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Abstract

A classical result of Halin states that if a graph G contains n disjoint rays for every n ∈ N, then G contains
infinitely many disjoint rays. The question how this generalizes to other graphs than rays leads to the notion
of ubiquity: a graph A is ubiquitous with respect to a relation ≤ between graphs (such as the subgraph
relation or the minor relation) if nA ≤ G for all n ∈ N implies ℵ0A ≤ G, where nA denotes the disjoint
union of n copies of A (for n ∈ N or n = ℵ0). A connected graph is tree-like if all its blocks are finite. The
main result of the present paper establishes a link between the concepts of ubiquity and well-quasi-ordering,
thus offering the possibility to apply well-quasi-ordering results (such as the graph minor theorem or Nash-
Williams’ tree theorem) to ubiquity problems. Several corollaries are derived showing that wide classes of
locally finite tree-like graphs are ubiquitous with respect to the minor or topological minor relation.
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1. Introduction

A basic result in infinite graph theory which is due to Halin [5] states that if a graph G contains n disjoint
rays for every n ∈ N, then G contains infinitely many disjoint rays. For a proof of Halin’s theorem differing
from Halin’s original argument, see the textbook of Diestel [4]. The question how this result generalizes to
other graphs than rays leads to the notion of ubiquity: following the terminology of Diestel [4], a graph A is
ubiquitous with respect to a relation ≤ between graphs (or ≤-ubiquitous for short) if nA ≤ G for all n ∈ N

implies ℵ0A ≤ G, where nA denotes the disjoint union of n copies of A (for n ∈ N or n = ℵ0). Typical
relations ≤ to be considered in this context are the subgraph relation (‘H is isomorphic to a subgraph of
G’), the topological minor relation, and the minor relation. Halin’s result, and its extension to double rays
[6], can then be reformulated as follows.

Theorem A (Halin [5, 6]). Each ray or double ray is ubiquitous with respect to the subgraph relation.

We write H 4 G to indicate that H is a minor of G and H ·⊆G means that H is a topological minor of G. One
easily finds that each finite graph is ubiquitous with respect to any of the three mentioned graph relations.
Also non-ubiquitous graphs with respect to each of these standard graph relations exist: examples for the
subgraph relation and the topological minor relation are displayed in Figures 1 and 2. Proofs that these
graphs possess the claimed properties can be obtained by slightly modifying the constructions described in
[1]; for other examples, see [7, 13].
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Fig. 1: A non-ubiquitous graph with respect to the subgraph relation.

. . .

Fig. 2: A non-ubiquitous graph with respect to the topological minor relation.

Examples for non-ubiquitous graphs with respect to the minor relation were constructed in [3]: those
examples are more complex and it is an open problem whether countable examples of such graphs exist (cf.
[3]). On the positive side, the following result has been obtained.

Theorem B (Andreae [2]). Every locally finite tree is ubiquitous with respect to the topological minor
relation.

As a direct consequence of Theorem B, one obtains that each ‘k-star’ is ubiquitous with respect to the
subgraph relation, where a k-star is a graph that results from k disjoint rays by identifying their initial
vertices (k ∈ N). Thus, in particular, Theorem B implies Theorem A. The mentioned results on the
subgraph relation and the topological minor relation can roughly be summarized as follows:

• some locally finite trees are ubiquitous with respect to the subgraph relation, but others do not share
this property (cf. Figure 1);

• all locally finite trees are ubiquitous with respect to the topological minor relation, but still there exist
simple structured ‘ray-like’ graphs which are not ·⊆-ubiquitous (cf. Figure 2).

These results suggest to go one step further and consider minors rather than topological minors. In [3] the
author of the present paper set up the following conjecture which has been named ubiquity conjecture (cf.
Diestel [4]):

Ubiquity conjecture (Andreae [3]). Every locally finite connected graph is ubiquitous with respect to the
minor relation.

Call a graph tree-like if it is connected and all its blocks are finite. Then, of course, every tree is a special
kind of tree-like graph and the graph displayed in Figure 2 is an example of a tree-like graph which is not
a tree. In order to establish partial results on the ubiquity conjecture, we focus on locally finite tree-like
graphs. An interesting feature of the proof of Theorem B given in [2] is that it makes use of Nash-Williams’
tree theorem [9]. This suggests that, in order to obtain results on 4-ubiquity, one should bring into play
the well-quasi-ordering results for minors due to Robertson and Seymour [11] and Thomas [12].

The central results of the present paper are the Theorems 1 and 2 presented in Section 3. Theorem 1 deals
with the ubiquity of locally finite tree-like graphs with respect to both the minor and the topological minor
relation. Generally speaking, the theorem provides a structural condition which is sufficient for a locally
finite tree-like graph to be 4-ubiquitous; Theorem 1 also includes a similar result for ·⊆-ubiquity and for
a class of graphs called ‘strongly tree-like’ (for a definition of this class, cf. Section 2). Theorem 2 is a
direct consequence of Theorem 1 and an additional lemma (Lemma 1). In the case of the minor relation,
the content of Theorem 2 can roughly be summarized by saying that a locally finite tree-like graph A is
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4-ubiquitous if certain sets of infinite rooted subgraphs of A are well-quasi-ordered by minors; in addition,
Theorem 2 provides a similar result for topological minors and for the aforementioned class of strongly
tree-like graphs. We shall derive from Theorem 2 a series of corollaries which we state now. (For the notion
of an end of an infinite graph, cf. Diestel [4].)

Corollary 1. A locally finite tree-like graph is 4-ubiquitous if its number of ends is finite.

Corollary 2. A locally finite tree-like graph is 4-ubiquitous if there exists a finite planar graph which is not
a minor of it.

Corollary 1 is derived from Theorem 2 of the present paper by making use of the graph minor theorem of
Robertson and Seymour [11], while Corollary 2 follows from Theorem 2 by application of the main result of
Thomas [12]. By making use of a result of Robertson and Seymour [10], one easily obtains that Corollary
2 can be reformulated in terms of bounded tree-width: a locally finite tree-like graph A is 4-ubiquitous if
there exists a k ∈ N such that all blocks of A have tree-width less than k.

As a direct consequence of Theorem 2 and Nash-Williams’ tree-theorem [9], one obtains the above Theo-
rem B. This yields another proof of Theorem B with similar methods as in [2] but in a more general context.
In fact we shall obtain the following result which is an extended version of Theorem B.

Corollary 3. For a locally finite connected graph A assume that all of its blocks are complete graphs. Then
A is 4-ubiquitous. Further, if all blocks of A are complete graphs K2, then A is ·⊆-ubiquitous.

The proof of Corollary 3 is based on Theorem 2 of the present paper and a labelled version of Nash-Williams’
tree-theorem which is due to Laver [8]. The following conjecture has been proposed by Thomas [12].

Thomas’ conjecture. The class of countable graphs is well-quasi-ordered by minors.

As a further consequence of Theorem 2, it is shown that the truth of Thomas’ conjecture would imply that
all locally finite tree-like graphs are 4-ubiquitous (cf. Corollary 4 in Section 3). Actually, as pointed out in
Section 3, this would already follow from the truth of a considerably relaxed version of Thomas’ conjecture.

The paper is organized as follows. In the remainder of the introduction, we shall collect some definitions
and notations. For graph-theoretic terminology used but not explained here, the reader is referred to the
textbook of Diestel [4]. Section 2 is devoted to Lemma 1 and its proof; also additional terminology is
introduced which will play a central role in the subsequent sections. In Section 3, Theorem 1 is presented
without proof and it is shown how Theorem 2 and its corollaries follow from Theorem 1. The remaining
sections are devoted to the proof of Theorem 1.

The graphs considered in this paper are undirected and without loops or multiple edges. Given a graph G,
we denote by V (G) and E(G) its vertex set and edge set, respectively. A graph for which some vertex has
been exhibited as its root is called a rooted graph (or rooted subgraph if it is addressed as a subgraph of some
graph). If in a graph G there exists a vertex which is incident with just one edge of G, then this edge is
called a pendant edge of G. Given sets A and B of vertices, we call a path P =

(
x0, . . . , xk

)
an A,B-path

if V (P ) ∩ A =
{
x0

}
and V (P ) ∩ B =

{
xk

}
. We write a,B-path rather than

{
a
}
, B-path and in a similar

way use A, b-path and a, b-path. For graphs R and S we write R,S-path rather than V (R), V (S)-path. For
a ray P , let a be its unique vertex of degree one and let b be an arbitrary vertex of P . Then P is called an
a-ray and a is the initial vertex of P ; moreover, the uniquely determined b-ray contained in P is the b-tail
of P and the a, b-path contained in P is an initial segment of P . A block of a graph is a maximal connected
subgraph without a cutvertex. A set X is well-quasi-ordered (wqo) by ≤, if ≤ is a reflexive and transitive
relation on X and if for every infinite sequence x1, x2, . . . of elements of X there are indices i, j such that
i < j and xi ≤ xj . The symbol N denotes the set of positive integers.

