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Duality in quantum field theory
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Abstract: We formulate theses to the effect that leocal quantum
field theory has a dual structure. Our theses are based on experience

with conformal invariant quantum field theory.
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The study of models has often paved the way to the discovery of general
laﬁs in physics.
In the present paper we formulate theses about local quantum field- theory
(QFT). If they are true then QFT has a structure much reminiscent of
dual resonance models[l,ZJ.
Our theses are abstracted from conformal invariant quantum field theory [3].
In such a theory, operator product expansions a la Wilson [A]applied to tﬁe
vacuum {1 (vacuum expansions) are necessarily convergent if they ﬁold at all as
asymptotic expansions to arbitrary accuracy at short distances. This is a
consequence of positivity, spectrum condition and global conformal inmvariance.
Tt comes about because the vacuum expansions are identical with the partial
wave expansions on the Minkowskian conformal group ¢”* = universal covering
of $0(4,2). Partial wave expansions converge because they are nothing but the

decomposition of a unitary representation into its irreducible components[S,]Z].

Conformal invariant QFT does not obey the asymptotic condition.

However, our thesis | was alsc shown by Schroer and Swieca to be true for
massive free field theory which does satisfy the asymptotic condtion [6].

Also, the asymptotic condition ts a condition on the behaviour of e.g.

Wightman functions at large distances. Our expansions are supposed to be valid
in the distribution theoretic sense, that is after smearing with test functions.
Test functions fall off fast at large distances, and the precise form of the
asymptotic behaviour there should therefore not be crucial.

Nontrivial massive QFT also has many more thiesholds in general than either

free field theory or conformal QFT. This motivates us to formulate weaker

theses than are actually true in conformal invariant QFT.

Let ¢ (x) a (possibly composite) local field in a local QFT. For definiteness
sake suppose until further notice that p is hermitean scalar. To start with,

consider the disconnected 4-point Wightman function,

.w‘(xl..oxq_) = (ﬂ,w(xl)-..@(xq)f}:) (1)
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Let {Oi(x)} a complete set of nonderivative local symmetric tensor
fieids in the theory. In perturbation theory they can be constructed by the
normal product formalism. One omits however those fields which can be
written as linear combinations of other fields in the set and thewr space
time derivatives. For instance, ¢{x) is to be included, but not g% - Also
the identity operator 1= Oi is included. Without loss of generality we
will assume that all fields are hermitean. Indices 1 = (’E)y’ ) where £ is
for now
Lorentz spin (tensor rank , ) and y distinguishes between fields with

the same Lorentz transformation law; o = («4"'0{3) is a Lorentz multi-

index.{Each O(l'f' 0 ....3;™%=zAstands for no index at all.)

We will need the following 2- and 3-point Wightman functions

Q.0 ol = aey) = far TPV EI® o
sptr

and

) i i _‘]+ . ~i
(N2 ’(Q(Kl)(p(xa)oa(Z)Q) = Wa(xlxa;z) = (27n) Sdp elpZ W;(xlxa;p)
spir (2b)
Integration is over the energy-momentum spectrum of the theory, in it

pO > \'51 e define now a kind of amputated 3-point Wightman function B'-; by’

‘?E’i(xy;p) =Zj Bg(xy;p) Zgi(p) s p € sptr. (3a)

o~
This definition makes sense since the matrix A(p) is positive semi-
definite and vanishes only if p is not in the spectrum of any oM.

We shall use a graphical notation’

X,

. P —
Bl( % .p) = M , A - Al‘} (P)
[+4 Ji. 21 i.,d ’ “« j'P o’ (3b)

Xy

* e adopt a summation convention over repeated Lorentz multi-indices,

. - - - »
viz., XY, = X Vo = XV etc.



The arrows indicate the orders of the argumenfs, cp. Egqs (2).
Redundant arrows will be omitted later on. In particular, if‘(xl-x2)2< 0
the arrow between the two long external legs is immaterial because of

locality. Reversal of all arrows will mean complex conjugation.

Thesis 1. The disconneécted Wightman 4-point function (1) admits

a convergent expansion

Wixyeeom) 2 @ B0 B 0) B xzgim) ,
Sptr
X

( 4)

ap
with 2-point functions A and amputated 3-point functions Bj

defined by Egs. (2) and (3).

A bar stands for complex conjugation. In the graphical notation,
" integration over p and summation over Lorentz indices not shown is
understood. It is also understood that a term is included coming from

the identity operator § = 0: . This term has the form

W(x,~x, W(x,~x, ) = } { where W(x-y) = {(},e(x)o(y)f2).

