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All unitary ray representatioﬁs of the conformal group SU(2,2) with

positive energy

G. Mack
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Abstract: We find all those unitary irreducible representations of the
@ - gheeted covering group E of the conformal group SU(2,2)/Z,

which have positive energy Poa 0. They are all finite component field

représentations and are labelled by dimension ol and a finite

dimensional irreducible representation (L,fLﬁ of the Lorentz group

SL(2¢€ ). They all decompose into a finite number of unitary irreducible

representations of the Poincare subgroup with dilations,



1. Summary and introduction.

The conformal group of 4-dimensional space is locally iso-
morphic to G = SU(2,2) ; its universal covering group G is an
infinite sheeted covering of G. Both G and @ contain the guantum
mechanical Poincaré group ISL(2€). It is of physical interest to
have a complete list of all unitary irreducible representations
(VIR's) of G with positive energy P°7 0. They are at the same
time unitary ray representations of G. In the present paper we
shall give such a complete list. We show that all the UIR of &
with positive energy are finite component field representations
in the termeinology of [1l. They are labelled by a real number d,
called the dimension, and a finite dimensional irreducible represen-
tation (j,,J,) of the guantum mechanical (q.m.) Lorentz group
sL(2¢). Thus, 2j, , 2j, are nonnegative integers. There are 5 classes
of representations. They differ in their Poincaré content |m, sl,

m = mass, & = spin resp. helicity as follows:

(1) trivial l-dimensional representation d=j =j =0.

(2) 3, #0, jz,{o, d» 3 +j,+2 contains m>0, s= 1J,~],) +e.3 4], -
(integer steps)

(3) §,3,=0, 473 +j +1 contains m>0, s=] +3, -

(B) 3, #0, ja." 0, d=j, +j,+2 contains m>0, s=j1+jz .

(5) 3,3, = 0y d=J,+J +1 contains m=0, helicity j -Jj .
The proof of these results proceeds in several steps.

We start from the observation [2,3] that positive energy Poz 0
implies that also H7 O, where H = i(P°+-K°) is the "conformal
Hamiltonian®, k° a generator of special conformal transformations,
Next we point out that any UIR of G with positive energy is very
much like a finite dimensional representation in that it possesses
a lowest weight vector and is determined up to unitary equivalence
by its lowest weight X = (d,-j, ,~J,). In particular there is an al-

gorithm for computing the scalar product of any two*K~finite” vectors,



We then derive (necessary) inequalities for the dimension 4
from the condition that the unique candidate for the scalar product
is indeed positive semidefinite. They come out as d Jj +j, +2 if
3,3, £0,and dyJ +j +1 if J 3§ =0, except for the trivial

l1-dimensional representation which has d=j, =jz =0.

In the last step we construct a unitary irreducible represen-
tation of G for every weight \ satisfying these constraints.Practically
all of them have been investigated in more or less detail before,
|4,5,6 ]« In particular, a careful study of the representations with
d>j, +J,+3 has been carried out in Ruhls work [5]. The (massless)
representations with d=3, +j,+1 have been investigated by Todorov
and the author [|6]. For the remaining representations there remained
some open guestions concerning either positivity or global
realization. In particular , for practical applications one
needs a clean construction as an induced representation on Minkowski

space. This requires particular attention to the center I of G,

Our representation spaces consist of vector valued functions
9{x) on Minkowski space Mh with values in a finite dimensicnal
irreducible representation space of the g.m. Lorentzgroup SL(2€).

They transform under g in G 1like an induced representation

(T(g)(f}(;\) = ?(3,:&)({/(31:&) fcr 3(_ E:: , X e Mt (1.1)
The multiplier § is a matrix with the property that S(n,0) =1
(unit matrix) for special conformal transformations an . Thus the
representations are of type Ia in the terminology of [1]. The scalar

product is constructed with the help of an intertwining operator
("2-point function"), 2-point functions have also been studied in [18,23}

The result of this paper will be used elsewhere in the nonpertur-
bative analyéis of the axioms of gquantum field theory with conformal
invariance { 7,81. In particular it is crucial in the demonstration
that in such theories operator product expansions applied to the

vacuum are convergent.



2 A The Lie algebra

The group G=SU (2,2) consists of all complex &4xh matrices g
which satisfy the two conditions

det g =1, gta=208g" for B = (ﬂe i) (2.1)

L is the umit 2x2 matrix. Let 9 the real Lie algebra of G.
For a neighborhood of the identity in G we may write g = ex ’ qu%.
The Lie algebra %,consists therefore of all complex 4xb matrices X

satisfying the two conditions
X =0 , =-XB = pX* (2.2)

The maximal compact subgroup of G is K=x S(U(2)xU(2)). It

consists of matrices of the form

k = {k1 C) y ke u) ; det ik, =1

\‘- ¢ k::.

(2.3)

WU(2) is the group of all unitary 2x2 metrices. The Lie algebra
£ of x consists of matrices such that X= uX*, whence XB = BX*. 2.0)

Following Cartan,the Lie algebra may be split into a compact

and a noncompact part as
g.='£’+1° (7.5)

where X€'Pp if XB= -BX , and Xe® if XB= +BX, Explicitly ,P

consists of matrices of the form

7 {'C z .
Xe it X = Rz*o ) with a complex 2x2 matrix z (2.6

We denote the complexification of ty,, fe., P by gc’ '&c,‘f’c
respectively. ¢} consists of complex linear combinations of
elements of ¢ etc.

‘e choose a Cartan subalgebra H of g.which consists of all

diagonal matrices in q,. It is simultaneocusly a Cartan subalgebra



of o and of 1ﬂ: . We may then decompose

et e + -
(\.:}c= ‘F-ct"n + L = ‘gc‘ﬁ']'t n"{oc + e ﬁTrc
(2.7)
where nt (n") consists of upper (lower) trianguler 4x4 matrices
in '“;Lc . In particular
4 ooz : . (2.77)
XTen nep 1#’- X = with a complex 2x2 matrix 2
c 0 C

For such X' the adjoint action of k€K of the form (2.3) is given

b
K - (O =)

kY X ¥
ad(k; e o (2.8)

i

Vie see that p_n 't transforms under an irreducible represen-
tation of X which restricts to the UWiR (\-j-_‘#_-' of SU(2) x sU(2).
We may select a basis of g_c which is diagonal uander the

adjoint action of b , this gives us the commutation relations of
?IC in Cartan normal form.

r

Let us choose 2 basis of %'R z ih consisting of

. L ¢ ~ ARV =_L(c- o 5,
H°=ﬁ(c--1)’H1’%(o o)'”* e ’-\“) -9

o% is the third Pauli-matrix, 53= diag (+1,-1).

The possible eigenvalues of Hl 5 are + & for eigenvectors
+

in wtn P . We will use them to labkel the basis )(410 :},k':‘:‘;_v
Cff ARl ST ~
Thus -
+ -+ T ot . ,'t' +
. . Ly . ; ‘ < ’ X o= k X
[ X5 = X [, X d = § % [y X ik (2.10)
for the upper sign +. A basis for w N P can be chosen as

- . % _
X&'k - (X-&'-k) ; this gives (R (2ic) for the lower signs -~ .



oy

The compact subalgebra % transforms of course according to
the adjoint represemtation (0,1) + (1,0) of 3U(2) x sU(2).