A ·⊆-embedding of a graph G into a graph H is an injective mapping ϕ defined on V (G) ∪ E(G) which
assigns to each v ∈ V (G) a vertex of H and to each edge vw ∈ E(G) a ϕ(v), ϕ(w)-path of H such that, for
every pair e1, e2 of distinct edges of G and every u ∈ V (G), neither ϕ(u) nor a vertex of ϕ(e2) occurs as an
inner vertex of ϕ(e1).
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A 4-embedding of G into H is a mapping ϕ which assigns to each v ∈ V (G) a connected subgraph ϕ(v) of
H and to each e ∈ E(G) an edge of H such that ϕ(v) ∩ ϕ(w) = ∅ whenever v, w are distinct vertices of G
and such that ϕ(e) is an edge between ϕ(v) and ϕ(w) if e = vw.

Let ϕ be a ≤-embedding of G into H with ≤ denoting one of the relations ·⊆ or 4. Then ϕ(G) denotes the
subgraph of H formed by all ϕ(x) with x ∈ V (G) ∪ E(G); the so-defined graph ϕ(G) is called a ≤-copy of
G in H. For ϕ as before and G′ ⊆ G, ϕ(G′) is defined similarly. If ϕ is a 4-embedding of some locally finite
graph into an arbitrary graph, then all graphs ϕ(v) can and without further mention will be assumed to be
finite.

2. Good representations

Let A be a locally finite infinite tree-like graph. Then there obviously exists an infinite sequence A0, A1, . . .
of finite connected nontrivial and pairwise distinct subgraphs of A together with a corresponding sequence
of (not necessarily distinct) vertices rn ∈ An (n = 0, 1, . . .) such that

(i) (A0 ∪ . . . ∪An−1) ∩An = rn (n = 1, 2, . . .) and

(ii) A =
∞⋃

n=0
An.

Indeed, one can choose the graphs A0, A1, . . . as the blocks of A, but each An may as well be the union of two
or more blocks. We call a family

(
An, rn

)
(n = 0, 1, . . .) of rooted subgraphs of A with the above properties

a decomposition of A; r0 is the root of the decomposition and the rooted graphs
(
An, rn

)
are its parts. If no

confusion is possible, we also refer to the unrooted graphs An as the parts of the decomposition. Typically,
whenever a locally finite infinite tree-like graph A is given, some fixed decomposition of it, denoted by D(A),
is given too; then the root r0 of D(A) is denoted by rA and sometimes A is tacitly considered as a rooted
graph with root rA. If it is clear from the context to which decomposition D(A) we refer, then the parts of
D(A) are also called parts of A.

For A as above, let D(A) be a fixed decomposition with parts and roots denoted as before. We define a
corresponding rooted tree T , called decomposition tree, as follows. The vertex set of T is the union R ∪ P
where R =

{
v ∈ V (A) : v = rn for some n ≥ 0

}
and P =

{
An : n ≥ 0

}
; an edge between vertices x and y

of T is drawn whenever x ∈ R, y ∈ P and x is contained in y. The vertex rA = r0 is the root of T . By ≤T ,
we denote the tree-order of T , i.e., a ≤T b whenever a, b are vertices of T such that a is on the uniquely
determined rA, b-path of T . For each v ∈ R, we define the branch B(A, v) of A as the subgraph of A which is
formed by all graphs An with v ≤T An. A branch B(A, v) will generally be considered as a rooted subgraph
of A with root v. For an infinite branch B(A, v), let P ⊆ B(A, v) be a v-ray. A vertex v′ of P is an essential
vertex of P if v′ = v or v′ is incident with two edges of P belonging to distinct parts of A.

Let C be a connected subgraph of A with A0 ⊆ C and such that C is the union of a finite number of parts
of A; moreover, let B(A, v1), . . . , B(A, vk) be disjoint branches of A. We say that C,B(A, vj) (j = 1, . . . , k)
is a representation of A if C ∩ B(A, vj) = vj (j = 1, . . . , k) and if A is the union of C with the branches
B(A, vj) (j = 1, . . . , k). When considering a representation of A, we sometimes want to explicitly mention
the underlying decomposition D(A); we then say that the representation is based on D(A).

Let ≤r be a relation defined on the class of rooted graphs. A representation C,B(A, vj) (j = 1, . . . , k)
of A is good with respect to ≤r if, for each j ∈

{
1, . . . , k

}
, there exists a vj-ray Pj ⊆ B(A, vj) such that

B(A, vj) ≤r B(A,w) for infinitely many essential vertices w of Pj (j = 1, . . . , k). For an rA-ray P ⊆ A, we
denote by B

(
D(A), P

)
the set of branches B(A, v) with v being an essential vertex of P .

Lemma 1. For a locally finite infinite tree-like graph A, let D(A) be a decomposition of A with root rA. Let
≤r be a relation on the class of rooted graphs and assume that, for each rA-ray P of A, the set B(D(A), P )
is wqo by ≤r. Then A possesses a representation based on D(A) which is good with respect to ≤r.
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Proof. Let (An, rn) (n = 0, 1, . . .) denote the parts of D(A) and, as above, let R =
{
v ∈ V (A) : v =

rn for some n ≥ 0
}
. Denote by T the corresponding decomposition tree and recall that rA = r0. Let R

′ be

the set of vertices v ∈ R \
{
rA

}
for which there exists a v-ray P ⊆ B(A, v) such that B(A, v) ≤r B(A,w) for

infinitely many essential vertices w of P . Define the subgraph C of A as the union of those An (n ≥ 0) for
which the corresponding rA, rn-path of T contains no vertex of R′. Then (trivially) A0 ⊆ C and one easily
finds that C is connected. We claim that C is finite.

For a contradiction, suppose that C is infinite. Then, by a well-known theorem of König, there exists an
rA-ray Q ⊆ C. Let w0 = rA, w1, w2, . . . be the roots of the branches contained in B(D(A), Q), in the order
in which they appear on Q. By assumption, B(D(A), Q) is wqo by ≤r, from which one readily obtains that
there exists an n0 ≥ 1 such that B(A,wn0

) ≤r B(A,wn) for infinitely many n ≥ n0. Hence, by considering
the wn0

-tail P of Q, one obtains wn0
∈ R′ and thus we have wn0+1 /∈ C, which is a contradiction.

Let v1, . . . , vk be the vertices of V (C)∩R′. It then follows from the definitions of R′ and C that C,B(A, vj)
(j = 1, . . . , k) is a representation of A based on D(A) which is good with respect to ≤r. �

For both the minor relation 4 and the topological minor relation ·⊆ we need variants 4r and ·⊆r for rooted
graphs which are defined as follows. Let ≤ be either 4 or ·⊆ and further let G and H be graphs for which
some vertices rG and rH have been exhibited as roots of G and H, respectively. Then G ≤r H means that
there exists a ≤-embedding ϕ : G → H, together with an rH , ϕ(rG)-path Q ⊆ H, such that Q has exactly
one vertex in common with ϕ(G). A ≤-embedding with this additional property is called a ≤r-embedding.
Obviously, for the case that ≤ is the minor relation, G ≤r H is equivalent to the existence of a ≤-embedding
ϕ : G → H with rH ∈ ϕ(rG). The relations 4r and ·⊆r are called the rooted minor relation and the rooted
topological minor relation, respectively. Instead of saying ‘with respect to the minor relation’ or ‘with respect
to the rooted minor relation’, we frequently just say ‘with respect to minors’, and a similar remark applies
where topological minors are concerned.

A graph is strongly tree-like if it is connected and all its bridgeless connected subgraphs are finite. Obviously,
each strongly tree-like graph is tree-like, but the converse does not hold (cf. Figure 2). For a locally finite
infinite tree-like graph A, let (An, rn) (n = 0, 1, . . .) be a decomposition of A for which the following
additional condition (iii) holds:

(iii) The degree of rn in A0 ∪ . . . ∪An−1 is 1 (n = 1, 2, . . .).

Then the decomposition (An, rn) (n = 0, 1, . . .) is called a strong decomposition of A. Obviously, if A
possesses a strong decomposition, then A is strongly tree-like. But also the converse is true: assuming that
A is a locally finite infinite strongly tree-like graph, a decomposition of A meeting condition (iii) can easily
be obtained by considering the maximal bridgeless connected subgraphs of A and the bridges connecting
them: let A0 emerge from an arbitrary maximal bridgeless connected subgraph of A by adding to it all
bridges emanating from it (plus incident vertices), and construct A1, A2, . . . in a similar way by adding to
appropriate maximal bridgeless connected subgraphs all but one of the emanating bridges. (We leave the
details to the reader.) A representation C,B(A, vj) (j = 1, . . . , k) of A based on a strong decomposition of
A is called a strong representation. Note that if C,B(A, vj) (j = 1, . . . , k) is a strong representation of A,
then it follows from the definitions that vj has degree 1 in C (j = 1, . . . , k).