Convergence of expansion (4) is meant in the distribution theoretic sense,

i.e. it holds after smearing with test functions f(xlx2)5(13xh)'

Formula (4) incorporates the spestrum condition. Also positivity
of the 4*poiﬁt Wightman funétibn is incorporated; it follows from (4)
and positivity of the 2-point matrix 2§(p) for p € sptr. Thus
W[t'*r] = gdxl...dxk f(xle)w(xl...x“)f(z x) >0,
3h
Further restrictions on the amplitudes come from locality, however.
The Wightman function W (XI"'Xa) is completely specified by its Galpes

.e.,. Its values for all other

for relatively spacelike arguments x L

1
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arguments can be obtained by analytic continuation through the extended

tube [7]. Analyticity in the extended tube follows from Lorentz invariance
and spectrum condition, it is therefore also true for the individual terms
in the expansion (4). The analytic continuation can therefore be performed

term by term.

Suppose then that the arguments Xyor X, are all relatively spacelike,

viz, (xi -xj)2<_0. Then by locality

= . ! i
W (xl...xa) W(xﬂ1 XWH) for all 4! permutations W

We can insert the expansion (4) for each of these amplitudes to obtain

: b
1
i .
.Z. ‘] 'Z_. = C.Ce
¢ ?}2 (5)
3
2

if all (x.-x.)° ©
3 R

c.c. stands for complex conjugate; omitting an arrow in the bubble means

that the order of the external legs does not matter [cp.after(Bb)l .

Next we will briefly discuss the relation of thesis 1 to cperator product
expansions. Let us say right away that it is not strong enough to imply

convergence of operator product expansions.

We note that one summation in (4) can be carried out with (3a) to give

W(zgeooxy) = & Sdp ﬁi(x4x3;p)ﬁ'1(x1x2;p)

I sshe (4'3

In conformal invariant QFT, 2- and 3-peint functions ;Q_ig, Bi are
determined up to normalization by spin and dimensions of the fields
0" and ¢ . One finds (by inspection) that Bi(XF;P) is an entire

function of p. It may therefore be expanded in a comvergent power series

in p. Using this, equation (4') may be rewritten as (6)

. Y- - Iy et . ) i
(ﬂ,w(xl)w(xa)cp(x})w(x#)fb (2=) %ﬁ Ba(x&"y"ivz)m'“’("1)‘9("2 o (z)D), o



Bz should be read as a power serles in~iV;.'Restriction to 4-point
amplitude can be lifted (s. below) so that one gets more generally

a "vacuum expansion' of the form

p(x)o(y)Y = }j: (Eﬂ)hBi(yx;-in)Oi(z)ﬂlho 6")

fne mav nut v = O in this In conclusion, thesis | tegether with
analyticity of Bi in p imply convergence of the operator product expansion

of p(x)o(y) when applied to the vacuum.

Analyticity of Bi in p may not be true generally though.

We have no argument to rule out the possibility that amputation (3a)
removes some but not all thresholds from the 3-point functions.
Vacuum expansions (6) need not converge then even if one assumes that

they continue to hold as asymptotic expansions.

Let us now go on to the consideration of arbitrary n -point functions.
' i - . . . .
Let {Oa(z)} a complete set of nonderivative hermitean local fields,

. . . 0
including the unit operator O, (x) = 1 . put

0,0 )03 ()05 @) = Wilkaya) = 207 [ ap 017 Wi Gyin)

aBp p
(7a)
Define amputated 3-point functions B by
wiaBp(xy.p) = %Biaﬁo(xy,p)ggp(p) .
We use a graphical notation as before
X b
ijk _ P ~35,
Baﬁp(xy,p) = ol Jr{3 = AGIB(P)

(7¢)
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Reversing all arrows will mean complex conjugation; omitting an arrow means

that its direction is immaterial.

As a consequence of the Wightman axioms of local quantum field theory,
. . iy, gk .
the 2- and 3-point functions ALJJLJLJ have the following

axiomatic properties: 1i) Lorentz invariance

ii) positivity and spectrum condition of 2-point matrix:
~ij bod . . .
(p) =0 for pg ¥ , 1i.e. outside forward lightcone.
o +
~i ’ . s
E: VAN %(P)I 2 for all finite sequences of complex (AP)
numbers {2“} and all p.

. . . ijk . &1 ] .
iii) The 3-point functions Wt resp. Fourier transforms W 1k satisfy:

W jk(xyz) wiedd (zyx)

itiei onditi
hermiticity conditilion oBa

spectrum condition lek(xy,p) =0 for p# v .

locality WJ ia(xl X, 3) is invariant under interchange

of indices 1 and 2 if (x -x ) < 0, etc.

Locality of 2-point functions has not been listed as it is automatic
consequence of i) and ii) . Also omitted. are distribution theoretic axioms °
(temperedness), they should be added according to taste.(The 3-point
functions W (x]xz;p) should be measures in p after smearing in X, X )

Let us now assume that expansion (4) holds for arbitrary disconnected
4-point Wightman functions involving any four fields Oi in place ofy .