Therefore we may choose X;L ¢ (Hﬁ471'}n Ec with (3J<)z(0;tixfruo)
such that
¢ ) e Lt ) e 7 .8
[He Xpel=ce ) (4, X = 3% BLRS RN S

(2.11)

(j. kY = (o,=1) o (f1,¢) -
¢
Explicitly the matrices Xjk may be chosen as follows: Let us label
the rows and columns of a 2x2 matrix by = , -4 from top to
bottom and from left to right. Let edk the 2«2 matrix with 1 in

the jk-position, and 0 otherwise., Thus

£ = G e . 5ot :E.t -‘S I S ¢ 'J'%‘=g;.€ "S_ L T
SR LTI A S AL I PRI T R A
- (2.13)
with EWj the Kronecker- & . Define
o+ ¢ e o oty ¢ ¢
X = { % k\ S :<X"h) ) (a -ﬂ)
N 4" k iy ®
. . e v o0 2.1k
Xu, [ Gk L) . X =*(_ , } ( )
e, \ ¢ C Lk C Sy
‘ f
and Hj, H;, H, as in (2.2). The matrices H, , X;k given

thereby form a complete basis for g: » Their CR.may be worked
out by explicit computation using multiplication law (2.13). One

verifies in this way the CR. (2.10), (2.11); in addition one finds

X X, . ® e E oM rRKH RAH

©



[Xc‘ )X_C ]._: 2{{1‘ ; [xc ,X }:QHT ; [‘)\ik_xb ] = 0 (2.15)

Eqs. (2.10), (2.11), (2.15) are the CR of 9 in Cartan normal
form relative to the compzct Cartan subalgebra f ot g . The

generators —iHO,~Lﬂl, and~[H2 of h commute of course.

The real Lie algebra is spanned by the generators
X" X XX ) L fecy Rty ) (216)
iO Jk 31’- ! ;K -;-k 2
¢ ) Lt c - s ¢
’&' 'l.'Hm ﬂ‘h‘l:cjf,l)} X1.C~X_J,L’ JL‘\xi,chl_c)' \<\,|_XL1J‘L(XO|?X~'1)

Besides the compact Cartan subgroup expii, generated by A A A
the group G also possesses two noncompact ones. The most noncompact
Cartan subgroup can be exhibited as follows. We make a basis

transformation,

- ugu’’ with L = = (“ "’L> (2.17)
¢ Yooy oy

The group G may be identified with the set of all complex Lx4 matrices

satisfying the comstraints

~

v

4 A -

3"’;’3 2 st wml o peusut - (
_l l; /

- 4y
clet ﬂ = s 'f
= (2,18)
The set of all diagonal matrices satisfying these comstraints forms
a noncompact Cartan subgroup of G. Furthermore we may now exhibit in
a convenient form several important subgroups of G. To every
hevector (x") we associate hermitean 2x2 matrices x and X as
follows ( oR are Pauli matrices).
C

X o= x 1 v Tk j X« xig-LxNok (2.19)



To every Ac¢ SL(2€C) there is associated a Loreatztransformation

such that

Ax 27

v

o=
>

' ' with x*« A XY (2.20)

With this notation, we introduce subgroups of G as follows (They are

all at the same time subgroups of G , s. below). We omit the ~

henceforth.
_ fA e N o
M: Lorentztransformations m= | AL Ace Suag)
NG
/f, P ¢
A: dilations a = | s » \ fat > ¢
EUE N S R 1
N ; ~ations o = ( X ¢ \ ) n”  real (2.21)
ih L
1 tx
£ X = ('l u\_, x" real
» .

The generators of M, A, N, X are denoted by M :+ Dy K" and P"
respectively (after dividing by V-1 as is costumary in physics ).
The reader may work out for himself the connection with the generators

introduced before. One has in particular

¢

i - L e I 3
H = AP KD



2.B, The Lie groups.

Let us now turn to the universal covering group G of G. It is
ap infinite sheeted covering and is given by o« standard construction
(cp. text books, e.g. L91): G consists of equivalence classes of
directed paths on G starting at the idemtity. Two paths are eguiva-
lent if they have the same end point and can be continuously deformed
one into the other. By the group action in G a path may be transported
such that it starts at any given point. Using this, group multipli-

cation in G may be defined by juxtaposition of paths,

The structure of G is best understood in terms of its Iwasawa
decomposition (cp. text books, e.g. [10]). Let M= UA N _ the Iwasawa
decomposition of the g.m. Lorentz group M, U=3SU(2) is the maximal
compact subgroup of M, A, consists of Lorentz boosts in the z-direction
and N_ is the two-dimensional abelian group which is contained in |
Wigners little group [11] of a 1lightlike vector p pointing in
z~direction. The Iwasawa decomposition of G is then rizi

G * KAPNP with A? = Amg ' Np = Nmﬂ R

A, N as in (2.21). The subgroup APNTo is simply connected, therefore

any two paths on APNP with the same end points can be continuously

deformed into each other. Thus

K = universal covering of K

G = KA N
AN, :

Explicitly K =Rx(SU(2)~5U(2)) . Here R is the additive group

of real numbers, x denotes the direct product. The center i" of 5

is contained in K . It suffices then to consider K and its coverings.
This gives the chain of isomorphisms

( conf, group of )

Minkowski space ¥ SO(4,2)/Zé = SU(E’Z)/ZAAY G/Zax zZ.

The conformal group of Minkowski space has trivial center, The center
" of G 4s thus isomorphic to Z,» 2 and bas two generating elements
¥, and y , with yi=e .

T S VRS ) o _ } -
boE ix; Y, 5, et = 0, e R R

X'is the rotation by 2r contained in SL{(2,C). An explicit formula



4q

for y, will be given in the next section.

!
]

Finally, G is also a covering of G, viz G = a/if ', e it g
given by I = | (x,vr*)", nsCx1.}. The image M/7  of I' in G is the
center of G, it consists of the elements imI, M= Osee3, I=4xh unit

matrix, i = V-1 .



3. Representations with positive energy

Let T a unitary irreducible representation of E by orerators
T(g) on a Hilbert space #. Suppose that it has positive energy,
?(P°) 7 0. There exists an element ¥ of G such that RPoﬁfl = &°.
Explicitly R =exp 2ni32.iniacts on compactified Minkowski space
like a reciprocal radius transformation followed by a space re-
flection. It has been pointed out by Kastrup long ago that this is
an element of the identity component of the conformal group .l
Positivity of energy ?(?°) > O means that (% T(P*1%) >0

for arbitrary states in the G-invariant domain of T(p®). Consider

(e T ) = & (w0, TP » 5 (¢ T )
= & (v T(PHW¥ )« % (yffrtpc>%') > G
! — e !
with % = T{(R % . Therefore we have the
Lemma 1: T (P°) = ¢ implies T (H, ' 2 © for the
conformal Mamiltonian H, = & (PTrK®)

mhis result was known before [2,3], the proof given here is a

modification due to Lischer of Segal's argument.

Consider next the action of the center [ of G. It consists

of elements of the form

rosoy =y Y, N XL=R@*PL'TH¢ ;¥ =1
Since the UiR T ig irreducible

TY = « &Y for all % wn ¥ (3.1)
with  w(y) = exp mnd for y = v, - exn irenHg

d is some real number which is determined up to an integer.



It follows then from the spectral theorem for the selfadjoint
generator T(Ho) that all its spectral values are of the form d+m,
m some integer. Since T(Ho)z O by lemma 1, the spectral values
d+m 2> 0. We may therefore fix the integer part of d such that the
lowest spectral value is d. This gives
Lerms 2: In a UIR P of G with positive energy, the gemerator T(Ho)
has a discrete spectrum. It contains a lowest eigenvalue 4, and all

the other eigenvalues are of the form d+m, m positive integer.



4, Lowest weights

By a vector space V weshall mean a linear space with a finite
or countable basis such that the elements of V can all be written
as finite linear sums of basis vectors.