3. Main results and corollaries

Theorem 1. Let A be a locally finite infinite tree-like graph.

(i) If A possesses a good representation with respect to minors, then A is 4-ubiquitous.

(ii) If A possesses a strong representation which is good with respect to topological minors, then A is
·⊆-ubiquitous.
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The proof of Theorem 1 is postponed to the subsequent sections. The next theorem is an immediate
consequence of Theorem 1 and Lemma 1.

Theorem 2. Let A be a locally finite infinite tree-like graph.

(i) If A possesses a decomposition D(A) with root rA such that, for each rA-ray P of A, the set B(D(A), P )
is wqo by 4r, then A is 4-ubiquitous.

(ii) If A possesses a strong decomposition D(A) with root rA such that, for each rA-ray P of A, the set
B(D(A), P ) is wqo by ·⊆r, then A is ·⊆-ubiquitous.

We next derive several corollaries from Theorem 2.

Corollary 1. A locally finite tree-like graph is 4-ubiquitous if its number of ends is finite.

Proof. Let A be a locally finite tree-like graph with a finite number of ends. It may be assumed that A
is infinite. Let D(A) be an arbitrary decomposition of A with root rA and let P be an rA-ray of A. By
Theorem 2, we are done if we can show that B(D(A), P ) is wqo by 4r. To this end, let a0 = rA, a1, a2, . . . be
the essential vertices of P , in the order in which they appear on P . Since A has just a finite number of ends,
there exists an n0 ≥ 0 such that the branch B(A, an0

) possesses only one end. Let a′i := an0+i (i = 0, 1, . . .).
It follows that there are finite connected graphs A′

0, A
′

1, . . . having the following properties (cf. Figure 3):

(i) a′0 ∈ A′

0;

(ii) A′

i−1 ∩A
′

i = a′i (i = 1, 2, . . .);

(iii) B(A, a′i) =
∞⋃
j=i

A′

j (i = 0, 1, . . .).

a′0 a′1 a′2 a′3
A′

0 A′

1 A′

2
. . .

Fig. 3: A one-ended subgraph of A.

Call a graph birooted if an ordered pair of distinct vertices has been exhibited as its pair of roots. For
birooted graphs (G, r1, r2) and (H, s1, s2), we write (G, r1, r2) 42 (H, s1, s2) to indicate that there exists a
4-embedding ϕ : G → H with si ∈ ϕ(ri) (i = 1, 2). We shall use a ‘birooted version’ of the graph minor
theorem of Robertson and Seymour [11] stating that the class of finite birooted graphs is wqo by 42. This
version of the graph minor theorem is well-known. It can be derived from statement (10.4) of [11] in a
similar way as (10.5) is derived there. (Leaving all details to the reader, we just remark that in the context
of (10.4) and (10.5) of [11] it is useful to think of a birooted graph (G, r1, r2) as an ‘edge-labelled graph with
loops’ resulting from G by adding loops ℓ1 and ℓ2 at r1 and r2, respectively, with ℓ1 labelled 1, ℓ2 labelled
2, and all other edges labelled 0.)

We now consider the birooted graphs (A′

i, a
′

i, a
′

i+1) (i = 0, 1, . . .) and obtain as an easy consequence of the
mentioned birooted version of the graph minor theorem that there exists an i0 ≥ 0 such that, for each
i ≥ i0, there are infinitely many indices j ≥ i such that (A′

i, a
′

i, a
′

i+1) 42 (A′

j , a
′

j , a
′

j+1). From this one
obtains B(A, a′i) 4r B(A, a′k) for each pair i, k with i0 ≤ i < k, which implies that B(D(A), P ) is wqo by
4r. �

Corollary 2. A locally finite tree-like graph A is 4-ubiquitous if there exists a finite planar graph which is
not a minor of A.
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Proof. We may assume that A is infinite. Let D(A) be a decomposition of A with root rA and, further, let
P be an rA-ray of A. By Theorem 2, it is sufficient to show that B(D(A), P ) is wqo by 4r, but this easily
follows from the results of Thomas [12]. (Cf. the remark after this proof.) �

Remark. Denoting by Forb(H) the class of graphs which do not contain a given graph H as a minor, the
unrooted version of Thomas’ theorem [12] states that Forb(H) is wqo by 4 provided that H is a finite planar
graph. As an easy consequence of this result, one obtains the following rooted version of it which meets the
requirements of the above proof.

(1) For H finite and planar, let (G1, r1), (G2, r2), . . . be a sequence of rooted graphs with Gi ∈ Forb(H) (i =
1, 2, . . .). Then there exist indices i < j with (Gi, ri) 4r (Gj , rj).

We show how (1) can be derived from the corresponding statement for unrooted graphs: w.l.o.g we may
assume p1 ≤ p2 ≤ . . . where pi denotes the number of pendant edges of Gi which are incident with the root
ri (i = 1, 2, . . .). For an infinite cardinal α with α > |Gi| (i = 1, 2, . . .), let G+

i be a graph that results from
Gi by adding α new pendant edges to Gi, all incident with ri (i = 1, 2, . . .). Let H+ ⊇ H be a finite planar
graph without vertices of degree ≤ 1. Then Gi ∈ Forb(H) implies G+

i ∈ Forb(H+) and thus there exists a
4-embedding h : G+

i → G+
j for some i, j with i < j. From the choice of α, one obtains rj ∈ h(ri). Moreover,

one easily concludes from pi ≤ pj that h(Gi) ⊆ Gj may be assumed. Hence (Gi, ri) 4r (Gj , rj).

Corollary 3. For a locally finite connected graph A assume that all of its blocks are complete graphs. Then
A is 4-ubiquitous. Further, if all blocks of A are complete graphs K2, then A is ·⊆-ubiquitous.

Proof. The statement that A is ·⊆-ubiquitous if A is a tree immediately follows from Theorem 2 and Nash-
Williams’ tree-theorem. The statement on 4-ubiquity is an immediate consequence of Theorem 2 and the
following statement (2).

(2) The class B of connected rooted graphs for which all blocks are complete is wqo by 4r.

We sketch a proof of (2) leaving some of the details to the reader. Given a non-trivial rooted graph
(H, rH) ∈ B, associate with (H, rH) a rooted labelled tree T as follows. Define V (T ) as the union of V (H)
with the set of blocks of H and draw an edge between two vertices of T whenever one is a block and the
other one is a vertex of H contained in this block. Label a vertex of T with 1 if it is a block of H and with 0,
otherwise; take rH as the root of T . Consider a sequence (Hn, rn) (n = 1, 2, . . .) of non-trivial rooted graphs
contained in B and let Tn be the rooted labelled tree associated with (Hn, rn) (n = 1, 2, . . .). Then it follows
from a labelled version of Nash-Williams’ tree-theorem which is due to Laver [8] that there are indices i < j
for which there exists a ·⊆r-embedding h : Ti → Tj preserving the labels, i.e, 0-vertices are mapped onto
0-vertices and 1-vertices onto 1-vertices. From this one readily obtains (Hi, ri) 4r (Hj , rj). (Leaving all
further details to the reader, we just mention that a ·⊆r-embedding h : Ti → Tj induces a 4r-embedding

h̃ : Hi → Hj which maps each vertex v of Hi onto a ‘star with center h(v)’, i.e., a graph consisting of paths
emanating from h(v) and having only h(v) in common.) �

The above corollaries demonstrate how Theorem 2 can be used, in conjunction with appropriate wqo-results,
to obtain ubiquity results for certain classes of locally finite tree-like graphs. The following conjecture is due
to Thomas [12].

Thomas’ conjecture. The class of countable graphs is wqo by minors.

We now show that the truth of Thomas’ conjecture would imply that all locally finite tree-like graphs are
4-ubiquitous. Actually, we shall find that the truth of a considerably relaxed version of Thomas’ conjecture
would also do.

Call a graph almost locally finite if all its vertices have finite degree, except for exactly one vertex which
has countable degree and for which all but a finite number of neighbours have degree 1. Let C be the class
of almost locally finite tree-like graphs.
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Corollary 4. If C is wqo by 4, then every locally finite tree-like graph is 4-ubiquitous.

Proof. This is a direct consequence of Theorem 2 and the following statement which is easily seen to be
true.

(3) If C is wqo by 4, then the class of locally finite infinite rooted tree-like graphs is wqo by 4r. �

4. Thick subsets

In this section we will prove a series of lemmas preparing the proof of Theorem 1. With the exception of
Lemma 6, these lemmas deal with families of sets rather than graphs.

