞(P, U(H))PU(H) × U(1)
/
∼,

where we identify (ϕ · µ, λ) ∼ (ϕ, IG(µ) · λ) for µ ∈ C∞(G,U(1)).

Proposition 5.3. The sequence

U(1) → Ĝ au (P ) → Gau (P ) (9)

is a central extension of metrizable Fréchet Lie groups and the space Ĝ au (P ) is contractible.

Proof. By definition of Ĝ au (P ) it is just the association of the bundle C∞(P, U(H))PU(H) →
Gau (P ) along the homomorphism IG : C∞(G,U(1)) → U(1). Hence it is a smooth man-
ifold and a central extension of Gau (P ). More precisely we may take a locally smooth
C∞(G,U(1))-valued cocycle describing the central extension (8). Composing this with IG
yields then a locally smooth cocycle representing the central extension (9) (cf. [Ne02, Propo-
sition 4.2]). Since the modeling space is the product of the modeling space of the fiber and

the base it is in particular Fréchet. In addition, Ĝ au (P ) is metrizable by Lemma 2.3 and
Lemma 2.6.

Now we come to the second part of the claim. In order to show that Ĝ au (P ) is weakly con-

tractible we first define another space G̃ au (P ) using the homomorphism ev : C∞(G,U(1)) →
U(1) instead of IG. More precisely,

G̃ au (P ) := C∞(P, U(H))PU(H) × U(1)
/
∼ev

where we identify (ϕ · µ, λ) ∼ev (ϕ, µ(1) · λ) for µ ∈ C∞(G,U(1)). Note that ev is smooth

since arbitrary point evaluations are so. Thus G̃ au (P ) is a U(1) central extension of Gau (P )
as well an also metrizable by Lemma 2.6.

We claim that the Ĝ au (P ) and G̃ au (P ) are homeomorphic as spaces (not as groups).
Therefore we first show that the homomorphisms ev and IG are homotopic as group homo-
morphisms, i.e. there is a homotopy

H : C∞(G,U(1))× [0, 1] → U(1)
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such that each Ht := H(−, t) is a Lie group homomorphism, H0 = ev and H1 = IG. We first
define the smooth map

dH : C∞(G,R)× [0, 1] → R, (f, t) 7→ t · f(1) + (1− t) ·

∫

G

f dµ

Since each dHt maps Z into Z it in particular induces a smooth group homomorphism Ht via
the identification C∞(G,U(1)) ∼= C∞(G,R)/Z. Now we can use Ht to define a U(1)-bundle
E over Gau (P )× [0, 1] by

E := C∞(P, U(H))PU(H) × U(1)× [0, 1]
/
∼H

where we identify (ϕ · µ, λ, t) ∼H (ϕ,H(µ, t) · λ, t). Obviously E
∣∣
Gau (P )×0

∼= G̃ au (P ) and

E
∣∣
Gau (P )×1

∼= Ĝ au (P ). Thus G̃ au (P ) and Ĝ au (P ) are isomorphic as continuous bundles

[tD08, Theorem 14.3.2].

Since we now know that Ĝ au (P ) ∼= G̃ au (P ), it is sufficient to show that G̃ au is con-
tractible. To this end we first pick a point p ∈ P in the fiber over 1 ∈ G. Evaluation at p
yields a group homomorphism

ev : Gau (P ) = C∞(P, PU(H))PU(H) → PU(H).

which is a weak homotopy equivalence by [St96, Lemma 5.6] and Proposition 2.5. We now

define another Lie group homomorphism Φ : G̃ au (P ) → U(H) by Φ([ϕ, λ]) := λ · ϕ(p). By

definition of G̃ au (P ) this is well defined and the diagram

U(1) // G̃ au (P ) //

Φ

��

Gau (P )

ev

��

U(1) // U(H) // PU(H)

.

commutes. Since ev is a weak homotopy equivalence it follows from the long exact homotopy
sequence and the Five Lemma that also Φ is a weak homotopy equivalence. Therefore the

weak contractibility of G̃ au (P ) is implied by the weak contractibility of U(H). This also

implies contractibility of G̃ au (P ) by Theorem A.5.