Consider an irreducible representation of the Lie algebra
9. (respu‘%c) by linear operators T(X) on a complex, possibly
o -dimensional vector space V. Irreducibility means that there

exists no invariant subspace of V. We say that the representation

T possesses a lowest weight vector O €V with weight A it
T(x )0 = ¢ for all X <’ (resp.Xer ¥, ), and
] (ki)fﬁ = A(H ) for all Hc ﬁc

The weight A\ is a linear form on ﬁx , viz Ac ﬂ:'. A is

specified by the three numbers

A= A(HD . We write A= {X_ N XN D

<+ .t <

A c¢lassic result says that every finite dimensional representation

of g resp.ﬁc has a lowest weight. In particular, finite dimen-

sional representations of &c have a lowest weight of the form

P O P with 2j,, 2j, nonnegative integers.{(4.2)

Infinite dimensional representations of e need not possess a
lowest weight. We will however prove below that representations
T of e whigh are obtained from a UIR of G with positive energy
possess a lowest weight.

Consider a unitary irreducible representation T of G on a
Eilbertspace £ . It restricts to a (reducible) representation of K.
K is a direct product of an abelian factor isomorphic to TR which is

generated by Ho' and a compact Lie group Ki .



13

kK = Rx WK, , K =x SuU(2Y= Su(2) , R = {mpicxuc ey rzm.tf} (hs)

*

Since T(Ho) has a discrete spectrum, ¥ decomposes into a Hilbert

Bum

® = @® V" (Hilbert sum) (4.4)
P

where V% is a Hilbert gspace that decomposes into copies of one and
the same UIR of K with lowest weight 1. By lemma 2, all the weights

u appearing in (4.%) are of the form

1 = (4+N, =Jqs -Ja) , N, 2J1, 27, nonnegative
integers. (4.5)

Let us introduce the algebraic sum V of the subspaces Via

v = 5vH (algebraic sum)
/J.

it consists of finite linear combinations of elements of the Ve .

It is a standard result in the general representation theory
of semi-simple Lie groups with a finite center that all the v
are finite dimensional when we decompose with respect to the maxi-
mal compact subgroup [13] . Consequently, V is a vector space.
Furthermore V is a common dense domain (of essential selfadjoint-
ness) for all the generators X of g. Thus there is associated
with the UIR T of the group an irreducible representation of its
Lie algebra by linear operators T(X) on the vector space V.
Conversely, any representation of o by $ke¢w -hermitean operators
on V can be integrated to a UIR of the group, and so infinitesi-
mal equivalence implies unitary equivalence ( [1.3), theorem 4.5,5.3)

We will take it for granted that all this remains true for the
representations of our group E which we wish to study here, even
though G does not have finite center " , and the covering E of
the maximal compact subgroup E/P of G/ is no longer compact. *
The vector space V will be called the "space of E-finite vectors™.
We say that the UIR T of G possesses a lowest weight if the
associated representation of its complexified Lie algebra I
on V possesses a lowest weight.

Let d the lowest eigenvalue of T(Ho)' Then there must
occur among the weights p in (4.4) at least one weight A of the

form XN o= (d gm0 (& ¢)

*X Note added in manuscript: A prﬁof is given hy
M. Luscher in [22] .



with some integers 231, Zja . There exists then in V') a common
eigenvector (1 of T(Hi)) i=0,1,2 , to eigenvalues d, -j,,

viz.

-jz‘l
T(H O = o2 o T H IO s —Jkﬁq (k=1,2)

We claim that this is a lowest weight vector.
We have to verify that T(X)}QX = O for all X ¢ re~

Now n~ is spanned by X}-cl (k,£=%£4), X° X ‘

“te
Consider then the vector 1 (x';#) ) . We have

- (H;)T{X;c)'ﬂ < T(LHC’X‘H i\jﬁ_ + 'T(x;d}T(Hu\o_

= (d-t) T (x )2

by C.R. (2.10)., Since d is the lowest eigenvalue of T(Ho) by
hypothesis, it follows that T(X;1)11 = O.

Consider next T(Xfl’g)fl . We find from the C.R. (2.10) as
above that this is an eigenvector of T(Hl) to eigenvalue -jl—l.
since X2; ;¢ #  , the vector +(x2; )0 will lie in vA o,

But since V} consists of copies of one and the same UIR of K
with lowest weight A , the only possible eigenvalues of T(Hi)
are -jl, -j1+l, ceny jl + Therefore —jl ~ 1 is not a possible
eigenvalue, hence T(Xil,o)f] = 0. One shows in the same way

)
that T(Xo,-l)f) = 0.

We have proven part of the following

Proposition. Let 1 a unitary irreducible representation of G

with positive energy. Then T possesses a unigue lowest weignt.
Any two such representations with the same lowest weight are

upitarily equivalent.

Proof: Let Tl’ TE two representations of the Lie algebra Fe

on vector spaces Vl, Va. We call them (linearly) equivalent if

there exists a bijective map between Vl and vz which commutes



with the action of -

We know already that any UIR T of G with positive energy
possesses a lowest weight, Consider the associated representation
of the complex Lie algebra 9. OB the vector space V. A standard
theorem { [14] 4.4.5 Theorem) asserts the rollowingif&he lowest
weight of an irreducible representation of 9. on Vv is unigque if

it exists. Let {1l the lowest weight vector and {Xi} i-1...6 @ basis
for r¥. Then V is spanned by vectors of the form

'T(X,{hwa(x;)nbfl » By nonnegative integers. Finally, any two
irreducible representations of Ye with the same lowest weight
are linearly equivalent. ‘

{It follows from this also that the eigenspace v ot T(Ho)
to the lowest eigenvalue d carries an irreducible representation
of £.1] |

Uniqueness of the lowest weight is thereby proven. As for
unitary equivalence it suffices to show that a.g-invariant
scalar product on V is unigue if it exists, cp. the discussion
after (4.5). By a g-invariant scalar product we mean a scalar
product such that T(X) is skew-hermitean for X in the real
Lie algebra g of G.

Skew hermiticity of operators T(X) for X}a? implies that

T(Z)" - T(ps") for Z €9, (4.8)

since every element [ c-f qc is of the form ZaX+iY; X, Ywm g -

Let {xi} the basis of r' ¢ o ¢ introduced before, and

consider vectors in V of the form

| ST (x) LT X
Wyayp TP UAS e ¢ - (5.9)
They span V. It may happen that ¥, = O + The scalar
product of two such vectors must then be of the form'
' . (4.10)

Cbrag i) = (T (X0 )™ TeXp) T T ™)



Ir X, cnt then /.%x‘fp"en' : hence T(f,'“f,?s") = 0
We may therefore use the C.R. of the Lie algebra (Sec.2} and
hermiticity condition (3.8) to rewrite the left hand side of
(3.10) as a sum of terms of the form

M oMy iy } m. .o, nt, :
(2 H, H1' Hy (x) - d Ty epy T

\

To this end one need only switch all the operators T‘(ﬁBXT[K')
to the right and operators T(X;) to the left until they ani-
hilate (L . .

In conclusion, there exists an algorithm for computing the
scalar product of arbitrary vectors in V (= finite linear span
of vectors of the form (4.9))if it exists. Therefore the scalar
product is unique up to normalization and proposition 3 is proven.
Moreover, a scalar product can only exist if the bilinear form
computed by the above algorithm gives a positive semidefinite
norm squared IR (¥, %) to all the vectors %
of the form (4.10).

5, Necessary conditions for unitarity

Having established uniqueness, we now turn to the question
of existence: What are the conditions on A~ {d;-f ,-y,)
that \ is lowest weight of some UIR of G. We know already that
A= (d, SRR with ﬁ,,ljl nonnegative integers,t4?0<
(5.1)
The last cﬁndition comes from the requirement (lemma 1) that
T(H, )z © , which implies that the lowest eigenvalue d of T(Ho)
is nonnegative.
We shall derive sharper inegualities on d. They come from the
requirement stated at the end of the last section: The bilinear

form computed by the algorithm of Sec. 4 must assign positive



semidefinite norm to vectors % of the form (4.9).