Definition. For each n ∈ N, let An be a set with |An| = n; put A =
∞⋃

n=1
An. A subset A′ of A is thick with

respect to the family of sets An (n ∈ N) if, for each k ∈ N, there exists an n ∈ N such that |A′ ∩ An| ≥ k. A
set A′ ⊆ A is thin with respect to An (n ∈ N) if it is not thick with respect to the given family An (n ∈ N).

In the following, we shall frequently use the notions ‘thick’ and ‘thin’ without specifying to which family of
sets we refer. In such cases there will always be under consideration a family of sets denoted by An (n ∈ N)
and ‘thick’ is just a shorthand for ‘thick with respect to the family An (n ∈ N)’. A similar remark applies
to ‘thin’.

The next two lemmas are immediate consequences of the definitions. They will frequently be used without
being mentioned explicitly.

Lemma 2. For each n ∈ N, let An be a set with |An| = n and put A =
∞⋃

n=1
An.

(i) The union of a finite number of thin subsets of A is again a thin subset of A.

(ii) If A′ is a thick and A′′ is a thin subset of A, then A′ \ A′′ is a thick subset of A.

Lemma 3. For each n ∈ N, let An be a set of n disjoint sets and let F be some finite set. Put A =
∞⋃

n=1
An.

Then A′ =
{
A ∈ A : A ∩ F 6= ∅

}
is a thin subset of A.

Lemma 4. For each n ∈ N, let An be a set with |An| = n. Then there exist disjoint sets A′

1,A
′

2, . . . such
that A′

k ⊆ Ank
for some nk ∈ N and |A′

k| = k (k = 1, 2, . . .).

Proof. Put n1 := 1 and A′

1 := A1. For some k ∈ N, assume that positive integers nj and disjoint
sets A′

j have already been defined such that A′

j ⊆ Anj
and

∣∣A′

j

∣∣ = j (j = 1, . . . , k). Then the union
A′

1 ∪ . . . ∪ A′

k is a finite set. Thus we can find an nk+1 ∈ N such that there exists a subset A′

k+1 of Ank+1

with A′

k+1 ∩ (A′

1 ∪ . . . ∪ A′

k) = ∅ and
∣∣A′

k+1

∣∣ = k + 1. This inductively defines n1, n2, . . . and A′

1,A
′

2, . . . as
desired. �

The next lemma is more complex; it will be used to obtain the subsequent Lemma 6 which is a cornerstone
in the proof of Theorem 1.

Lemma 5. For each n ∈ N, let A(n,1), . . . , A(n,n) be n distinct sets and put An =
{
A(n,m) : m = 1, . . . , n

}
.

Assume An1
∩ An2

= ∅ for all n1, n2 ∈ N (n1 6= n2) and let A =
∞⋃

n=1
An. Further, for each A(n,m) ∈ A,

assume that B
(n,m)
i (i ∈ I(n,m)) is a family of subsets of A(n,m), where I(n,m) is some index set. Then there

exists a thick subset A′ of A for which either (a) or (b) holds.

(a) For all A(n,m) ∈ A′ and all i ∈ I(n,m) there exists a thin subset E of A such that B
(n,m)
i ∩A(q,p) 6= ∅ for

all A(q,p) ∈ A′ \ E.
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(b) For all A(n,m) ∈ A′ there exists an i ∈ I(n,m) and a thin subset E of A such that B
(n,m)
i ∩A(q,p) = ∅ for

all A(q,p) ∈ A′ \ E.

Proof. We assume that there exists no thick subset A′ of A for which (a) holds and show that, under this
hypothesis, there is one for which (b) holds. Thus by assumption the following holds.

(4) For all thick subsets A′ of A there exists an A(n,m) ∈ A′ and a corresponding i ∈ I(n,m) such that, for

every thin subset E of A, there exists an A(q,p) ∈ A′ \ E such that B
(n,m)
i ∩A(q,p) = ∅.

We claim that, for each k ∈ N, the following statement (5) is a consequence of (4).

(5) For all thick subsets A′ of A there exist (for an appropriate n ∈ N) k distinct A(n,mj) ∈ A′ (j = 1, . . . , k),
together with corresponding indices ij ∈ I(n,mj) (j = 1, . . . , k) and together with a thick A′′ ⊆ A′, such

that B
(n,mj)
ij

∩A(q,p) = ∅ for all A(q,p) ∈ A′′ and all j ∈
{
1, . . . , k

}
.

The proof of (5) is carried out by induction on k. For k = 1, statement (5) readily follows from (4): for

given A′, let A(n,m) and i be as in (4) and put A′′ =
{
A(q,p) ∈ A′ : B

(n,m)
i ∩A(q,p) = ∅

}
. Then A′′ is not a

thin subset of A since, otherwise, choosing E = A′′ would result in a contraction to (4). Hence A′′ is thick,
which shows (5) for k = 1.

We now assume that (5) holds for some fixed k ∈ N. For a contradiction, suppose that (5) does not hold
for k + 1. Let A(1) be a thick subset of A showing that (5) is not valid for k + 1, i.e., one cannot find k + 1
members of A(1) having the properties addressed in (5).

LetA
(1)
∗ be the set of those A(n,m) ∈ A(1) for which

∣∣An ∩ A(1)
∣∣ ≥ k+1. BecauseA(1) is thick, the same holds

for A
(1)
∗ . Hence, by the induction hypothesis, we can find k distinct A(n1,mj) ∈ A

(1)
∗ (j = 1, . . . , k), together

with corresponding ij ∈ I(n1,mj) (j = 1, . . . , k) and a thick A(2) ⊆ A
(1)
∗ , such that B

(n1,mj)
ij

∩ A(q,p) = ∅ for

all A(q,p) ∈ A(2) and all j ∈
{
1, . . . , k

}
. By the definition of A

(1)
∗ , we can pick some A(n1,mk+1) ∈ An1

∩A(1)

such that A(n1,mk+1) 6= A(n1,mj) (j = 1, . . . , k). It follows that, for each i ∈ I(n1,mk+1), there exists a

thin subset E of A such that B
(n1,mk+1)
i ∩ A(q,p) 6= ∅ for all A(q,p) ∈ A(2) \ E since, otherwise, we could

pick ik+1 ∈ I(n1,mk+1) such that
{
A(q,p) ∈ A(2) : B

(n1,mk+1)
ik+1

∩ A(q,p) = ∅
}
is thick, in contradiction to our

supposition that (5) does not hold for A(1) and k + 1. We define

B1 :=
{
A(n1,mk+1)

}
.

Next, put A
(2)
∗ :=

{
A(n,m) ∈ A(2) :

∣∣An ∩ A(2)
∣∣ ≥ k + 2

}
and note that A

(2)
∗ is thick. Application of the

induction hypothesis to A
(2)
∗ yields k distinct A(n2,ℓj) ∈ A

(2)
∗ (j = 1, . . . , k), together with an element of

I(n2,ℓj) for each j ∈
{
1, . . . , k

}
and a thick A(3) ⊆ A

(2)
∗ according to (5). By the definition of A

(2)
∗ , we

can pick distinct sets A(n2,ℓk+1), A(n2,ℓk+2) ∈ An2
∩ A(2) such that A(n2,ℓk+r) 6= A(n2,ℓj) for r = 1, 2 and

j = 1, . . . , k. Similar as before it follows that, for each r ∈
{
1, 2

}
and each i ∈ I(n2,ℓk+r), there exists a thin

E such that B
(n2,ℓk+r)
i ∩A(q,p) 6= ∅ for all A(q,p) ∈ A(3) \ E . We put

B2 :=
{
A(n2,ℓk+r) : r = 1, 2

}
.

We next define A
(3)
∗ :=

{
A(n,m) ∈ A(3) :

∣∣An ∩ A(3)
∣∣ ≥ k + 3

}
and proceed as before to obtain a 3-element

set B3 defined in a similar way as B1 and B2. Going on like that, one inductively obtains for every q ∈ N

a q-element set Bq ⊆ Anq
(for some nq ∈ N) such that B =

∞⋃
q=1

Bq is a thick subset of A which meets (a).

This contradicts our assumption that no such thick subset exists. Hence (5).
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With the aid of (5), it is easy to find a thick subset of A which meets (b). To this end, we apply (5) to the
case A′ = A and k = 1. This results into a set A(n1,m1), together with an element of I(n1,m1) and a thick A(1)

according to (5). Next, we apply (5) to the case A′ = A(1) and k = 2 to obtain A(n2,ℓj) ∈ A(1) (j = 1, 2),
together with elements ij of I

(n2,ℓj) (j = 1, 2) and a thick A(2) ⊆ A(1) according to (5). Going on in this way,

one inductively obtains for every q ∈ N a q-element set Cq ⊆ Anq
(for some nq ∈ N) such that C =

∞⋃
q=1

Cq is

a thick subset of A which meets (b). �

Given for each n ∈ N a set An =
{
A(n,m) : m = 1, . . . , n

}
of n disjoint graphs, we shall frequently say that

one of the preceding lemmas is applied to the sets An (n ∈ N), by which we mean that the lemma is applied
to the corresponding sets

{
V (A(n,m)) : m = 1, . . . , n

}
(n ∈ N). In a similar way, notions like ‘thick’ and

‘thin’ are used when sets An (n ∈ N) of graphs are considered.

