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Abstract

We investigate scaling assuming_a generalized vector meson dominance
picture. The vector mesons are described as relativistic quafk—antiquark
bound states by a Bethe-Salpeter equation which yields the mass spectrum
and the coupling to e+e~ pairs. We discuss the spin structure and find

that scaling can occur only for a )5“ -t&pe amplitude. We solve the BS
equation using a generalized WKB approximation and find scaling, independent
of the detéiled shape of the interaction. This means that scaling in e'e
annihilation does not select a particular "confinement potential'. The

scaling constant depends on the current renormalization constant and on

the details of the relativistic spin structure.



1. Introduction

The data on e e -annihilation into hadroms b indicate that the ratio
R= B4 (e*e“—)hadron;)/eﬁf (e"e"—)ﬁju.') becomes again a constant, once
the new resonance region between 7/’}’(3.1) and 4.5 GeV is passed (Fig, 1).
One is wont to think of the scaling constant R as the measure of the

sum of the squared charges of the fundamental spin-1/2 constituents 2).
The simplest way of exemplifying this is the parton model. Asymptotically
free field theoretical models predict a logarithmic approach down

2 . . .
to R = Zat . The experimental value R # 5.5 is not explained by these

models if there are four quark flavours onlir (R =3 1/3).

The excitation of a series of intermedliate vector mesons, on the other

hand, can lead to scaling if the masses and leptonic decay widths satisfy

locally the condition 3)

R = § ix- MV ) R/%e*e"
z A Mz {1)
V=j>fw)' x v
&; 7/%,.. type

It is interesting that phenomenological investigations of the JD,C.J,?S or

4,5)

the 7/‘)“ threshold region tend to give a higher value for R than the

. . , !
counting of quark charges. E.g., from the j/)” leptonic width and the J/f—-?"
mass difference there follows AR~ 2.0 , which figure has to be seen

in contrast to the number 1 1/3.

Dynamical gquark—antiquark bound state models yield a spectrum of vector

mesons and their leptonic decay widths. Special models of this type show

scaling behaviour 6’7). Thus the question arises whether or not scaling

is a general feature of bound state models. For nonrelativistic



Schrédinger type models it has been shown that scaling occurs independent
of the shape of a confinement potential regular at the origin, provided
the eigenvalue E is linearly related to the mass squared M2 of the bound

8)

state

In this paper we shall investigate the problem of scaling in relativistic,
field theoretic bound state models, forﬁulated with the help of the fermion-
antifermion Bethe-Salpeter equation. The paper is organized as follows:
Sections 2 and 3 contain formulas related to e e processes and to the
general structure of the BS amplitudes of vector mesons plus their photon
coupling. A short review of the dynamical model for the strong binding of
heavy quarks is given in Section 4. Scaling.behaviour can be expected only
if the leading compcnent of the vector meson BS amplitude is of the qu,
type. For this class of models the radial equation is derived. Section 5
treats in defail the solution of this radial equation by a generalized
WKB method. A relation between the wave function at the origin and the
mass spectrum is found which leads to scaling, independent of the spatial
shape of the interaction. In Section 6 we compare the scaling constant of

these dynamical models with the scaling constant of the parton model.

2. Matrix Elements, Widths and Cross Sections

The cross section for producing a pair of free, pointlike quarks q; with

9)

masses m, and charges Q.l is given by

A& (et o = Qo T 4mt Ym? A
dz;t:e—)q.q,) — ._}.i_.s__.. 1...__2”'_ /l*_.__"q.(',—m)(p‘sl\? (2a)
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- — Qi « 4 Ym 2m Qi & 4T
&(ete>q:5) = ——— |1- ‘(""’ ' > = (2b)
and
R = Z 6(cte —q;5;) - @
—— _ 7 C . (3)
(et — x'K) s»am ¢ |
The vector meson photon coupling is defined as
| e VAT (251)-3/2 -EQ(P)
(o Ir@ile ¢ 2= LA (4)-
It determines the leptonic width
2
N 478 Qv Yt ( ng)
> ptom = 1= 2t {1+
i P My Mv* (s)
Yot gt
T3 e
My Yoy Y
and the total e"e” annihilation cross section
z 2 ' tot
1 z (6)
& (et V2all) = éﬁ:( v lﬁzvnz "
3 (s-mp)f+ My 12
For a narrow resonance we have
3. %2 -
/@(&-*VMQMS _ fésr_:gg - o _E‘:_e_’a o
| , M v

v
res



whereas for a broad one the leptonic width can be determined from the

peak cross section

A2 /-_,V'-iefc"'
2 ¢ tot y : (8)
MV IV

I

Opeat (et sV ell)