Let us introduce the vectors (im V' ) defined by

(5.2)

fol

1M

Fa

7 ‘ ' '/‘L ; ’-rm’ . +m2_
{ Qim0 (s } T(X )J T(xz.‘)j” o)
YL germo by G em ] :

One knows from the theory of angular momentum that they are norma-
lized if (2, 0))=1 as we assume. Moreover the generators of K
act on them as follows:

¢ 1ML

= dQ‘m,mL ’ 'T-(Hh)-Qmmz = mhﬂmm (j"""’al)

i

T (.xo’tfr) Qm m, [ ('J’l; mi)(‘Jlit’ ﬂ11—+1)]/‘lQ m, iml:ti

We shall distinguish 3 types of lowest weights ) - (d, SARTIO NS

ease 3‘1 tc jl £ : Consider the vectors
,Ji-:'. 'J:L ;'_ ;. . )
Iy{ = Z‘ ¢ (J"-I'JI--i 3”1--"’! rml)C (Jl*t ’}z'li 3 MJ_— ! ,mz) '
MM, o
— e }
v (Xm'ml) ‘O"Mf-m“Mz-mz_

Herein C are vector coupling coefficients in the notation of Rose [is].
We remark that this vector transforms according to the represen-

tation of K with the lowest weight (d+13 da*s ,—J'L-PJJ-)

—

Since T{X 1» = ¢ , the norm of this vector is

moem,

VLS T3 LT T AR, ,
\Qfmq ", , ) = - 2, 2 (CG-Coeffncnenﬁ)

} ’
"y MMMy

(o, T(X '
( Mq—mq'mi.-m;.’[ (xm:m;.)T(xm*! )] Qm'i-m"‘mz.m')



We insert commutation relations (2.15) and evaluate the resulting
matrix elements with (5.3%). With the vector coupling coefl cients

(B.1) of Appendix B we obtain the final result

(?Ji‘lz'j{lz' jq"’:'.'jz'%) -

P TMM dﬂj‘t-jldl
”QM‘L M Py

This must not be negative$ we obtain therefore the condition

d 3 friae2 it 4o, jto - (540
2.nd case:! 4 . . We consider the vectors
LI A 11*0 y 1,30
Y,'--&'%-ZC(‘ L -4t :M-m m)T(X+ YO .
M, M,y - - 11"'1.’]1 PR ‘ mM, H-m,0

The norm squared ot these vectors is computed in the same way as

above to be

11-%.’%-) - d—. l
, ¥ 14"
M, M, MM,

This must not be negativej we obtain therefore the condition

dy To+! 4 W 0, ,=0 - (5.418)

};rd case: i,='° ,iz¥,0 . This case is just like the 2. case,

one finds the condition

d 3 g+ -4 i«’o , JL#O

(B.4c)

4.th case: {, =1, = o) . We consider the vector

+ +
- EMLT(X'"1"':.)T(X'""1"“:.)Q°°

We remark that it transforms according to the representation of K



with lowest weight (d+23 O, O0). The normn squared is computed in

the same way as before. One finds
(¥, %) = 8d(d-1)
This must not be negative, we obtain therefore the conditicn
O“-‘-‘O o d'}?1 1<f Ji=1z=o (5.4d)

By uniqueness, the special case d==1,=1z= 0 corresponds to

the trivial l-dimensional representation which is indeed unitary.
Conditions (4.4) are necessary for the existence of a UIR of G

with lowest weight A= (di'i1"iz ) . We shall see below

that they are also sufficient.



6. Induced representations on Minkowski space .

Let G the universal covering group of G = SU(2,2). As we

know, the center I of G is M= with T=2, ,M=Z.

It is well known that Minkowski space Ml+ = {yu} can be
compactified in such a way that it becomes a homogeneous space for
G, and therefore also for 5. The conformal group of (compactified)
Minkowski space is isomorphic to 806(4,2)/82'3 G/Zl+ ] é/r . It

is compounded from the following subgroups

M/n  Lorentz transformations yH Ava“ . Ae 50,(3,1)
A dilatations y“ ﬂvla\yu s, tal>» 0 (61)
N special conformal transformations yﬂ-—>d(y)-l(yu-npy2),

with n" real, o(y)=1«2ny+ n2y2

X translations yu-a-yu + x" ’ x* real

The need for considering a compactified Minkowski space Mﬁ arises
from the fact that special conformal transformaiions can take points

to infinity.

The little group in G/r of the point x=0 consists of

Lorentztransformations, dilations and special conformal trans-

. y ~
formations. Thus M, = (G/Qq)/(MAV/Q) , or

'M: ¥ G/MMAN . (6.2)
This is meaningful since M A N is simply connected and therefore
contained both in G and in G. Here and in the followiné we denote
by M the guantum mechanical Loremtzgroup, it contains the factor

I, of the center of G . On the other hand I =~ Z has a

2
generating element ¥, &5 we know ( Secs. 2B,3)

r*z = {y;r , Nz 0, &1 } , ¥, = Rexp xH, ; R=exp 2riH, . (6.3)

We leave it to the reader to verify that the parametrization (2.21)
~ ) . {6.1)
of G ¥ G/F' induces the tramsformation law, on cosets.



Let us now turn to induced representations on M: « To every
A= (d;-1,:-1,) we associate a finitedimensional representation
of f;MAN by

2\ ¢ _inNe_Iy)
D (yman) = lat"e " DTm)  with c=d -2, for yayY . (6.4)

Here D' is the familiar spinor representation (jz,i) of
MxSL (2 ¢), viz D*V"(m)sp") (4) for m of the form (2.21).
It acts on a (2j1 + 1) (2jz + 1 )-dimensional vector space EA.

We eguip EA with the natural scalar product <,> which is such that
.. N
DJ""J1 (¥ ) = p'th (m) for me€M as in (2.21) (64')

Consider the space {3 of all infinitely differentiable functions

¢ on 5 with values in ER which have the covariance property

(f(ayman) = IO..IIJ)\(yman)-I@‘g) (65)

We make SA‘into a representation space for g by imposing the trans-

formation law
(T(re)g» = ¢ (g7'g" (6.6)

Since translations act tramsitively on the dense subspace

MAC M: = § /r';.M 4 N, almost every element g of G may be

decomposed uniquely in the form

g = xyman s x € X , yman € [, MAN (6.7)

Therefore functions & in 6; are completely determined by
their values on X.
let x' and yman determined by x , g through the unique decom~
position
~

g"x = x'yman geé

; x,x’ex-, yman €T MAN

(6.%)



i
)

The transformation law (6.6 ) becomes then by virtue of the covariance

property (GHS)

(T(@19)x) = 1ar’D (yman)" @ (x) (69)

Note: translations x€X are in ome to one correspondence with
cosets X =x f’zM A N . Both may be parametrized by Minkowskian
coordinates xu, ¢t = Ou.s3.Functions ¢ may thus be considered as
functions en Minkowski space ‘xu} with values in the finite
dimensional irreducible represeantation space E of the q.n.
Lorentz group M . We call them "finite component wave functions

(or fields)". Eq. (6.9) is the typical transformation law for

an induced representation on Minkowski space, induced by a finite
dimensional nonunitary representation of the ( nonminimal parabolic)
subgroup of stability M ¥ & N . Eq.(6.8) says that x* s
determined by 4 by the usual action on cosets , x' = g-li ’

which is explicitly given by (6.1).



A. intertwining operator

As a prerequisite for writing down an invariant scalar product¢u1£A

we shall first define a map (or operator)

b
A, - gx.,;-x

~

where ?; is a space of generalized functions %» on G with

values in EX having covariance property

¢(33man) = IQI"Da(xman)*Cb(a) 4;0* éeg , yman €L MAN  (6.10)

It is made into a representation space for é by imposing the

transformation law
(T(g)d:)(g’) = ¢ (99" (6.11)

A . . . .
The map A*_ will be required to commute with the action of the

group, viz .