Lemma 6. For a locally finite infinite tree-like graph A, assume that D(A) is a decomposition of A and let
C,B(A, vj) (j = 1, . . . , k) be a representation of A based on D(A). Assume further that each branch B(A, vj)
is infinite and let Pj ⊆ B(A, vj) be a vj-ray (j = 1, . . . , k). Let ≤ be either the minor or the topological minor
relation. For a graph G, assume that for every n ∈ N there exist n disjoint subgraphs A(n,m) (m = 1, . . . , n)
of G such that A(n,m) = ϕ(n,m)(A) for a ≤-embedding ϕ(n,m) : A → G (n,m ∈ N, n ≥ m). Then one can
choose the graphs A(n,m) and the corresponding ≤-embeddings ϕ(n,m) such that, for each j ∈

{
1, . . . , k

}
,

either (a.j) or (b.j) holds (with A =
∞⋃

n=1
An for An =

{
A(n,m) : m = 1, . . . , n

}
).

(a.j) For all n,m ∈ N with n ≥ m and all essential vertices v of Pj there exists a thin subset E of A such
that ϕ(n,m)

(
B(A, v)

)
∩A(q,p) 6= ∅ for all A(q,p) ∈ A \ E.

(b.j) For all n,m ∈ N with n ≥ m there exists an essential vertex v of Pj and a thin subset E of A such
that ϕ(n,m)

(
B(A, v)

)
∩A(q,p) = ∅ for all A(q,p) ∈ A \ E.

Proof. We start with arbitrarily choosing sets An =
{
A(n,m) : m = 1, . . . , n

}
of n disjoint subgraphs of

G for which there exist ≤-embeddings ϕ(n,m) : A → G with ϕ(n,m)(A) = A(n,m) (n,m ∈ N, n ≥ m). By

Lemma 4, we may assume that the sets An (n = 1, 2, . . .) are pairwise disjoint; we put A =
∞⋃

n=1
An.

Now, Lemma 6 can be proved in an obvious way by iterated application of Lemma 5. The first step is to
apply Lemma 5 to the just chosen sets An (n ∈ N) with I(n,m) =

{
v : v is an essential vertex of P1

}
for all

n,m ∈ N (n ≥ m) and with the vertex sets of the graphs ϕ(n,m)
(
B(A, v)

)
in the role of the sets B

(n,m)
i .

This yields a thick subset A′ of A for which either (a’) or (b’) holds.

(a’) For all A(n,m) ∈ A′ and all essential vertices v of P1 there exists a thin subset E of A such that
ϕ(n,m)

(
B(A, v)

)
∩A(q,p) 6= ∅ for all A(q,p) ∈ A′ \ E .

(b’) For all A(n,m) ∈ A′ there exists an essential vertex v of P1 and a thin subset E of A such that
ϕ(n,m)

(
B(A, v)

)
∩A(q,p) = ∅ for all A(q,p) ∈ A′ \ E .

For each n ∈ N and a suitable qn, we pick exactly n members of A′ ∩Aqn and, for simplicity, denote the so
chosen graphs with A(n,m) (m = 1, . . . , n). Accordingly, we redefine An as the set of these graphs A(n,m)

and, in a similar manner, also ϕ(n,m) and A are redefined. One readily finds that, after these redefinitions,
either (a.1) or (b.1) holds. (Note that if E is a set as in (a’) or (b’), then (after the redefinition of A) the
intersection of E with the new A is a thin set with respect to the new family An (n ∈ N).) Iteration of the
procedure for P2, . . . , Pk yields the lemma. �

5. Proof of Theorem 1

Let A be a locally finite infinite tree-like graph. We prove both parts of Theorem 1 simultaneously. To this
end, let ≤ be either the minor relation 4 or the topological minor relation ·⊆. Let (An, rn) (n = 0, 1, . . .) be
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a decomposition of A and, if ≤ is the topological minor relation, assume that the decomposition is strong.
As before, we put rA := r0. Let further C,B(A, vj) (j = 1, . . . , k) be a representation of A based on (An, rn)
(n = 0, 1, . . .) which is good with respect to ≤r. (For a definition of the relation ≤r, see Section 2.) Thus
there exists a vj-ray Pj ⊆ B(A, vj) such that B(A, vj) ≤r B(A, v) for infinitely many essential vertices v of
Pj (j = 1, . . . , k). Hence, by the transitivity of ≤r, we have

(6) B(A, vj) ≤r B(A, v) for all essential vertices v of Pj (j = 1, . . . , k).

In order to show the ≤-ubiquity of A, let G be a graph for which nA ≤ G for all n ∈ N. Application of
Lemma 6 yields A(n,m), ϕ(n,m), An and A as described there (for n,m ∈ N, n ≥ m). Recall that we assume
ϕ(n,m)(v) to be finite for all n,m and all v ∈ V (A) (cf. the remark at the end of the introduction). Let (a.j)
and (b.j) be as in Lemma 6. We put

J1 :=
{
1 ≤ j ≤ k : j meets (a.j)

}

and
J2 :=

{
1 ≤ j ≤ k : j meets (b.j)

}
.

Note that J1 ∩ J2 = ∅ and J1 ∪ J2 =
{
1, . . . , k

}
. We start with considering the case J1 = ∅ and claim that,

under this hypothesis, the following holds.

(7) For all n,m ∈ N with n ≥ m there exists a subgraph Â(n,m) of A(n,m), together with a ≤-embedding

ϕ̂(n,m) : A → G with ϕ̂(n,m)(A) = Â(n,m) and together with a thin subset F (n,m) of A, such that

Â(n,m) ∩A(q,p) = ∅ for all A(q,p) ∈ A \ F (n,m).

The assumption J1 = ∅ means that for all n,m ∈ N with n ≥ m and all j ∈
{
1, . . . , k

}
there exists an

essential vertex v
(n,m)
j of Pj and a thin subset E

(n,m)
j of A such that ϕ(n,m)

(
B(A, v

(n,m)
j )

)
∩ A(q,p) = ∅ for

all A(q,p) ∈ A \ E
(n,m)
j . By (6) we have B(A, vj) ≤r B(A, v

(n,m)
j ) from which one concludes (by considering

a corresponding ≤-embedding B(A, vj) → B(A, v
(n,m)
j ) and composing it with ϕ(n,m)) that there exists

a ≤-embedding τ
(n,m)
j : B(A, vj) → ϕ(n,m)

(
B(A, v

(n,m)
j )

)
together with a ϕ(n,m)(v

(n,m)
j ), τ

(n,m)
j (vj)-path

Q
(n,m)
j ⊆ ϕ(n,m)

(
B(A, v

(n,m)
j )

)
such that Q

(n,m)
j has exactly one vertex in common with τ

(n,m)
j

(
B(A, vj)

)

(for all n,m ∈ N with n ≥ m and all j ∈
{
1, . . . , k

}
). Moreover, by appropriately extending Q

(n,m)
j , one

obtains a ϕ(n,m)(vj), τ
(n,m)
j (vj)-path P

(n,m)
j ⊆ ϕ(n,m)

(
B(A, vj)

)
which has exactly one vertex in common

with τ
(n,m)
j

(
B(A, vj)

)
(n,m ∈ N, n ≥ m, j ∈

{
1, . . . , k

}
). For all n,m with n ≥ m, let

Â(n,m) := ϕ(n,m)(C) ∪
k⋃

j=1

(
τ
(n,m)
j

(
B(A, vj)

)
∪ P

(n,m)
j

)
.

A corresponding ≤-embedding ϕ̂(n,m) : A→ G with ϕ̂(n,m)(A) = Â(n,m) is defined as follows. If ≤ is 4, then

ϕ̂(n,m)(vj) is defined as ϕ(n,m)(vj) ∪ P
(n,m)
j ∪ τ

(n,m)
j (vj). If ≤ is ·⊆, note that (because the representation

C,B(A, vj) (j = 1, . . . , k) is strong) each vj has degree 1 in C and thus we can define ϕ̂(n,m)(vj) := τ
(n,m)
j (vj)

and ϕ̂(n,m)(ej) := ϕ(n,m)(ej)∪P
(n,m)
j , where ej is the uniquely determined edge of C which is incident with

vj (j = 1, . . . , k). For all other vertices and edges of A, ϕ̂(n,m) is defined such that, in the obvious way, ϕ̂

either coincides with ϕ(n,m) or with τ
(n,m)
j for some j ∈

{
1, . . . , k

}
. From the construction of the graphs

Â(n,m) and with the aid of the Lemmas 2(i) and 3, one readily obtains (7).

By application of (7), one obtains infinitely many disjoint ≤-copies of A in G in the following (obvious) way.