3. Bound State Models

In field theoretic bound state models the quark structure of a meson with

mass M and spin-parity JTr is described by Bethe-Salpeter amplitudes

, ; _ T
) = @ [ S oTrO TR LY

where P(X) denotes the renormalized quark field. From Tf, C,T and

Lorentz invariance follows the most general structure £or vector mesons

v
X W:R%F{g Xy *‘4!;'?.1-*[’%#'?].«73* Eq X, + &9 4 Xs

+aPld,41%, +eq[ P41l + cq P 2 25}V v

53
€u =& ()

. . . 2
The invariant functions /YC depend on q:Z and (gP)~ only; V denotes
the internal symmetry part of the amplitude,

Expressing the electromagnetic current by the quark fields

cem -
e ) = ZF09 Y QU Q= quark charge mabrix (11)

we obtain for the photon vector meson couplings



CJV'S/«- = lrace ZX/,,Q (271)_q/al”,7,' ZV(?,,P)

or in configuration space (12)

- v
’?V'E/-. = |race ZK}VQ X(X"'D)P)
Because of the Dirac frace, 2’1) l’,,} l", Z? cannot contribute. If we go
- <
to the rest system, 73“ = (/‘1) o}} g’}: (0) J;arf) , then we see

that 2% and ):P give also no contribution and we find

9, = %4 -<62v>-(2#)_qfd"‘if{"4(4v3;«?) + ’zﬁ Ys(9e,3)]

v Ry = Troce (R V)

{13a)

In configuration space this formula reads

'%V= ZL’ <Qv> {X1(X=D) —j3_‘ (Axs-)()(:D)}_ (}3b)_

Only the £=C . part of the amplitude contributes to the photon coupling.

We would like to point out here that in any quark model the relation
2 T
Z<QV> = } Q; (14)
4 )

holds. A comparison of the ratio R in the parton. model and in bound state

models thus inveolves dynamical quantities only.

4. Dynamical Bethe—Salpeter Equation

The Bethe-Salpeter amplitudes, Eq. (9), satisfy the bound state BS
10)

equation



4

§"(B+9): Xa) 5" CBog) = i[aty Blasa,7) Xeg/ P

(15)

and are normalized according to
~Y rva -1, R/ 21:
(o) Ty E 0087 o) g D )= 2535
r

In order to arrive at a tractable model we had to develop dynamical

1)

i1deas

a) heavy quarks, m? D 1 GeV.
+ -_—
When investigating scaling in e e annihilation we, therefore, have the
situation that s = Mr2r1eson is large on a hadronic scale but still small
-

compared to the quark production threshold 4 m:

2 2 2
= 4 .
1 GeV g s M son< 4m";

- .
b) free propagators S (?r)"" a"P-:*m J

¢) convolution type, energy independent kernels,

(X 9,4)P) =} Ki(x;5-4) 1
i=S,V, AP

with the projectors 79" T'J = ?_") J: {no summation),

T‘f: (4, s Spr, ¥s¥ps Efs'),‘

mc
d) Wick rotation in the 4, plane, Qo> i gy (leading to O ' (4)

symmetry of the bound state mass M = O equation).



-
With these assumptions, Eq. (15) takes in the CMS, P=(/7. D), the form

(ﬁ ~im + “—2_’-73'9) Xig,M)( -l'm--‘g-zg(q) ==/d("4;,’ f(,l,@-.,y 2’[4;,/7}
in momentum space or (17)

(_‘._9’_(.’”— + %X‘{) X(xrﬂ)(-;‘glﬁz'n—%Jq) = Gé“(/\, X) Z(X} M)

in configuration space.