Locality will impose crossing conditions as before. In particular

@0, (:lm (xz)o )0, ‘*c:pm zgdp gt (g (0B 8 S50

o, 6,0

iy 3 -1, 4,k
cjzkgdei: GZB(: BQP)A (P)Bau ﬂz p(xhxa ,P) = (Q 011 (x )013 (x )011 (x }oi‘.' (Iq )ﬁ)

1f(x-z)<o (8)

%n graphical notation 3

. 2
if (x2~x3) <0




~s .
We can now attempt to build up n - point functions out of lea, B_ljk

by generalizing the procedure for the 4-point function. For any m = 2... n-2

i, 400 gin
0,0 ’(z SEACRE: dp&s R D7 o e) ::'i(xn---*mﬁl”

l‘\.
with Sptr (%)
e dmad m-1 ip

L’:al.. m‘:a:( YyXpe e Xyiby) = 2 g STT (dp dy_e Ty . (9)

Jpoor dwa ) Jre2 J

. 3-1 131 . Jm flm

BY a3, T1¥piPp)eeeBy " "y (37 30
for m3s 2

In graphical notation:

(ﬁ,oj: (xl).. x )ﬂ)m %._d d (9c)
e |

Let us note that EXpressLon {9a) is independent of the ch01ce of m: Thls
follows framlnrmikcﬂjcondition(APiﬁ)upon reshuffling the amputatioms.

We have from (7) the identities

(x0)

E;idy BB (rxipt ) Kb (o) = {ayr &7HP'T A;{jcpmpﬂccy'x,p)

since DY perpiticity of matrix zﬁﬁ(lﬁ) )

lhs. = de dy' ei(py-p'y' )Wigi(m')- &dy ay* ei(py—p ' )Weji(y':ﬂ)
a rhso

Inserting (9b) into (%a) and using identity (10) for the factor involving
B(..;pm)gi(pn) we see that expression (9a) remains unchanged when

m-)] 1s substituted for M.

Tt is useful to extend validity of expansion (9) tom= 0,1 , n-1, n

This can be dome by supplementing definitions (9b) by
ij,._. -ipx ' . i
Ba(xip) = e Sij 5.{,5 i B(p)= 510 (9d)

We have assumed here that all fields except lm= 00 nave zero vacuum

expectation value. In the expansion (9) there are tetrms coming from the
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identity operator. The corresponding 2- and 3-point functions are
~0
3<p) §o; (@) (7)  BiYGyim) = AZGe-y) (Te)

We are now ready to formulate

Thesis 2: Disconnected Wightman n-point functions admit convergent

expansions (9). The 2-and 3-point functions appearing therein are defined

by Eqs (7a-e).

Of course thesis 1 is merely a épecial case of tﬁis. It was stated

separately for pedagogical reasons.

We note that Eqs (9) remain valid for m < 4. They reduce in this case

to Eqs (7) when they are not altogether trivial. Eqs. (7), which were

used to define 2- and amputated 3-point functions originally, are thus

actually themselves part of the system of Eqs (9).

Assertion: Suppose that one can find a set of 2-point functions ZQij(p)

and amputated 3-point functions B jk(xy,p) such that

i) axiomatic properties (AP) are true for the 2-and 3-point functioms
when Wijk is defined by (7b) in terms of Ziij Bijk

ii) Expansions (9) converge.

iii) Crossing relation (8) is fulfilled.

Then the Wightman functions defined by (9) satisfy the usual postulates

of local quantum field theory: Lorentz invariance, spectrum condition,

positivity and locality.

If a theory can be constructed in this way we call it dual [because of (8)].
In this language, our thesis 2 postulates duality of local QFT.
Let us verify the assertion. Write
i
n
(Q,Ool(x )...Oan(xn)n) b U(xlooaxn) ' I.k- (Ik,ik,ak)

Lorentz-invariance and spectrum condition are clear. Positivity: Let

g,,r1(x1)...fu(xq Xk)a finite sequence of test functicns. Define

. 3 IR
% (p) :,‘30{}&“1-~dxmfm<=111“1---xmimam>3aq__,%Bczl---xm;p) (i



Then, using (%a),

5 5 {amy ey B Oy e IO g IE e y)
TyB s . X
- %Sdp 33 (p) ALi(p)ag(p) > O

by positivity (Api)of the 2-point matrix.
Locality: Suppose that (xm - xm+])2 < O for some m. Consider first the

case 2§mg£n-2 . Inserting crossing relation (8) for the center piece

xn)-w(xl...x X ...X )

of the expansion {9¢) we see that W(XI".X X m+1l"m " n

m m+l

as required by locality. If instead (x]—x2)2< 0, the relzation

W(XIXZ...) = W(XZX ..) follows from locality of the 3-point function
i,i )

W 1j(xx ydnd (9c),(7b). The casem = n -1 is analogous. 0
a1a213 1T

B

Let us conclude the paper with a few remarks.