Combining the two sequences (6) and (9) we obtain an exact sequence

1 → U(1) → Ĝ au (P )
∂
−→ String

G
→ G → 1 (10)

of Fréchet Lie groups, where ∂ is the composition Ĝ au (P ) → Gau (P ) → String
G
. We

furthermore define a smooth right action of String
G
on Ĝ au (P ) by:

[ϕ, λ]f := [ϕ ◦ f, λ] for f ∈ String
G
⊂ Aut(P ). (11)

Proposition 5.4. The action is well defined. Together with the morphism ∂ : Ĝ au (P ) →
String

G
this forms a smooth crossed module.
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Proof. The action is well-defined since for ϕ ∈ C∞(P, U(H))PU(H), µ ∈ C∞(G,U(1)) and
f ∈ String

G
we have

[(ϕ · µ) ◦ f, λ] = [(ϕ ◦ f) · (µ ◦Q(f)), λ] = [ϕ ◦ f, IG(µ ◦Q(f)) · λ] = [ϕ ◦ f, IG(µ) · λ]

where the last equality holds by the fact that IG is invariant under left multiplication as
shown in Lemma 5.1.

The action of Aut(P ) on Gau (P ) ∼= C∞(P, PU(H))PU(H), given by ϕf := ϕ ◦ f is the
conjugation action of Gau (P ) on itself [Wo07, Remark 2.8]. This shows that ∂ is equivariant
and that (10) and (11) define indeed a crossed module. It thus remains to show that the

action map Ĝ au (P )× String
G
→ Ĝ au (P ) is smooth. Since String

G
acts by diffeomorphisms

it suffices to show that the restriction of the action map U × Ĝ au (P ) → Ĝ au (P ) for U
some identity neighborhood in String

G
is smooth. By Theorem 3.6 we find some U which is

diffeomorphic to Gau (P )× O for some open O ⊂ G with 1G ∈ O. Writing out the induced

map Ĝ au (P )×Gau (P )×O → Ĝ au (P ) in local coordinates one sees that the smoothness of
this map is implied from the smoothness of the action of Gau (P ) on C∞(P, U(H))PU(H) and
the smoothness of the natural action C∞(G,U(H)) × Diff(G) → C∞(G,U(H)), (ϕ, f) 7→
ϕ ◦ f [GN11].

Definition 5.5. Let G be a compact simple and simply connected Lie group. Then we
define STRINGG to be the metrizable Fréchet Lie 2-group associated to the crossed module(
Ĝ au (P )

∂
−→ String

G

)
according to example 4.3.

In more detail we have

(
STRINGG

)
0
:= String

G
and

(
STRINGG

)
1
:= Ĝ au (P )⋊ String

G

with structure maps given by

s(g, f) = f t(g, f) = ∂(g)h i(f) = (1, f) and (g, f) ◦ (g′, f ′) = (gg′, f).

From the sequence (10) we obtain isomorphisms

π0 STRINGG = coker(∂)
∼
−→ G and π1 STRINGG = ker(∂)

∼
−→ U(1). (12)

Moreover we can consider the Lie group String
G
from Definition 3.4 also as a 2-group which

has only identity morphisms, see Example 4.3. Then there is clearly an inclusion String
G
→

STRINGG of 2-groups.

Theorem 5.6. The 2-group STRINGG together with the isomorphisms (12) is a smooth 2-
group model for the string group (in the sense of Definition 4.10). The inclusion String

G
→

STRINGG induces a homotopy equivalence

String
G
→ | STRINGG |

Proof. We first want to show that the map String
G
= |String

G
| → | STRINGG | is a homotopy

equivalence. Therefore note that the inclusion functor String
G
→ STRINGG is given by the

identity on the level of objects and by the canonical inclusion

String
G
→ Ĝ au ⋊ String

G
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on the level of morphisms. Both of these maps are homotopy equivalences, the identity for

trivial reasons and the inclusion by the fact that Ĝ au is contractible as shown in Proposition
5.3. Since, furthermore, both Lie-2-groups are metrizable we can apply Proposition 4.5 and
conclude that the geometric realization of the functor is a homotopy equivalence.