As 1s well known, the M = 0 equation decomposes into three sectors:

(s, W) (T, A) (P)

R T AR 1Y s

which will decompose further if one makes full use of the Omc(4)
symme try O).

The amplitudes with the Dirac structures ‘(K,;} &¢,) and (YS"Y‘U 3"5—)

are pood candidates for the leading terms in the BS amplitudes cof the
quark spin triplet and quark spin singlet mesons, respectively. As in each
case there should be cne state only, we have to look for only one linear
combination of Y‘[ and €y, , E\fﬁq and X}— , resp., in which the
interaction is strongly attractive. Since the V and the T, the A and the

P sector arve not coupled in the strong binding (M = Q) limit, we must have

Vor T and A or P. This leads us to four possible models

¥s Yy \f3
v VEA V2
Syy T@ A T@ P Table 1

If the leading component of the BS amplitudes for the quark spin triplet

mesons is of the temsor type, the vector mesons do not couple to the



. . . i
electromagnetic current in leading order (agva my . Thus we cannot
- » + -
expect a scaling behaviour for Gtot(e e ). We therefore concentrate our

discussion on the models of the V-type (first row in Table 1).

Subsequently we indicate an eliminatien procedure which reduces Egq. (17)

2)

to a simple radial equation . We start with the M = 0 equation which we

write

- ,‘((x)é’— m‘l’(x)-m{@?l’(»\’)} = Z Ke (A, x)-ﬁ-l’(x) . (1‘8)

We put 2’: }’a-!-l/., ; because there occur at most two Dirac amplitudes in
one sector, and cbtain

(-7 — m2=Ko) X, - m{&, X]=0
(18")

- 2 .
(“'axg - m _K‘I)Yoy "M{g; XO}'-:O ‘

The interaction potential in configuration space should be smooth, allowing

an expansion around the origin

. —_ . N N 2
Ko (R) = e 45 R+ o R v oo o

S_ince we want j(o to be the large component, Ko has to be strongly
attractive in order to compensate the quark mass term ( o = - mz), where—
as K1 is not attractive. We assume that K‘l is repulsive with the
strength of, s + mz. Under these conditions we can get X,, algebraically:

Y= Xot X, = Xo~ 2= {2 X}

(20)

and we obtain for xo the dynamical equation

(O - m* - KD(Q)))(O(X)=O. (21)



The BS equation for the gemeral case, M f 0, can be discussed along

similar lines, by rewriting Eq. (17) in the form

["2’)(3'— mz-m } f"' vaﬁs HM[X%]"’ (3’,,1:3 'a'xyq)]l/()(,/‘f) 0
(177)
With the ansatz x = Xp +X, +2/6,. , where }-/1 is already given by

Eq. (20), one obtains 12)

X=X, -L{g %} + [Z 2]+ o(;5) (22)

«Z(m + Q’br)
and the dynamical equation

f___ 3m’ = O
M+ oy,

z
(O = »* = Ke(R)+ £ ) Xolx) =0 (23)
In Eq. (22) we made use of the requirement that, with respect to spin
structure, there occurs only one strongly bound state solution )(o . This
allows the algebraic determination of J‘/br because of &y, » - m® . The
expression for the parameter f has been obtained by making use of the
Xo“X&' ) X.S‘Y'f

functions of K" ] Y‘i with the eigenvalue —-1. Table 2 contains the

fact that the amplitudes or ¢, Ys are eigen-

parameters f in the V@A and the V@®P model.

ftrw‘plets }sfugf.e ts

triplets

L O _3ni=%p
ks m* ol m* +olp

X, o~y | =4 p D=

‘fhf',;[ef_s _
X, ~ | =3m-ety _3m-anp
]{Sf'a.'qle‘éf 3_ mt ol m? roly

° ¢ U{T})“ma‘ °(A > "'Mz

Table 2




- 11 -
From Eq. (23) we see that the mass spectrum M2 is not only determined by
the shape of the "potential” Kp but also by £ , i.e. by the detailed

spin structure of the interaction.