A:T(S)(p = T(a)Ai(p ﬁn ¢ A 6X (6.12)

Because of this property, Lﬁl is called an intertwining operator.
The coastruction of Az' parallels to a large extent the construction
of the intertwining operator for the Euclidian conformal group as
described by Koller[l?,see also 18] .

Consider the special element YR of 5 introduced in Sec. 2.

It has the following properties:

R'ze ; wNw'=X ,\Qmﬂ"':’ﬁcm for mem

A

Ra% = 17! fkr aeA . (6.13)

¥

Working with the parametrization (2.21) of M one has m = (m*ﬂ)-l,



therefore

:DJ;L (m )* 3 J)i‘i‘ (m)-1 {6.14)

A X
We define the map 34_ by a generalized Kunze Stein formula [191

(ﬁ(g) = A)_:_(P(a) = H.+U\) gdx (P(@Rx) (6.15)
: X

n, is a normalization constant. Integration is over the subgroup
of translations, with Haar measure dx = dx°... dx5. One may ask
under what conditions the integral makes sense (it may need regu-
larization) . This is a difficult guestion which we postpone. For
the moment we proceed formally.

Let us verify that ¢ has covariance property (5.10).

4>(gyman) = n, gdx’@(ﬂgman’ﬁx') = n_._got'x’(p(%}?x?ﬁa."xx')
X

fl
b
=
m
b
»
5
[WN
=]
o
H
[+]
oy
=
0
[ ]
=}
1]
=
o
)
H
-
1Y
o
l....l'
(1]
4]
o
Fy
'_I-
=
d—
T
0]
H
&
o
F.
o
=}

with x

This gives

db(axmom) - n_‘_laik de"(p(gnx"xﬁuxd)
= n+laiuiqt'l ]))\(3;10.")_1 deﬂ(p(gﬁx")

= YL+1Q|1 :Dx(yman)*c#(g)

Qs €. d.

In the second line we used covariance property (6.,5) and in the

third line we used (6.14) and the definition (6.4) of b .



. b
Let us next express the map A+ in terms of the restriction of

functions  to X . We have

P (x) = nr () de'(p(x??x')

X
"

Using the decomposition (6.7) we may define x , yman as functions

1
of x by

Rx’ - x.'fs-4 , $=Y¥man £ I'"lMAN' (6.16 )

- 1 "

The jacobian of the transformation x — x will be found below

with the result (cp(20 b))
dx = lal d x

Thus
(6.17)

45();) = n+()\) &dx”(p(xx”(gman)'i) = n+(X)So(x”lai1D\(yman)(p(xx")
X

1
Let us reinterpret (16) as an equation which determines x , s = yman
L
in terms of x , viz

-1 " 1"

R x = x yman (6.15a)
Define the intertwining kernel A: (%) by
(6.18b)
"\:-(XHM’ = la‘lD)‘ (yman) ¥ym & n depending on x through

the unigue decomposition (6.18a)
Writing multiplication in X additively , viz. X =y in place
of x y—l , Eq.(6.17) becomes

Y
d(xy = n,(3) So(g A (x=y) @ly) (¢.19)
X



Since X may be parametrized by Minkowskian coordinates {x"] ,
3
the intertwining kernel A*_(x) may be considered as a matrix-

valued fumction on Minkowski space MA.

Our next object will be to derive an explicit expression for the

kernel (6.18).

To this end we must evaluate yman . Write Y =g:ﬂ ¥, the

generating element of [, introduced before, viz . ¥, = Rexp inH, .
Let us first consider Eq. (18 a) medulo r’ , i.e. as an

equation between elements in G = G /r’ . We write x in place

tt
of x . Using parametrization (2.21) we have

A~

pA- X AR T yA

X 'gman -t

PR ~ -l — - _ 1}
t? lAFt P A where A E(A*)': P"‘Qll

and
y (o =
R o x =
i
- 1
The solution of the eguation ¥ 1;: =xyman (mod ') is found

by comparing both expressions. From comparison of the second column

we have

We take the determinand of the first

equation and use det A=1 . This gives p_l = =N et X >0 But

i

§5= det x = x'x xz. Inserting in the second egquation gives the

1l

B
final result n= -x 117 and
. v
pr=tal = Ix*17 AT s T 5 @) < - g x? (6.20a)
§'=«§’1 vy x’”:—x#/xt , dx' = Ix"i'“dx= 1ai%dx  (6.20b)

It remains to determine ¥ = y;( +« This is done by applying both
sides of Eq. (6.18a) to the identity coset in M =G / M A N .

The necessary computations will be done in Appendix C. The result is

N = N(x) = O(x})mgnx® (6.20a)



Inserting this into formula (6.18 b) for the kernel we obtain

_1-c  LECN{X)

A)‘ (_x) = n ()s’) ‘xll e -Dllj“ 1:1'” Ix;"la_ x‘l
+ + ~

We extend the definition of the representation plrle of SLiac) ® GL(20) L"j

] Lia* 2y, ,
D (oA W hplay
Using X = Xaﬁj’"' we obtain the final result (o=2+cj
x { " —d- - .
A, (xy = n, (A) (-x*+iex?) W bl (£% ) (6.22)

The matrix elements of D izl‘(i %) are monomials in the coordinates <",

B. Scalar product

For functionms ¢ in €, we introduce a sesquilinear form by
L
(6,6 = (oxde <606, By0x%0 @, (x> (¢.23)

Herein < , > is the scalar product on the vector space E> intro-
¥
duced with (6.4 ). We note that the sesquilinear form (6.23) is

formally G = invariant:

Let ¢1 = A:_ (Pl . Because of the intertwining property (6.12) of A:‘_

(T, , Tag,) = {dx < (T@y)xy, (T@d) x>

Let g~ %) =Xxyman s Whence d x; = a -4 d x . Then this is

- &dx <:D"(3man)"gg(x), ‘,D"(axman)*e,é.z (x)y = deg(pﬁ(x))¢k(x')>

= (CP.,;(PZ) q.e-d.
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It remains to investigate the question under what conditions on P\
the candidate (6.23) for a scalar product is well-defined and positive

semi-definite (for suitable choice of n (M) .

Ideally, the scalar product (6.23) should be well defined and
positive on all of the representation space 3} « We shall be less
ambitious for the start. Functions ¢ in &3 are infinitely diffe-
rentiable functions on G . It is therefore clear that their
restriction ¢ {x)to X defines functions on Minkowski space {xu}
that are oo differentiable in the coordinates x". That is not all,
however. In addition ¢(x) must admit certain asymptotic expansions
when some or all x" -»90 . We will not write them down explicitly,
but we note their existence. They come from the requirement that ({3
are oo differentiable also at those points g which map " = 0

into points of Mﬁ at infinity of Minkowski space M .

Consider now the subspace 7: of vector-valued Schwartz

A

test-functions on X (or M“) with values in E“.. They can be extended

by covariance equatiom (6.5) to e« differentiable functions on 1
which vanish with all their derivatives at points g in G  that
map x' = O into points at infinity. Thus Y, ¢ €y  is a proper
subspace of &y  which is not G - invariant. Indeed it is
clear that &, is the smallest & - invariant space containing 7, .

VX is however invariant under the Poinchsubgroup with dilations,
and it is also invariant under the Lie algebra % of G which acts
by differentiation with respect to g on functions ®¢(3) on G.

Elements of Yy possess a Fourier transform (F.T.)

@@ = Solx e'P* @60 | (6-24)
with Px = p, x
/b\
We see from (6.22) that the intertwining kernel is a distribution

. / : .
in f& and possesses therefore alsc & Fourier transform.

We are now going to determine it.