It only reamains to show that | STRINGG | → G is a 3-connected cover. The homotopy
equivalence String

G
≃ | STRINGG | clearly commutes with the projection to G. Thus the

claim is a consequence of the fact that String
G
is a smooth String group model (in particular

a 3-connected cover) as shown in Theorem 3.6.

Remark 5.7. From Remark 2.8 we obtain a crossed module ˜Gau (PeG) → PString
G
, where

PString
G
is the restriction of the Lie group extension

Gau (P ) → Aut(P )0 → Diff(G)0 (13)

from [Wo07, Theorem 2.14] to G ⊂ Diff(G)0 and PString
G

⊂ Aut(PeG) acts canonically

˜Gau (PeG) := C∞(PeG, Ω̂G)ΩG. As in Definition 5.2 we then define Ĝ au (PeG) to be associ-

ated to ˜Gau (PeG) along the homomorphism IG. This furnishes another crossed module

Ĝ au (PeG) → PString
G
,

where the action of PString
G
⊂ Aut(PeG) is defined in the same way as in as in (11).

6 Comparison of string structures

One reason for the importance of Lie 2-groups is that they allow for a bundle theory analogous
to bundles for Lie groups. These 2-bundles play for example a role in mathematical physics.
In particular in supersymmetric sigma models, which are used to describe fermionic string
theories, they serve as target space background data [FM06, Wa09, Bu09]. For a precise
definition of 2-bundles we refer the reader to [NW11] or [Wo09]. We mainly need the following
facts about smooth 2-bundles here

1. For a Lie 2-group G and a finite dimensional manifoldM all 2-bundles form a bicategory
2-BunG(M) [NW11, Definition 6.1.5].

2. For a smoothly separable, metrizable Lie 2-group G isomorphism classes of G-2-bundles

are in bijection with non-abelian cohomology Ȟ
1
(M,G) and with isomorphism classes

of continuous |G|-bundles [NW11, Theorem 4.6, Theorem 5.3.2 and Theorem 7.1].

3. For a Lie group G considered as a Lie 2-group (as in example 4.3) the definition of
2-bundles reduces to that of 1-bundles. More precisely we have an equivalence of bicat-
egories BunG(M) → 2-BunG(M) where BunG(M) is considered as a bicategory with
only identity 2-morphisms [NW11, Example 5.1.8]. Moreover non-abelian cohomology

Ȟ
1
(M,G) reduces in this case to the ordinary Čech-cohomology.

4. For a morphism of G → G ′ of Lie 2-groups we have an induced functor 2-BunG(M) →

2-BunG′(M) and an induced morphism Ȟ
1
(M,G) → Ȟ

1
(M,G ′). For a smooth weak

equivalence between metrizable, smoothly separable 2-groups the induced functor is
an equivalence of bicategories. [NW11, Theorem 6.2.2].
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Proposition 6.1. The inclusion String
G
→ STRINGG induces a functor

BunString
G

(M) → 2-Bun
STRINGG

(M)

which on isomorphism classes is given by the induced map

Ȟ
1(
M, String

G

)
→ Ȟ

1(
M, STRINGG

)

for each finite dimensional manifold M . This map is a bijection.

Proof. This follows essentially from the fact that the geometric realizations of the functor
String

G
→ | STRINGG | is a homotopy equivalence as shown in Theorem 5.6. Then one

knows that the induced map between isomorphism classes of continuous String
G
-bundles

and | STRINGG |-bundles is an isomorphisms. Then the claim follows by the facts given
above.