5. Asymptotic Solution of the BS Radial Equation

(Generalized WKB Method)

In the last section we have derived the dynamical equation

(Dx - m o+ f—I—Z—Z - Ko(R)) Xo(x) =0 (23)

for the leading component 1’0 (K) of the BS amplitude. For the orbital

part of X,(x) we make the ansatz

orh

X, (K)zy'nﬁm,()?)' %gg_), ' (24)

where the gn!,‘()?) are the f0(4) -spherical functions, and we obtain

the radial equation

(.“{_z _ (ne %) (ne %) —m"-r-f-%’;— Ko(R))U—a(R)"O-

dR? R* (25)

Since we. are interested in those solutions Xo (X) which do not wvanish

at x = o (see Eq. (12)), we have to consider the n = o case only

2z 3
(f’éz - 4321 +}"1___ Kp(g)) u_o(R)-_-,-O } /:'g f{-}-—ma. 26)
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We need those solutions which correspond to high excitations, because
. . . tot, + -

we want to investigate the behaviour of @ (e e - hadrons) for large
values of the energy squared s, This suggests the use of asymptotic methods,
. . c . . . 13)

i.e. a suitably modified WKB approximation .

. 2 2% -
The sclution of the free equation: (‘%E._,_ - 2’3';2:_ ""/") u.(R) =0 with

the correct threshold behaviour is {:\L(E) = VuR - 7, (/LEJ , which

leads to the ansatz

Uo(R) = H(R)Vscr) - J (SCR)) - (27)

Insertion into Eg. (26) and use of the derivative relations for the

Bessel functions gives the two equations

N

< ) (28a)

R

Ho$'% = (= KolR) H = H s

2H'S" + HS" =0 (28b)

Eq. (b) is solved by H = const/ys_f . Eq. (a) is solved approximately

by S(R) = % V/ul_ Ko(j’Jl if , neglecting the right hand side (in
oré
analogy to the standard WKB procedure). The amplitudes fl’o (X) for

n = o are therefore approximately given by

orb N [fv,&(— = Ko(p) UL_P_‘} Tf 2 '
X, (%)= ol ey \//u — _DI/L‘KP(S’J "lf).

(29)

4
For 0K M & R< Ro (=classical turning point) we can replace the Bessel

function by its asymptotic expression which leads to



...13_

: R
W e S -
SR R ERm

¢ R<Ry, (30)

X|s

As in the ordinary WKB method we have the quantum condition

M
2 f T m (31)

Ro
é{\r/u"“/@(_?) 'Olf =7(rry) »=

2
which yields the mass spectrum M,-

The constant N is determined from the BS nomalizaf:ion, Eq. (i6). It

reads, in leading order of the quark mass m and for the Wick rotated
configuration space amplitudes ;(o (x)

dirac / L% Z’N 0 Xa,r G0 = 4 ('gzl),,&,ﬁ;' Irr . (32)

m_" . Trace

with X(x)= yu X¥(=x,, ;)Y'f = O X e )

because of f.’, X¥Yq = - X* for the physical amplitudes (Table 1)

L .
and with the coupling constant /1 =g = ~m we obtain

& orb ré
e _4__ . I (33)

lf dqx Xo,f-a (X)"Yo,r (X) = f rr’o.

We evaluate this integral with the asymptotic solution given in Eq. (30),

thereby replacing si_n2 by 1/2 in the same approximation. This gives the
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normalized orbital part of the BS amplitude

R L
fp/uL“Ko(f)G{f |
s e

e Vi l(ff’

R
J( f lEKagdp) s

y £ . ..
Because of :Z(X) x»g 2 > the amplitude at the origin has the value

—
oré P 2
1 4 M - () 2
XD (X'—TO) = i‘- - - ) /uzzf—‘f}"’ﬁ! (34)
YZ{f _dp
Vu*~Ko(p)

By differentiating the quantum condition (31) with respect to M2 one
obtains
£ dn 7
8r  dr /'E" dp

~ (35)