P

Let = (E 0) and U=sS T (2)
. The generators of U in the {],,}.)
a,z (743133)

the g.m. rotation group

U< M, it leaves p invariant

representation of M will be denoted by

p S . . .
We may decompose the vector space E into irreducible subspaces

with respect to VU

{6.25)
J’+12. ~
2 SoA 245 N\ ~ s N
e X TE so that 3 1T E = s(s+)TT°E’
s=11,-74!
.
[l are projection operators that project on the irreducible
subspace of E)‘ which transforms according to the 2 s + 1 - di-

mensional representation of T.

_ﬁ_s . T'_‘l_sat _':‘,s:l‘_r't - Ss{.l:[.s (6-2€)

I

For p i V, , the open forward light cone, define TT,(‘P) by (627)
by 4

T‘.S(A(m){g) = ‘th(m")*"ﬂ's ijLh (m“) .ﬁ,r mgM,-f,:(E’z)_

For reasons of dilational and(GLorentz-invariance, the Fourier
.22}

transform of the intertwining kermel,will be of the form [)\: (dj-J,-j,_\

as usual] :
Iht 1,

~ L h -4 _

A, P = dec PxA+(x) = M{d-1,-1,-1) X lo(s LX)TTS(P) (-Pz):*d‘

Saf’,-&‘lt
“ted -2+l

where (‘Pz)"_z* = 0(P*) O(py) (pH) o for odv)+),+1

(€.29)
o
LP")"”l 'ﬂ's(‘p) are polynonmials in ‘p/u_ ; A+ (P} is there-
' We will

fore an integrable function for the .indicated range of d.
fix the normalization factor n_(}) in the intertwining kermel
by imposing the

normalization convention o(j v, = 1 (6.292)
4 F 3
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The ¢~ number coefficients 'mg(k) will be determined in Appendix D,
the result is

(d-9.-12-2)... (d-5-1)

ol (A) =
(d+p4)p-2)- (drs-1)

for s =1,+1,, Tedlm s oy 19 10h

A= (ofj_1'1‘_1°1) (6295)
The sesquilinear form (6.23) becomes now

h+ls

- ) ( - ~ ~ -
(Q.,,‘Pz ) - r'(d'jfh") ‘Z -T{S(\)Bd% (Pl) 2+d<‘e(P)’ns(P)@1(P)>
$= Ml A (6-30)

The boosted projection operators TTS(P) are positive and the

integral exists for d> IR P Eg.(6.20) will therefore define

a positive semi-definite scalar product for d in this range if all
Ay MY 2O . From the explicit expression (6..9) we see that

this will be so in the following cases

(¢, ®)Yz 0 for all (ey, if
R . {¢.31)
either 1¢ ¥ O !1:.’[‘01 d'7111+12_+2-
or j1= 0 and/or Jax 0, d¥ e+

In the second case there is only one term in the sum over s in (6.30).

It remains to investigate the limiting cases 1,20, o = 1+

and 1,=0 , o= f,+1

Suppose { =0 . Then T = 1 and
2 )y V4 o), -~ 14 2
(pH7 TPy = DTU(F) > Trl-l (p) as p'=o0 (6.32)
I
"H1rou3h V+
Here Trlf.,t is the covariantly normalized projection operator on the

. -—
unique eigenstate ( l-dim.subspace) in E» of the helicity ’J;/po

to eigenvalue i, . It is mermalized according to



i

] J J
TTY L ()TT) 1 (2) = 2p, 7T} (@)

To verify the first of Egs.(6.32) take m of the form (2.21)

- I
with A = (p/fpz)h' and use the fundamental formula (2.,20) of spimor

. %=~ ,~1 e .
caleulus, viz. A “pA = A(A)p . The second assertion of (6.32)

is well known from the theory of massless particles [11].
The second case jl= 0 is analogous. To take the 1limit in

(6.25) we use a standard formula for the $ —function |16] and insert
(6.32). The result is '

A TR IR )
A (p) = 9(&)””,1“1 (p)S(p") for X\ = (d.-:]l,-sz) (6.33a)

d = Jl+ja+1; j1=0 or j2=0.
The scalar product becomes then

~ 1,1 o
(¢, ,¢,) = (d'% Sp®y < (p), TT L 20 AN 2D AR (6.33b)
Po>0
for dnj1+;j2+l . jl-_-O or ;;220 o
It is positive semidefinite since also TTgel(P) is a positive
operator.
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C. Poincaré - content and irreducibility:

Using the positive semidefinite scalar product { <, , @, )
introduced in the last subsection we can complete )’A to a Hilbert-
space Wy after dividing out zero norm vectors. The elements of ¥,
will be equivalence classes of functions, the equivalence relation
will be denoted by ~ and will be explicitly given below.

To exhibit the Poincar® content of ¥, let us define to
every P in the forward lightcone V, a boost L{p) e sL(2c)
which takes 13 = ('I"Pz,g) ' to p . Explicitly we may take

Lip) = ('R’ﬁ:")"" since then. L.(p)‘é L(p)*- T (5.34)

by the fundamental formula of spimor calculus (2.20) .

To every (e )‘; we associate a Wigner wave function VW (p)

with values in E'\ defined for pe Vv, by

vip) = D (L) @epd

(6.35)
Let us introduce a basis e, in E® which consists of ortho-
[ d

normal simultaneous eigenvectors of 7' and 3? (:.l‘ = generators
of the rotation group) to eigenvalues s(s+1) and m respectively.
We may then expand

Fe4+1, $m

YP)Y = LY P e \

S= g1, ! (6.35 )

with complex functions Wgem . They transform under homogeneous

Lorentz-transformations in the Wigner way,
sm’ [ - - L
(T %) (@) = I, Dy (U@ A LKD) A" (A'p)
- m

va ¥
‘Fr m= (2 :x-l)eM ’ ’\ﬁyE A(M)Fv' Ji-'vc‘ﬁAq A%y pel . (6.36)



p° is the {(2s+l)~dimensional representation of the q.m. rotation

group SU(2). We leave it to the reader as an exercise to rederive

(6.36) from the transformation law (6.9) with 3" = me M

The label s has the physical significance of Lorentz-invariant spin.
We can reexpress the scalar product (6.30) in terms of the

Wigner wave functions ¥ (p) . Since Tr+ €sm = 5‘“ € sm we

obtain for the norm

Il
(0,¢) = (dp-n-0 "2 G (o (T Z ™ 01"

5:]]1']&} V+ (603?)

Consider first the case when d»j,+| +2 or J,, =0 , o> 45,4}
Then all o (X)) > O . Thus (%, %) = 0 if and only if
a1l ¥*" {P) =0 for pev, . Translated back to wave
functions ¢ , this means that the Hilbert space ¥, consists
of equivalence classes of functions with equivalence relation ~
as follows:

J{): p ~ 0 1'# %(P),o #r QPE ‘Pe\/+

4

provided X =(ol;-1,,-12) K oy )+t 2 61 J«]:.'Ofd’j."l,_*‘

It 141, *0 and of = TR then 0(11”: 1 but oA =0 f;v_g‘j;.)z.

2 bt
Thus (@, )} =0 iff T %(py =0 . Translated back
this means that 7{)\ consists of equivalence classes of fuanctions

as follows

Hy: G~ 0 irr Ty @ipr=0  for all peVy

in the case 1140 ; 114-0 3 d'Jﬂ‘*J:.""
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Lastly consider the case d = Jot1a+t, 4, = O - We see

from (6.3%%) that #y3 consists of equivalence classes of functions
. 11 ~ oy
:R,X: @~0 iff T[h:l L(P)Q(P)’O for ‘P2=o » P> 0
in the case 4479, = 0 o= 4,41, 41

From Eg. (6.37) resp. (6.33) we can also read off the Poincaré
content of the representation_space 3T1 . The result is as

indicated in Sec. 1.