The importance of the last proposition is that it allows to directly compare String
G
-

structures and STRINGG-structures. We mainly built the 2-group model STRINGG in order
to have such a comparison available. Now one can use the STRINGG 2-group and compare
it in the world of Lie 2-groups to other smooth 2-group models and so obtain an overall
comparison. We will make precise what this means in detail:

Definition 6.2. A morphism between 2-group models G and G ′ is a smooth homomorphism
f : G → G ′ such that the diagrams

π0G
π
0
f

//

∼
!!

BB
BB

BB
BB

π0G
′

∼
}}{{

{{
{{

{{

G

and π1G
π
1
f

//

∼
""

EEE
EE

EEE
π1G

′

∼
||xxx

xx
xxx

U(1)

commute.

Proposition 6.3. Let f : G → G ′ be a morphism between metrizable, smoothly separable
smooth 2-group models.

1. Then f is automatically a smooth weak equivalence of 2-groups.

2. The geometric realization |f | : |G| → |G ′| is a homotopy equivalence of topological
groups. Furthermore it commutes with the projection to G and the inclusion of |BU(1)|
(see proposition 4.9).

3. For a manifold M the induced functor

f∗ : 2-BunG(M) → 2-BunG′(M).

is an equivalence of bicategories.

Proof. The first assertion follows from the characterization of weak equivalences given in
Proposition 4.9 and the second from Proposition 4.7. The last statement is then implied by
fact 4 mentioned above.

This shows that from such a morphism between 2-group models we can directly derive
comparisons between the bundle theories. Of course one should allow spans of such mor-
phisms. An interesting thing would be to give directly such a span connecting our model
STRINGG to the model given in [BCSS07]. There are cohomological reasons to expect that
such a span should exist [WW].
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A Locally convex manifolds and Lie groups

In this section we provide the necessary information to clarify the differential geometric
background. If X, Y are locally convex vector spaces and U ⊂ X is open, then f : U → Y is
called continuously differentiable if for each v ∈ X the limit

df(x).v := lim
h→0

1

h
(f(x+ hv)− f(x)) (14)

exists and the map U × X → Y , (x, v) 7→ df(x).v is continuous. It is called smooth if the
iterated derivatives dnf : U×Xn → Y exist and are also continuous. Concepts like manifolds
and tangent bundles carry over to this setting of differential calculus, in particular the notion
of Lie groups and their associated Lie algebras [GN11]. Moreover, manifolds in this sense
are in particular topological manifolds in the sense of [Pa66].

If M,N are manifolds and f : M → N is smooth, then we call f an immersion if for
each m ∈ M there exist charts around m and f(m) such that the corresponding coordinate
representation of f is an inclusion of the modeling space of M as a direct summand into
the modeling space of N . Analogously, f is called submersion if for each m ∈ M the
corresponding coordinate representation is a projection onto a direct summand (cf. [La99,
§II.2], [Ha82, Definition 4.4.8]).

If G is a Lie group, then a closed subgroup H ⊂ G is called Lie subgroup if it is also a
submanifold. This is not automatically the case in infinite dimensions (cf. [Bo98b, Exercise
III.8.2]). Moreover, if H is a closed Lie subgroup, then it need not be immersed as the
example of a non-complemented subspace in a Banach space shows.

Lemma A.1. If H ⊂ G is a closed subgroup and G/H carries an arbitrary Lie group
structure such that G → G/H is smooth, then the following are equivalent.

1. G → G/H admits smooth local sections around each point.

2. G → G/H is a locally trivial bundle.

3. G → G/H is a submersion.

In any of these cases H is an immersed Lie subgroup and G/H carries the quotient topology.

Proof. If G → G/H admits local sections, then

q−1(U) ∋ g 7→ (q(g), g · σ(q(g))−1) ∈ U ×H

defines a local trivialization of G → G/H . This shows equivalence of the first two statements
and with this aid on sees also the equivalence with the last statement. From the second
it follows in particular that H →֒ G is an immersion. Since submersions are open, and
since surjective open maps are quotient maps, the topology on G/H has to be the quotient
topology.