I Vjﬁbz"”ﬁfo(fﬂ

Inserting this expression into Eq. (34) and observing that for strong
binding: ~ Kp(0) = f !Z' , Wwe obtain a relation between the
amplitudes at x = o and the mass spectrum, into which the kernel k;(f)

deoes not enter explicitly

orb 2 ' 2 IhF
(X (x=0)] = jz M= (36)
’ (&) 4 Ar
orb ra
With the help of Egs. (13b) and (5) we relate /,er (X’=GQ/ te the

leptonic decay width of the T*k vector meson, obtaining



[ _ bkt 52 > [ dMy/an (37)
V> ete 3 Z <& 16 1 My,

When we use this expression in Eq. (1) we find that the ratio R is in-

dependent of the excitation level

Stt(ete” > hadrars) R = 31 2z > <Oy>?" (38)
Stot (ete > pta’) k Y

Thus, for high excitations, we obtain scaling, and the scaling constant R

is independent of the shape of the smooth, potential type interaction.

Before giving a more detailed discussion of this result in the next section,
we would like to add a few remarks about 'potentials” which are singular

at zero distance., If the kernel KO(R) of the dynamical equation (23) has

a /R singularity at the origin but is confining at large distances, then,
by using the so-called Langer method for the asymptotic solutioms of
differential equations 13), we obtain again Eq. (36). However, we want to
peint out that the equation (23) was obtained by an algebraic elimination
of the "'small" components of the BS amplitude. This elimination remains
valid at least for the case that the projection of the interaction on

these small componenté is nonsingular. Thus, with this restriction,

scaling remains preserved for an interaction containing a 1/R singularity.

6. Discussion

We have shown that in relativistic bound state models with heavy quarks

+ = fo . . . .
the total e e annihilation into hadrons has scaling behaviour once the



amplitudes of the vector meson bound states have a X?‘ Dirac structure
like the electromagnetic quark current, and that fhe scaling constant is
independent of the detailed shape of the potential-type interaction. Thus
scaling is a rather general property of bound state models +). ~ Turning
the argument around, from scaling in e'e annihilation one cannot select
a particular "confinement" potential. - In view cof scaling being one of
the main features of models with free, or asymptotically free, quarks
(partons), we want to compare the two pilctures. For this we choose the

scaling censtant R which in the asymptotically free quark model is given

free Y )
by R = %:Qc , whereas 1n the bound state models we found
2. - . .
Rbomi,_._ Zz. .3:1_f 2. < Qv . Because of the equality of the sum
v

over guarks and the sum over vector mesons, Eq. {(14), the comparison
. ) beune ree 2 3
actually inveclves the reduced quantity R /RF = £ "';E only. We
. . bound

observe that in bound state models the scaling constant R depends,

apart from the flavours and colours of the quarks, on several factors:

a) the current renormalization constant Z, Z £ 1;

b) the dynamical factor P which 1s determined by the detailed spin
structure of the interaction kernel, reflecting the fact that in a
bound state model one can excite the off-shell degrees of freedom, in
contrast tc the parton model;

1

- In our dynamically favoured model , where the strong forces

binding the heavy quarks get saturated in the mescmic vertices, f'—'/, s
in a model with the Fierz symmetric pseudoscalar-vector-scalar

kernel, f = 3, 12) _

+)

Scaling occurs also in nonrelativistic bound state mcdels if the

Schrédinger eigenvalue 1s linearly related to the squared bound state mass

2 8)

M This is so if the potential is confining and not more singular

than 1/R.



v

¢) an energy dependence of the interaction of the form K= K(R)‘PCORS't‘MZ
which we did not consider here, would also enter the s;aling constant;
d) thus far we have tacitly assumed the zero-width approximation for the
vector mesons. In reality the total widths are finite, and actually
they ﬁave to be rather large in order to yield the smooth cross sectiomn.
A description where the total width of the resonances is proportional
to their mass will not destroy scaling in our model, but from unitarity

4)

. i
arguments we expect that the scaling constant becomes smaller .

. . . . + - ay s .
In conclusion, scaling behaviour in e e annihilation seems to be an
almost unavoidable property of bound state models. At present there is an
.y . : . 2 . exp \ .
indication for scaling above s = (5 GeV)” with R "4 5.5. This number 1s
bigger than the values from the charm or Han-Nambu quark model. If, how-
ever, the experimental scaling function will turn out to approach a
parton model value, then this would require a subtle interplay between
current renormalization, spin structure and finite width effects of the

intermediate vector mesons in the bound state picture.
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