Put A(1) := Â(n1,m1) for arbitrary n1,m1 ∈ N, n1 ≥ m1. If disjoint graphs A(p) = Â(np,mp) (p = 1, . . . , q)
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have been defined, then pick some A(nq+1,mq+1) which is not in F (np,mp) for all p ∈
{
1, . . . , q

}
and put

A(q+1) := Â(nq+1,mq+1). This defines ≤-copies A(1), A(2), . . . of A as desired, which settles the case J1 = ∅.

Let J1 6= ∅. We denote by T the decomposition tree associated with the decomposition (An, rn) (n = 0, 1, . . .)

of A (cf. Section 2). Denote by a1, a2, . . . those vertices of
⋃

j∈J1

B(A, vj) which are contained in the set

{
v ∈ V (A) : v = rn for some n ≥ 0

}
, where an1

6= an2
for n1 6= n2. If an ∈ V

(
B(A, vj)

)
, then denote by

d(an) the distance in the tree T between an and vj (n = 1, 2, . . .). We may assume that the order of the
vertices a1, a2, . . . has been chosen such that

(8) d(an1
) ≤ d(an2

) whenever n1 ≤ n2.

We now inductively define subgraphs S1, S2, . . . of A as follows. Let S1 := C ∪
⋃

j∈J2

B(A, vj). For n ≥ 1,

if Sn has already been defined, let Sn+1 be the union of Sn with those parts Ai of A having an as its

root. Then clearly S1 ⊆ S2 ⊆ . . . and
∞⋃

n=1
Sn = A. Also note that, as a consequence of (8), we have

an ∈ V (Sn) (n = 1, 2, . . .) and thus all graphs Sn are connected. Put

Vn :=
{
ai ∈ V (Sn) : i ≥ n

}
(n = 1, 2, . . .).

It then follows from the definitions that Vn is finite and that, for each ai ∈ Vn, there is just one part of A
which contains ai and which is a subgraph of Sn (n = 1, 2, . . .).

For n ∈ N, a subgraph D of G is of type n if it is locally finite and if there exists a ≤-embedding ψ : Sn → D,
together with a family D(v) (v ∈ Vn) of disjoint connected graphs, such that, firstly, D is the union of ψ(Sn)
with the graphs D(v) and, secondly,

(9) ψ(Sn) ∩D(v) = ψ(v) for all v ∈ Vn.

The graphs D(v) are called tentacles of D (with respect to ψ). Note that, if ψ̂ : A → G is a ≤-embedding,

then ψ̂(A) is of type n for every n ∈ N with the restriction of ψ̂ to Sn in the role of a corresponding

≤-embedding ψ : Sn → ψ̂(A) and with the graphs ψ̂
(
B(A, v)

)
(v ∈ Vn) as tentacles.

Let D be of type n with a corresponding ≤-embedding ψ : Sn → D and tentacles D(v) (v ∈ Vn). A thick
subset A′ of A is compatible with D and ψ if it meets the conditions (10) and (11).

(10) ψ(Sn) ∩A
′ = ∅ for all A′ ∈ A′.

(11) For each v ∈ Vn, either (11.1) or (11.2) holds:

(11.1) D(v) ∩A′ 6= ∅ for all A′ ∈ A′.

(11.2) D(v) ∩ A′ = ∅ for all A′ ∈ A′ and, in addition, there exists a ≤-embedding ϕ : B(A, v) → D(v)
with ϕ(v) = ψ(v).

For n ∈ N, let ψ : Sn → G and ψ′ : Sn+1 → G be ≤-embeddings such that ψ(Sn) is a subgraph of ψ′(Sn+1)
and such that ψ′ coincides with ψ on Sn − an. Then ψ

′ is called an extension of ψ.

Let D0 := ∅. For some n ≥ 0, assume that we have defined a set Dn of n disjoint subgraphs of G. If n ≥ 1
let Dn =

{
D(n,m) : m = 1, . . . , n

}
and assume that the graphs D(n,m) are of type n with corresponding

≤-embeddings ψ(n,m) : Sn → D(n,m) (m = 1, . . . , n); for n ≥ 1 also assume that there exists a thick subset
A(n) of A which is compatible with D(n,m) and ψ(n,m) for all m = 1, . . . , n.

Claim. Then there exists a set Dn+1 :=
{
D(n+1,m) : m = 1, . . . , n + 1

}
of n + 1 disjoint subgraphs of G

such that each D(n+1,m) is of type n+1 and such that, for corresponding ≤-embeddings ψ(n+1,m) : Sn+1 →
D(n+1,m) (m = 1, . . . , n+ 1), the following statements (12) and (13) hold.
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(12) If n ≥ 1, then ψ(n+1,m) is an extension of ψ(n,m) (m = 1, . . . , n).

(13) There exists a thick subset A(n+1) of A which is compatible with D(n+1,m) and ψ(n+1,m) for m =
1, . . . , n+ 1.

We show that the validity of this claim implies ℵ0A ≤ G. Indeed, assuming the truth of the claim, one
inductively obtains, for each n ∈ N, a set Dn =

{
D(n,m) : m = 1, . . . , n

}
of n disjoint subgraphs of G which

are of type n, together with corresponding ≤-embeddings ψ(n,m) : Sn → D(n,m) (m = 1, . . . , n), such that
ψ(n+1,m) is an extension of ψ(n,m) for all n,m ∈ N, n ≥ m. Put

A(m) :=

∞⋃

n=m

ψ(n,m)(Sn) (m = 1, 2, . . .).

Then, obviously, the graphs A(m) (m = 1, 2, . . .) are disjoint. Put S−

n := Sn − Vn (n = 1, 2, . . .). Then

S−

1 ⊆ S−

2 ⊆ . . . and A =
∞⋃

n=1
S−

n . Given m ∈ N it follows from (12) that, for each n ≥ m, all ≤-embeddings

ψ(n,m), ψ(n+1,m), . . . coincide on S−

n . From this one immediately obtains that each A(m) is a ≤-copy of A.
Hence ℵ0A ≤ G.

Thus, in order to finish the proof of Theorem 1, we have to prove the above claim. To this end, fix n ≥ 0
and let Dn be as above; if n ≥ 1, then also let D(n,m), ψ(n,m) (m = 1, . . . , n) and A(n) be as in the paragraph
before the claim. For the remainder of the proof, we shall mostly be concerned with the case n ≥ 1 and thus,
until stated otherwise, we assume n ≥ 1. Let D(n,m)(v) denote the tentacles of D(n,m) with respect to ψ(n,m)

(v ∈ Vn,m = 1, . . . , n). Since A(n) is compatible with D(n,m) and ψ(n,m) (m = 1, . . . , n), there are two kinds
of tentacles D(n,m)(v) (cf. (11)): let D(1) be the set of those D(n,m)(v) for which D(n,m)(v) ∩A′ 6= ∅ for all
A′ ∈ A(n) and let D(2) be the remainder of the D(n,m)(v). For notational simplicity, we put

D(1) =
{
D1, . . . , Ds

}
and D(2) =

{
Ds+1, . . . , Dt

}
.

Let q := s2+1. Since A(n) is a thick subset of A, there exists an nq ∈ N with
∣∣Anq

∩ A(n)
∣∣ ≥ q. Pick exactly

q members of Anq
∩ A(n), say, A(nq,p) (p = 1, . . . , q). Let

R :=
n⋃

m=1

ψ(n,m)(Sn) ∪
t−s⋃

r=1

Ds+r.

Since A(n) is compatible with D(n,m) and ψ(n,m) (m = 1, . . . , n), and by the definition of D(2), we have

(14) R ∩A(nq,p) = ∅ (p = 1, . . . , q).

Moreover, by the definition of D(1), we have Dr ∩ A
(nq,p) 6= ∅ for r = 1, . . . , s and p = 1, . . . , q. For each

r ∈
{
1, . . . , s

}
, choose a finite connected subgraph D∗

r of Dr, together with a set Ir ⊆
{
p : 1 ≤ p ≤ q

}
, such

that |Ir| = s and such that

(15) Dr ∩R ⊆ D∗

r (r = 1, . . . , s),

(16) D∗

r ∩A
(nq,p) 6= ∅ ⇔ p ∈ Ir (r = 1, . . . , s).

One easily finds that these choices of D∗

r and Ir are possible. (To verify this, note in particular that Dr ∩R
is finite and connected (cf. (9)) and that (by (14)) Dr ∩ R is not met by any of the graphs A(nq,p) for
p = 1, . . . , q.) We put

F :=
s⋃

r=1

D∗

r .
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From q = s2 + 1, one concludes that there exists an element p0 ∈
{
1, . . . , q

}
such that A(nq,p0) ∩ F = ∅. We

shall define D(n+1,n+1) as a subgraph of A(nq,p0), together with a corresponding ≤-embedding ψ(n+1,n+1) :
Sn+1 → D(n+1,n+1). In order to cover the case n = 0 by these definitions, we put q = 1 and nq = p0 = 1 if
n = 0.