Definition A.2. (cf. [Ne07, Definition 2.1]) A split Lie subgroup of a Lie group is a closed
subgroup that fulfills one of the three equivalent conditions of the preceding lemma.
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Note that each immersed Lie subgroup of a Banach–Lie group is split by [Bo98b, Propo-
sition III.1.10]. This implies in particular that each closed subgroup of a finite-dimensinoal
Lie group is split by [Bo98b, Theorem III.8.2]. Also note that if H is closed and normal
and G/H carries a Lie group structure such that G → G/H is smooth, then a single local
smooth section can be moved around with the group multiplication to yield a local smooth
section around each point.

Proposition A.3. If X, Y, Z are manifolds, f : X → Z is smooth and g : Y → Z is a
submersion then the fiber product X×Z Y exists in the category of smooth manifolds and the
projection

X ×Z Y → X

is a submersion. Moreover the identity is a submersion and the composition of submersions
is again a submersion. That means submersions form a Grothendick pretopology (see [Me03,
Definition 5]) on the category of smooth manifolds

Proof. This is a slight generalization of [Ha82, 4.4.10]. The proof of [La99, Proposition II.2.6],
showing that the first statement is a local one and of [La99, Proposition II.2.7], showing this
for a projection carry over literally to our more general setting. Moreover, the question of
being a submersion is also local, so [La99, Proposition II.2.7] shows that X ×Z Y → X is
one.

Corollary A.4. The fibers of a submersion are submanifolds.

A manifold is called metrizable if the underlying topology is so. Note that metrizable
is equivalent to paracompact and locally metrizable [Pa66, Theorem 1]. Thus a Fréchet
manifold is metrizable if and only if it is paracompact. Moreover, we have the following

Theorem A.5. A metrizable manifold has the homotopy type of a CW-complex. In partic-
ular, weak homotopy equivalences between metrizable manifolds are homotopy equivalences.

Proof. By [Pa66, Theorem 14] a metrizable manifold is dominated by CW-complex. By a
theorem of Whitehead this implies that it has the homotopy type of a CW-complex (cf.
[Ha02, Prop. A.11]).

B A characterization of smooth weak equivalences

In this section we will exclusively be concerned with smoothly separable Lie 2-groups. Recall
that for a smoothly separable Lie 2-group G we require among other things that π1G is a
split Lie subgroup. Our main goal here is to prove part 1 of Proposition 4.9. This will be
done in several steps.

Lemma B.1. Let G be a smoothly separable Lie 2-group Then the map s×t : G1 → G0×π
0
GG0

is a surjective submersion.

Proof. By definition the map s × t is a surjective map onto the submanifold G0 ×π
0
G G0 of

G0 × G0

It admits local sections because its kernel π1G is a split Lie subgroup. By Lemma A.1
this implies that it is a submersion.
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Proposition B.2. Let f : G → G ′ be a morphism of smoothly separable Lie 2-groups inducing
an isomorphism on π1. Then f is smoothly fully faithful, i.e.,

G1
f

//

s×t

��

G ′
1

s×t

��

G0 × G0 f×f
// G ′

0 × G ′
0

is a pullback diagram of Lie groups.

Proof. It is clear that this is a pullback diagram of groups by the general theory of 2-groups.
Let H be a Lie group and consider the diagram

H
a

''

b

��

h

##H
H

H
H

H

G1
f

//

s×t

��

G ′
1

s×t

��

G0 × G0 f×f
// G ′

0 × G ′
0

where a, b are morphisms of Lie groups. We have to show that the unique map h : H → G1

supplied by the pullback of groups is also smooth. By Lemma B.1 there exists a smooth
local section γ : U → G1 of s × t, defined on an indentity neighbourhood U ⊂ G0 ×π

0
G0.

Since b maps to G0 ×π
0
G0, V := b−1(U) is an open identity neighborhood in H.