Let us next turn to the question of irreducibility. If either
jlja =0 ords= jfj2+l irreducibility of W, is obvious since
the representation restricts to an irreducible representation of
the Poincaré group with dilations. It remains to investigate the
case d>f,+4, 42 , 1N *0 .

We start from the infinitesimal form of the transformation

law(6.9). We demote the conformal gemerators obtained from T(g)

by ﬂu, Pu, Slald , D as usual; while the generators in the finite
dimensional representation plals of the Lorentzgroup will be
denoted by )2 ald - they act in the vector space E> .

The infinitesimal form of the transformation law(6.9)
reads then as follows ( %“ e 3N )

Pl (x) = id%px) 5 MMWex) =i(x*3Y- x 3 - i LM )@ ()

bq@(x) = i(k-d+x,3")(p(x) (6.37')
KM@y = i { [8-2d)xM £ 2x#x¥3, - x99/ - 20x, £7) ¢ (%)

In view of the general result of [*] it suffices to check validity
at x* = 0 (identity in X), everything else follows then from
covariance. We have from (6.9) and (6.4)

(T(m)¢)or « DMIr(my o) 'ifo m €M (6.38)

(T (aYp) (o) = ;u“’d@(o) {;r acA (T (Yo = @io) for neN



for Lorentztransformations m, dilatations a and special conformal
n
transformations,respectively. The infinitesimal form of this

ie (6.37) with x" = O.
> R
Let us introduce matrices LJl, Jz, JB) =Jd , (Nl, N2, N3) = N

L ik
gzt N

, = L (Awm v Mpna,kd avolices | £,,, =) Y

We wish to derive from (6.37) the action of infinitesimal special
conformal trapnsformations K”' o Wigner wave functions W (p)

Tt is defined in terms of the action (6.37) of K" by
KA DIEN (L) E(p = DI (L) KX ¥ (p)

e have
= .y - —n 2
L (p)= exp -tei%nr = 1 - E PN - (FN) 4

where P = (po,f;) , m = ¥Yp* , Anh 6 = I,S’lz/mr

A straightforward computation leads from the Fouriertransform of
(6.37) to

-]

x>

g (Feo) = [-2d3°-2p¥3,0°+p° 0 + L N }Y (F=0) (6.39)

— - V_, s O s g e s —_
¥ (p=o) = {-Zda -2p,3%d -l;(jxa)+%[L(d-f)N'JXM]]‘\f(P=O)_

x}>

It suffices to have the transformation law at f?= 0 since

K" transforms as a 4 -vector, viz .

M -1 M
T(m) K .T'(m) = A(m)ykvfor vorentztransformations ™ € M (6,40)

And we know from Eg. (6.%6) that Lorentztransformations do not
make transitions between spin states. Neither do dilatations nor

translations,



i
[

t
We insert the expansion in basis vecteors (6.35 ) and make use

e
of the explicitly known action of the generators I, N on

E
A .
basis vectors Com of E {(cp. Appendix AJ.

As a result we obtain

KIg (Fro) =+ KOZ egm ¥ " (Fr0) (6.41)

s5m

. ‘ ) !
= D ) sm e G

V"P:".sm

1 TS -
- (3"0“‘5)(5*”"*‘)h(s'"‘*")’& C;+| €sar,m +..1 ¥ " (F”O)

where the dots stand for terms proportional to @gm , and
)

Ce = C:ZJ’ are the constants given by Egq. (4.1) of
Appendix A.

We see that K3 makes transitions hetween states with different

s. The coefficients of €31 m and €54y do not
vanish (identically in m) for d»>y, +),+2 unless
S = 5 =011 regp: S = S,ux = 1ty

Therefore there exists no invariant subspace and the representation

is irreducible.
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D. Integrability

So far we have demonstrated existence and positivity of the
scalar product (¢, ,4) only for Schwartz test functions (¢ am J;.
But unfortunately j& is invariant only under the action of the
Lie algebra y of 5 but not under the group g itself
(¢p.Sec.6B), Therefore we are faced with the question whether our
representation of the Lie algebra is integrable to a unitary
representation of the group g . [It follows then a posteriori
that the scalar product is defined and positive for functions

¢ in &y , since &, is the smallest § ~invariant space
containing 3&]. This problem is solved by the

Lemma 3. Suppose the scalar product
= ~\ ~
- { g
(6, = oy §d% <¥ (m, 8, (¢ (P>
exists and is positive for functiomns such that

QE(P) = &ds Sd3x e

£»0

~Ps +LPX

'X(S;-’:) {Or szoJ'P°'70.(6.!+2)

x an infinitely differentiable function with values in E
and compact support contained in the half plane $>0 .
Then the representation of o is integrable to a unitary

representation of G.

This lemma is a corrolary of the theorem of L&scher and the author
on analytic continuation of contractive Lie semigroup represen-
tations (generalized Hille Yosida theorem) [3]. A proof of the

lemma is implicit in Sec. 4 of ref. 7 .

Remark: In purely group theoretical language what ie involved here
is this: Functions of the form (6.42) with supp X in a given
compact subset of the upper halfplane s> 0 form a dense set of
equi-analytic vectors for the hermitean generators of 5.

Integrability follows then from a classic result of Nelson's [13, 21].
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It is evident from the explicit form (6.28), (6.33a) of the
~ A
intertwining kernel A,  that the hypothesis of the lemma is
fullfiiled. We have thus constructed unitary representations of the

universal covering group G of SU(2,2).

E. Another realization:

Let ?; the space of (generalized) functions of the form
X\
b = Gy B eyrg gedy

5; is the function space introduced at the beginning of this

section. 3; is a represemtation space for G. Since the F.T. E: (p)

has support concentrated im Y+ , the ¢losed forward lightcone,
¢ (x) are boundary values of holomorphic functions in the
field theoretic tube domain. In the limiting cases 1,1,%#0,

o= Jrt 1 vE and 141, = ¢ of = Ji+1, 4] they satisfy

in addition certain differentizl eguaticns. For instance

[TT+ (-1 b =0 19,20 rol=gep
(6.43)

Since ¢ fixes uniquely the eguivalence class of ¢ in H, ,
the scalar product (6.23) makes ?i into a Hilbertspace which
carries the same unitary representation of G constructed before.
In practical applications it : ¢an k¢ useful to deal with
the space T; of generalized functions instead of the spaces

of equivalence classes of functions in 6% . Rﬁhl's work deals

with functions in T; .



As our last task we should show that the UIR'S of E in
the Hilbertspaces Lﬁk constructed so far have lowest weights A
If so, it follows by the uniqueness theorem of Sec. 4, that we
have constructed all the 1nequ1va1ent UIR s of G with positive
energy. We shall instead refer to Ruhl 8 work [5]- It follows
from his results (and the remarks above) that all our represen-
tations constructed so far are (linearly) equivalent to amalytic
representations that have explicitly known lowest weight vectors
(viz.constant functions) with the right weight A

We mention one last result without detailed proof.
A UIR of a semi-simple Lie group G is said to belong to the
discrete series if (and only if) its matrix elements are square
integrable on the group. It is known that the discrete series
is nonempty iff G has finite center P and possesses a compact
Cartan subgroup [12]. GQuotient groups G 1’ with Plecr of
our group G possess these propertles if their center !“IF is

finite. This motivates the

Definition: ;i unitary irreducible representation T of the

semi-simple Lie group E with denumerable center I is said to

belong to the interpolated discrete series iff

(da | (v, T )" <
G/r

for some nonzerc vectors 1Pﬁ$ in the representation space. {(dg is
Haar measure on the group GiIr ).
We note that the definition is meaningful sinece the integrand
is invariant uader g -> 3¥ for g€ 6 , Yer (cp. Sec.3).
It can therefore be considered as a function on G/r .
The representations of G constructed in this paper belomg to
the interpolated discrete series if and only if

d ’J«*Tz+3 (5.uu)



Sketch of proof:

50

There is a canonical way of recomnstructing unitary

irreducible representations as(irreducible parts of) induced

representations on E/K. [Here we may consider the space of

functions f:(ﬁ) = (ﬂm ,T(g")ﬂf') ,M=(m4'":.7 5 CP. Sec.5] .