It follows from (b.j) (cf. Lemma 6) that, for each j ∈ J2, there exists an essential vertex wj of Pj and a thin
subset Ej of A such that

(17) ϕ(nq,p0)
(
B(A,wj)

)
∩A′ = ∅ for all A′ ∈ A \ Ej (j ∈ J2).

By (6), B(A, vj) ≤r B(A,wj). From this one concludes (similar as in the proof of (7)) that there exists a
≤-embedding

τj : B(A, vj) → ϕ(nq,p0)
(
B(A,wj)

)

together with a ϕ(nq,p0)(vj), τj(vj)-path P ′

j ⊆ ϕ(nq,p0)
(
B(A, vj)

)
which has exactly one vertex in common

with τj
(
B(A, vj)

)
(j ∈ J2). We define

D(n+1,n+1) := ϕ(nq,p0)
(
C ∪

⋃

j∈J1

B(A, vj)
)
∪

⋃

j∈J2

(
τj
(
B(A, vj)

)
∪ P ′

j

)
.

A ≤-embedding ϕ̂ : A → G with ϕ̂(A) = D(n+1,n+1) can be defined in the obvious way, similar to the
definition of ϕ̂(n,m) in the proof of (7). In particular, this can be done such that, firstly, ϕ̂ coincides with
ϕ(nq,p0) on all branches B(A, vj) with j ∈ J1 and, secondly, ϕ̂ coincides with τj for all vertices and edges of
B(A, vj)− vj (j ∈ J2). Hence, by the remarks in the paragraph after (9), D(n+1,n+1) is of type n+ 1 with
a corresponding ≤-embedding ψ(n+1,n+1) : Sn+1 → D(n+1,n+1) defined as the restriction of ϕ̂ to Sn+1 and
with the graphs ϕ̂

(
B(A, v)

)
= ϕ(nq,p0)

(
B(A, v)

)
as the tentacles D(n+1,n+1)(v) of D(n+1,n+1) with respect

to ψ(n+1,n+1) (for v ∈ Vn+1).

We now return to assuming n ≥ 1 (until further notice). Let jn ∈ J1 be the index for which an ∈ B(A, vjn).

For each p ∈
s⋃

r=1
Ir, pick a ray Up ⊆ ϕ(nq,p)(Pjn). Further, for each r ∈

{
1, . . . , s

}
and each p ∈ Ir, pick a

vertex ur,p ∈ D∗

r ∩ A(nq,p) (cf. (16)) and let Ur,p ⊆ A(nq,p) be a ur,p-ray having a tail in common with Up.
Put

H := F ∪
s⋃

r=1

⋃

p∈Ir

Ur,p.

We claim that

(18) in H there are s disjoint rays Q1, . . . , Qs such that Qr starts in Dr ∩R and such that Qr has only its
initial vertex in common with R (r = 1, . . . , s).

For the proof of (18), recall that (by (15) and because D∗

r ⊆ Dr) D
∗

r ∩ R = Dr ∩ R. Let H ′ be the graph
that results from H by contracting each D∗

r ∩R into a single vertex xr (r = 1, . . . , s). Note that, because of
(14), none of the rays Ur,p meets any of the just contracted graphs and thus, if two of these rays are disjoint
in H, they are still disjoint in H ′.

For each p ∈
s⋃

r=1
Ir pick a vertex yp ∈ Up such that, firstly, the yp-tail U

′

p of Up does not meet the finite

graph F and, secondly, U ′

p ⊆ Ur,p for each r with p ∈ Ir. Let X =
{
x1, . . . , xs

}
and denote by Y the set of

the just defined vertices yp, i.e., Y =
{
yp : p ∈

s⋃
r=1

Ir
}
. In H ′, Y cannot be separated from X by deletion of

less than s vertices: this follows from the fact that the graphs D∗

1 , . . . , D
∗

s are disjoint, in conjunction with
the fact that (for every r ∈

{
1, . . . , s

}
) the rays Ur,p (p ∈ Ir) are a family of s disjoint graphs. Hence, by

Menger’s Theorem, there are s disjoint X,Y -paths Wr ⊆ H ′ (r = 1, . . . , s). Note that, by the choice of the
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vertices yp, one can extend the paths Wr to obtain s disjoint rays Q′

r ⊆ H ′ starting in X (r = 1, . . . , s).
From this the claimed statement (18) immediately follows.

Since the rays Ur,p and Up have a common tail, it follows from (18) that, for each r ∈
{
1, . . . , s

}
, there

exists a pr ∈
{
1, . . . , q

}
\
{
p0
}
such that Qr and Upr

have a common tail; moreover, the rays Q1, . . . , Qs are
disjoint and thus we have pr1 6= pr2 for r1 6= r2. Without loss of generality, assume pr = r (r = 1, . . . , s)
and p0 > s. Then Qr and Ur have a common tail and thus, because Ur ⊆ ϕ(nq,r)(Pjn), there exists a vertex

ṽr ∈ Qr such that the ṽr-tail Q̃r of Qr is contained in ϕ(nq,r)(Pjn) (r = 1, . . . , s). Let Qr be the initial
segment of Qr ending in ṽr (r = 1, . . . , s). Pick an essential vertex u of Pjn such that, for all r ∈

{
1, . . . , s

}
,

ϕ(nq,r)
(
B(A, u)

)
does not meet Q1∪ . . .∪Qs; this is possible since Q1∪ . . .∪Qs is finite. From this, together

with the disjointness of the graphs ϕ(nq,r)(A) (r = 1, . . . , s) and the disjointness of the rays Q1, . . . , Qs, one
concludes that the graphs Qr ∪ ϕ

(nq,r)
(
B(A, u)

)
(r = 1, . . . , s) are disjoint.

Let P ′

jn
be the u-tail of Pjn . Then P ′

jn
⊆ B(A, u) and thus ϕ(nq,r)(P ′

jn
) ⊆ ϕ(nq,r)

(
B(A, u)

)
(r = 1, . . . , s).

Moreover, ṽr /∈ ϕ(nq,r)
(
B(A, u)

)
by the choice of u and thus ṽr /∈ ϕ(nq,r)(P ′

jn
) (r = 1, . . . , s). From this,

together with the fact that ṽr ∈ ϕ(nq,r)(Pjn), one easily finds that, for each r ∈
{
1, . . . , s

}
, there exists

an initial segment Q∗

r of Qr such that, firstly, Q∗

r ends in ϕ(nq,r)(u) and, secondly, Q∗

r has just one vertex
in common with ϕ(nq,r)

(
B(A, u)

)
. For r = 1, . . . , s let Zr := (Dr ∩ R) ∪ Q

∗

r ∪ ϕ
(nq,r)

(
B(A, u)

)
. Then (by

construction)

(19) the graphs Zr = (Dr ∩R) ∪Q
∗

r ∪ ϕ
(nq,r)

(
B(A, u)

)
(r = 1, . . . , s) are disjoint.

It follows from an ∈ Vn that, for each m ∈
{
1, . . . , n

}
, there exists an rm ∈

{
1, . . . , t

}
such that Drm =

D(n,m)(an). For the purpose of defining the graphs D(n+1,m) (m = 1, . . . , n), we shall replace some of the

tentacles Dr by appropriately chosen graphs D̂r and, in order to accomplish this for r = rm, we consider
two cases. Let m ∈

{
1, . . . , n

}
.

Case 1 : 1 ≤ rm ≤ s.

Since u is an essential vertex of Pjn , we can apply (6) to find B(A, vjn) ≤r B(A, u). Moreover, since
an ∈ B(A, vjn), we have B(A, an) ≤r B(A, vjn). Hence B(A, an) ≤r B(A, u). From this, together
with the definition of Zrm and the fact that Drm ∩ R = ψ(n,m)(an), one finds that there exists a ≤-
embedding σm : B(A, an) → Zrm such that σm

(
B(A, an)

)
⊆ ϕ(nq,rm)

(
B(A, u)

)
and such that there exists a

ψ(n,m)(an), σm(an)-path Q
′

m ⊆ Zrm which has just one vertex in common with σm
(
B(A, an)

)
.

Case 2 : s+ 1 ≤ rm ≤ t.

Because A(n) is compatible with D(n,m) and ψ(n,m), one obtains (cf. (11.2)) that there exists a ≤-embedding
σm : B(A, an) → D(n,m)(an) with σm(an) = ψ(n,m)(an). There also exists a ψ(n,m)(an), σm(an)-path
Q′

m ⊆ D(n,m)(an) which has just one vertex in common with σm
(
B(A, an)

)
: just choose Q′

m as a trivial
path.