We now observe that

h′ : V → G1, x 7→ γ(b(x)) · (π1f1)
−1(f1(γ(b(x)))

−1 · a(x))

is smooth since f1(γ(b(x)))
−1 · a(x) ∈ π1G

′ and f1 restricts to a diffeomorphism π1G → π1G
′.

It satisfies f1 ◦h
′ = a|V , and we also have (s× t) ◦h′ = b since γ is a section of s× t. Thus

h coincides with h′ on V , showing that h is a smooth homomorphism of Lie groups.

Proposition B.3. Let f : G → G ′ be a morphism of smoothly separable Lie 2-groups inducing
an isomorphism on π0. Then f is smoothly essentially surjective, i.e., the morphism

s ◦ pr2 : G0 f0×t G
′
1 → G ′

0

is a smooth submersion.

Proof. Surjectivity is clear because f is surjective on π0. To see that s ◦ pr2 is a submersion
we will construct a local smooth section. Since the map p : G0 → π0G is a submersion there
exists a local section σ : U → G0 of p.

For brevity let us denote the “roundtrip” map, restricted to V := p′−1(π0f(U)) as R =
f0 ◦σ ◦ (π0f)

−1 ◦p′. For x ∈ V we then have x ∼= R(x) and thus (x,R(x)) ∈ G ′
0×π

0
G G

′
0. Now

there exists a local smooth section τ : W → G ′
1 of s′ × t′ for W ⊂ V ×π

0
G′ V open. Then

S : ( idG′

0

∣∣
V
× R)−1(W ) → G0 f0×t G

′
1

x 7→ (σ((π0f)
−1(p′(x))), τ(x,R(x)))

is the required section since we have

f0(σ((π0f)
−1(p′(x)))) = R(x) = t(τ(x,R(x)))

and s(τ(x)) = x.
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Corollary B.4. If f : G → G ′ is a morphism of smoothly separable Lie 2-groups inducing
isomorphisms on π0 and π1 then f is a weak equivalence.

The converse of the first part of Proposition 4.9 also holds:

Proposition B.5. A smooth weak equivalence f : G → G ′ of smoothly separable Lie 2-groups
induces isomorphisms on π0 and π1.

Proof. Since f is in particular an equivalence of the underlying categories in the set-theoretic
sense, it is clear that its induced morphisms π0f : π0G → π0G

′ and π1f : π1G → π1G
′ are

group isomorphisms. From the diagram

G0 f0×t G
′
1
pr2

//

��

G ′
1

s

��

G0
f0

//

p

��

G ′
0

p′

��

π0G π
0
f

// π0G
′
0

(15)

we see that π0f is smooth since we can pick a local section σ : π0G → G0 of the submersion
p : G0 → π0G, which shows that locally

π0f = p′ ◦ f0 ◦ σ.

To see that (π0f)
−1 is smooth as well we choose a local section σ′ : π0G

′ → G ′
0. Since we

know that s ◦ pr2 : G0 f0×t G
′
1 → G ′

0 is a submersion, we can also choose a section τ for
that map, and composing τ ◦ σ′ with the projection to G0 and finally to π0G coincides with
(π0f)

−1 which is therefore smooth.
To see that π1f is a diffeomorphism we use the fact that the diagram of part 2 of the

definition of a smooth weak equivalence is a pullback diagram. This implies in particular
that the restriction of f1 to the fiber over (1, 1), which is the submanifold π1G, is a smooth
bijective map. That its inverse is also smooth follows from the universal property of the
pullback: there exists a unique smooth map H : π1G

′ → π1G that makes the diagram

π1G
′

��

H

##F
F

F
F

F id

&&

π1G

s×t

��

f1
// π1G

′

s×t

��

(1, 1)
f0×f0

// (1, 1)

commute, so f1 ◦H = idπ
1
G′ which means that H is the inverse of f1 on π1G

′, which thus is
smooth.

This concludes the proof of the first part of Proposition 4.9.
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