Representations
tations in this
product on this

representations

with lowest welight give rise to analytic represen-
way. Square integrability furnishes a scalar
function space. Runl has constructed the analytic
on é/E and has found the condition (6.44) for the

scalar product in guestion to converge [5]. Alternatively, result

(6.44) may ulso

of all discrete
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L]
be derived from Harish Chandra s classification

series representations l[e.g.13].
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Appendix A: Finitedimensional representations of SL(2C).

- -
Let 7 and N the generators of rotations and Lorentz

boosts respectively. They satisfy the usual commutation relations

‘ - 1y g3
[9*,9%]=13% [N, N']=-i3" 137, N7 =N and cyclic

N, = N's£iN?

Write 3, = 3 #437 ¥

]

Finite dimensional representations of SL(2C) are labelled
by (14512) 3 U 21, nonnegative integers. A basis in the

representation space may be labelled by s,.m, with s(s+1) the
.

eigenvalue of 3* , and m the eigenvalue of I3 sEiq
J4¥1y » M= =SS in integer steps.
According to Naimark[20] the action of the generators on the

basis vectors €3y 15
l/z
- . 33
Uy egm = [(S+M)(stm+l)] Co mar Jleg,, =meg,

and for the boosts

s
M.tes,m -‘—:[(S:m)‘s;mnl)] Cses_,,m*|
]
- [(S;m)(stmi-l)]""Ases,m*‘

Lz
£ [ (stementstmead ] Coup €cuy mtn

Ui
NI‘C&'M = [(S"’")(S'Pm)] lcses-hm
Y,
-m Ag €5,m - [ (s+mery(s-men)] L Cory Cser,m

with

A =

s S$(s+1)

ke co= L (s k*)(s% }”; (4.1)
’ 57 s bs* -

C= Ja+f,+ 1 , k = Jo= 12 2 S= lk})... c-1 in integer steps.
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The sign of the square root in Cs is a matter of phase conventions.

It is costumary to have the generators l\flc , and therefore also

C, » change sign when one interchanges (7,,1.Y = (1,.,1,) .
, . -
examples:  (41,,1,) = (+,0) : 3 2.12.; , N..-l?_?;
o d - b d [
(191, = {0y %) = I~z , N=4o
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Appendix B: Clebsch Gordan coefficients for SU(2).

The vector coupling coefficients C (i,,-‘i-,j;'i ; M-m,,m,) in
the notation (and phase convention) of Rose are given by [15]

lgmed ]'fz

Cl1,, 4, 5-4smagotd) = 3 [ 2, (B.1)
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Appendix C; The homogeneous space M = G [MAN

Iet MAN the nonmimamal parabolic subgroup of G
consisting of Lorentztransformations meM » SL(2C) s dilations
o €A and special conformal transformations ne N .
MAN is simply connected and therefore also contained in G.

Consider the Iwasawa decompositions

ES;ZA‘F'N“P and MzuA'm‘ N with A-;o‘Am.A)N-;a: NN (see Sec.2)

it follows that the homogeneous space
M= G/MAN = K/u = Rx 53

~r

83 the unit sphere in . R . Thus M may be parametrized zs

ot - - - 12,3 _% .
M-{(‘l’,f.“), W“‘”;§_~(£8€,a ) aunltf-b—vector}

~

Flements of K =~ R % K1 act on M as translations of T

and rotations of e . In particular

ioH,

[ ; T > T+0

\.
tm
¢
™

r H T T

t™
$
1

™

The center "= of G acts therefore on M as follows: r, acts
trivially, while f, consists of elements of the form 3,”
. E S

xigneiﬂ"‘o takes T > T+% | g -»-¢

A domain F contained in ﬁ is called a fundamental domain

(with respect to the discrete subgroup F, ) if

M = ny-", F'nyf-":p{ for y%e@\"‘z
Ye T,



4 fundamental domzin F may be chosen as follows:

X

F:{(r,g)eM , W4T 4T é >—m'r}

It may be identified with Minkowski space Mh through the repara-

metrization

- _ el _
RS S (i=123)
CosT +£5 CorT » £5

translations x € X map F into itself. They translate coordinates x*.
For further details see eq. Sec, 7 of ref. 3 .

Consider now the equation encountered in Sec. 6A.
Y?-'x-rx’afman ; x, % 4n X , man € MAM',y:-y’_MsI"z

We wish to determime N as a function of x,
Apply both sides of the eguation to the identity coset e = (9, £)
E = (000,1) . Evidently, by what has been said above
xlymané € V:(F'-

Since we know that the integer N is a Lorentz-inveriant, it suffices

to consider 3 cases for the right hand side

x#x, <0 : take x° O them x€=(0,¢) with £5¢1
therefore R 'xe = (0,-¢) with —£5>-| z =0 .
Thus R 'xe € F whence N'= 0

X"‘xﬁ'ro , X%y 0 take ',2'=o, x®>0 . Then xé& = (r,é‘) whh O<T<T .
‘khtre&ra RIxé = (v,~-¢&) wih o<Tem <x, gS’z_(_ES),__,I
s R7'xé ey, F whence  Nat

x#xﬁ>a , X° <0 P Hie Aame Waa om.-fa'na(s N= -\
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Appendix D: Fouriertransform of the intertwining kernel.

~ X

Qur task is to determine the intértwining kernel A {(p) in

momentum space. We know already that it will be of the form (6.28).

Consider

o
A-r

. P deg-g- ) e OO (P e

(D.1)

Instead of working out the Fourier transform of (6.22) it is easier

to work out the coefficients of, from the requirements of

infinitesimal conformal invariance. In particular, we must have
PETIR s * 3
K A+(P)"f'(p) = A+(P}K '}(P)

sm
for arbitrary Wigner wave functions “(p)= 2 e, ¥ .

A

Ky is given by £q. (6.39) or (6.41), and k3’  is obtained

from it by substituting d-»L4-ol and reversing the sign
-ty

of boost-generators N , This is in accordance with the trans-

formation law (6.10) of ¢ = A g € F, which differs
from (6.9) for ¢ ¢ é’x .

The projection operators
B J
m es,m = Ss{ es’m

From Eq. (6.41) we find
a) A3 -
A+(p3K’\};(p=o) -
.
= - 2¢ (p")f—g z. {0(5_, (Z-J-s)[(S-m)(S"”")} LCS Coot ym
5,m

J
- olg,, (3-d+s) [(S *MH)(S-M*')]{LCs“ Cser,m

4 .. }?Sm ,

(D.2)
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: “ 3702 -
while K™ A (pYX(P=0)
)
=~ (Pt)d-% Z.Ofs {- (O‘-Z—S)[(S-M)(sv}m)] b Cs €sov,m
+ Sm ] ’
+ (d_.u-s)[ (s+m+!)(s~m+l)] "Cs“e_;”,m

3
+ e }#4"

The dots stand in each case for terms proportional €5 m .

C5 are the constants [for the (jajl) repreSentation] given in
Appendix A. By comparison we find two identical conditions on ol ,
viz .

-z -
ooy G-2-5

e 4
d-2+5 $

for s = 1]1'1:.""1 v Jat s

This is a recursion relation whose solution is

(o-2-9,-13 ) (d-s-1)

d,s = (d-2_+.l1+jl) vee (d.’,s_|) 1|+!1 ) d= '11-1:-"'-]1“' ‘2' (D. 3)
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