Thus, in either case, we have defined a ≤-embedding σm of B(A, an) together with a corresponding path

Q′

m, i.e., σm and Q′

m are defined for all m ∈
{
1, . . . , n

}
. For all r ∈

{
1, . . . , t

}
, we now define a graph D̂r

as follows:

D̂rm := ψ(n,m)(an) ∪Q
′

m ∪ σm
(
B(A, an)

)
(m = 1, . . . , n)

D̂r :=

{
Zr , if r ≤ s and r 6= rm (m = 1, . . . , n)

Dr , if s+ 1 ≤ r and r 6= rm (m = 1, . . . , n).

Let Rm :=
{
r : 1 ≤ r ≤ t,Dr ⊆ D(n,m)

}
(m = 1, . . . , n); we define

D(n+1,m) := ψ(n,m)(Sn) ∪
⋃

r∈Rm

D̂r (m = 1, . . . , n).
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By construction (in particular, cf. (19)), the graphs D(n+1,m) (m = 1, . . . , n + 1) are disjoint. For each
m ∈

{
1, . . . , n

}
define a ≤-embedding ψ(n+1,m) : Sn+1 → D(n+1,m) as follows. If ≤ means 4, then let

ψ(n+1,m)(an) := ψ(n,m)(an) ∪Q
′

m ∪ σm(an).

If ≤ means ·⊆, then (An, rn) (n = 0, 1, . . .) is a strong decomposition of A and thus an has degree 1 in Sn;
in this case, we define

ψ(n+1,m)(an) := σm(an) and ψ(n+1,m)(en) := ψ(n,m)(en) ∪Q
′

m

with en denoting the unique edge of Sn which is incident to an.

For all other vertices and edges of Sn+1, define ψ
(n+1,m) such that ψ(n+1,m) coincides either with ψ(n,m)

or with σm, depending on whether the considered element of V (Sn+1) ∪ E(Sn+1) is in Sn or not. It then
follows from the construction that ψ(n+1,m) is a ≤-embedding Sn+1 → D(n+1,m) (m = 1, . . . , n). Moreover,
ψ(n+1,m) is an extension of ψ(n,m) (m = 1, . . . , n) and one immediately obtains from the construction that
(20) holds.

(20) Let m ∈
{
1, . . . , n

}
. Then the graph D(n+1,m) is of type n + 1 and ψ(n+1,m) : Sn+1 → D(n+1,m) is a

corresponding ≤-embedding; the tentacles of D(n+1,m) with respect to ψ(n+1,m) are

(i) the graphs D̂r with r ∈ Rm \
{
rm

}
and

(ii) the graphs σm
(
B(A, v)

)
with v ∈ V

(
B(A, an)

)
∩ Vn+1.

Further, for v ∈ Vn+1, if D(n+1,m)(v) is a tentacle of D(n+1,m) with respect to ψ(n+1,m), then
ψ(n+1,m)(v) = ψ(n,m)(v) if D(n+1,m)(v) is of type (i), and ψ(n+1,m)(v) = σm(v), otherwise.

For the remainder of the proof, let n ≥ 0. It remains to show (13). One concludes from Lemma 2(i), Lemma
3 and from the construction of D(n+1,n+1) and ψ(n+1,n+1) that there exists a thin subset F of A such that
ψ(n+1,n+1)(Sn+1) ∩A

′ = ∅ for all A′ ∈ A \ F . (Leaving the details to the reader, we just mention that (17)
is the main observation for this.) Moreover, if n ≥ 1, then ψ(n,m)(Sn) ∩ A

′ = ∅ for all A′ ∈ A(n); there are
also just a finite number of vertices of ψ(n+1,m)(Sn+1) which are not in ψ(n,m)(Sn) (m = 1, . . . , n). Hence
one can apply Lemma 3 to find that there exists a thin subset F ′ of A such that ψ(n+1,m)(Sn+1) ∩ A

′ = ∅
for all A′ ∈ A(n) \ F ′ and all m ∈

{
1, . . . , n

}
. If n = 0, we put F ′ := ∅ and A(n) := A.

Let Ã := A(n) \ (F ∪F ′) (n ≥ 0). Then, by Lemma 2, Ã is a thick subset of A and, by the choice of F and
F ′, we have

ψ(n+1,m)(Sn+1) ∩A
′ = ∅ for all A′ ∈ Ã (m = 1, . . . , n+ 1).

As before, we denote byD(n+1,m)(v) the tentacles ofD(n+1,m) with respect to ψ(n+1,m) (form ∈
{
1, . . . , n+1

}

and v ∈ Vn+1). It remains to show that there exists a thick A(n+1) ⊆ Ã such that, for each v ∈ Vn+1 and
all m ∈

{
1, . . . , n+ 1

}
, either (21) or (22) holds:

(21) D(n+1,m)(v) ∩A′ 6= ∅ for all A′ ∈ A(n+1);

(22) D(n+1,m)(v) ∩ A′ = ∅ for all A′ ∈ A(n+1) and there exists a ≤-embedding ϕ : B(A, v) → D(n+1,m)(v)
with ϕ(v) = ψ(n+1,m)(v).

Let v ∈ Vn+1 and m ∈
{
1, . . . , n + 1

}
. For showing the existence of A(n+1) with the above properties,

we consider three cases; each case is dealing with a certain type of graph D(n+1,m)(v). (For the graphs
D(n+1,n+1)(v), cf. the paragraph after the definition of D(n+1,n+1).)

Case 1 : 1 ≤ m ≤ n and D(n+1,m)(v) = D̂r for some r with s+ 1 ≤ r ≤ t and r 6= rm.
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From the hypothesis of this case one obtains D(n+1,m)(v) = D(n,m)(v) and D(n+1,m)(v) ∩ A′ = ∅ for all
A′ ∈ A(n). Further, ψ(n+1,m)(v) = ψ(n,m)(v) (cf. (20)) and thus (since A(n) is compatible with D(n,m) and
ψ(n,m)) there exists a ≤-embedding ϕ : B(A, v) → D(n+1,m)(v) with ϕ(v) = ψ(n+1,m)(v).

Case 2 : 1 ≤ m ≤ n and D(n+1,m)(v) = D̂r for some r with 1 ≤ r ≤ s and r 6= rm.

In this case, D(n+1,m)(v) = Zr and one obtains from the definition of Zr that D(n+1,m)(v) contains
ϕ(nq,r)

(
B(A, u)

)
as a subgraph. Consequently, since u is an essential vertex of Pjn and because jn ∈ J1, we

have D(n+1,m)(v) ∩A′ 6= ∅ for all A′ ∈ A, except for the members of some thin subset of A.

As a consequence of the preceding discussion of the cases 1 and 2, one finds that there exits a thick Â ⊆ Ã
such that, for each D(n+1,m)(v) addressed in these cases, either (21’) or (22’) holds, where (21’) and (22’)

are the statements obtained from (21) and (22) when A(n+1) is replaced by Â. It remains to consider the
following case (cf. (20)).

Case 3 : m = n+ 1 or D(n+1,m)(v) = σm
(
B(A, v)

)
for m ∈

{
1, . . . , n

}
and v ∈ B(A, an).

Under the hypothesis of this case, it follows that

(23) there exists a ≤-embedding ϕ : B(A, v) → D(n+1,m)(v) with ϕ(v) = ψ(n+1,m)(v).

Indeed, if m = n+1, then D(n+1,m)(v) = ϕ(nq,p0)
(
B(A, v)

)
and ψ(n+1,m)(v) = ϕ(nq,p0)(v) (cf. the paragraph

after the definition of D(n+1,n+1)). Hence, choosing ϕ as the restriction of ϕ(nq,p0) to B(A, v) yields ϕ as
required. Further, if D(n+1,m)(v) = σm

(
B(A, v)

)
for m ∈

{
1, . . . , n

}
and v ∈ B(A, an), then ψ

(n+1,m)(v) =
σm(v) by (20), and thus we can choose ϕ as the restriction of σm to B(A, v) to obtain ϕ as desired.

We now denote the tentacles addressed in case 3 by T1, . . . , Tλ (in arbitrary order). For T1 there exists a

thick B(1) ⊆ Â such that either T1 ∩ A′ 6= ∅ for all A′ ∈ B(1) or T1 ∩ A′ = ∅ for all A′ ∈ B(1). Further,
there is a thick B(2) ⊆ B(1) such that either T2 ∩ A

′ 6= ∅ for all A′ ∈ B(2) or T2 ∩ A
′ = ∅ for all A′ ∈ B(2).

Continuing in this way, one obtains a sequence Â ⊇ B(1) ⊇ . . . ⊇ B(λ) of thick subsets of A such that, for
each i ∈

{
1, . . . , λ

}
, either Ti ∩ A

′ 6= ∅ for all A′ ∈ B(i) or Ti ∩ A
′ = ∅ for all A′ ∈ B(i). Hence, putting

A(n+1) := B(λ), it follows from (23) that we have obtained A(n+1) as required. �
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