1) It is interesting to compare our thesis with the assertion of the

Reeh Schlieder theorem that the polynomial algebra of an open set in space
time creates a dense subspace of the physical state space H out of the
vacuum $3[#] Our thesis asserts that linear combinations of states

(ji(f)ﬂ: &dx fa(x)Oi(x)Q create a dense subspace of H out of L)

If we picture composite local fields as some kind of normal products
(defined eg. by operator product expansions) we could say that in
comparison with Reeh Schlieder the range of integration over relative
coordinates is shrunk to a point while integration over centexr of mass

coordinate goes over all space time.

2) More than a decade ago, the bootstrap idea emerged in analytic
S-matrix theory {#].It says for instance that thef)is bound together

from ﬂ%iﬂrforces that come largely from the exchange of P‘s again(or of
its Regge trajectory).Veneziano duality is a further developement of such
ideas. In S-matrix language, croéssed channel exchanges produce direct
channel poles. Crossing relations (§), (8) may be looked upon as a QFT-

pendant of this. Let us then try to make a connection as good as we can.

Consider the elastic scattering of two identical scalar sparticles which

are their own antiparticles



.—]O_

1 +2 w»» 3 +4 (12)

. . 1 _2
Consider the off mass shell scattering amplitude A(P,-Py) = A(siu;T%.JPb)

s = (R«-P,f, {:(’P#Ps}l, s+tru =-£‘P2' . Its absorptive part in the channel (12)
is [8]

AbslaA(pl...p#)(2n)4 S(I:pi) =

dx oo.dx pr(-izp x

o @ {0l ot R olx) olx, JD)

with R'{w(x)w(y)} = -inKyO(x-y)[cp(x),w(y)]_ ; K, =0+ a®

i.e. R' is a retarded product} The partially retarded function
appearing here can also be expanded as in (4). Define
C%(xyip) = -ix:xyc(x-y)[B%(xy;p) - Bg(yz;p)}

Then we can expand (14)

(R {0(xy Yo(x, )} R {olx; Jolx, }2) niZ. Sdpci(ﬁxh;p) Zig(p)ag(xlxaw)

,SPfr

This can be inserted in (13). Convergence is still in the distribution theoretic
sense, i.e. after smearing with test functions. This means essentially that
one must sum first before going to sharﬁ masses on the mass shell pi2= m2.
To extract information from crossing relations one must determine the
absorptive part in the crossed channel 1 + 3+%2 + 4 from Absle(pl...pa).
In fhe QFT context we did this by use of axiomatic analyticity in x-space,
cp.discussion before (5). In analytic S-matrix theory one uses p-space
analyticity instead. One would first have to recover the scattering amplitude
from its absorptive part by dispersion relations - hopefully theyconverge
without subtraction for some range of £ . Then one would have to analytically
continue in s, t to the crossed channel assuming e.g. Mandelstam analyticity.
Finally one could then take the absorptive part in the crossed chanmel and

write down its expansion analog to (14).

In conclusion, it it were not for a questionable interchange of limits

(expanding and going to the mass shell) we would get a relation between
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the expansions of the on-shell absorptive parts of scattering amplitudes in
crossed channels at the cost of having to use analyticity in p-spacé in place
of x—space. If one is w1111ng to make the further hypothesis (approximation)
that the 2-point function qﬂép)can be written as a sum of S—functlons supported
at physical particle masses then the result would look much like a dual
resonance model.

3) Let us add few remarks on Regge trajectories and fundamental fields.
Consider temporarily QFT in an arbitrary not necessarily integer number D

of space time dimensions. In models, local fields come irn families. We call
them towers. For instance, in conformal invariant iﬁﬂtheory inD=6+8
dimensions [9) the fundamental field 45 has anomalous dimension d=4D-1+A
with anomalous part A =X€+. . Then there ié a tower of traceless symmetric

g

tensor fields O“f"d' of even rank s = 2,4, ... with dimension dB- D-2+8+GB

whose anomalous part

= [% - L’v(s+2:]5(s+2|‘.)]8 * eee 30,24 BB sv®.
They are composite fields quadratic in'¢. The dimensions of the component
fields become addition in the limit s-»® , so we have asymptotically

straight trajectories in dimension. One would think that there is also

a scalar field - call it%f—-with dimension doa D—2+6o . But such a field
does actually not exist, it simply does not appear in operator product
expansions of é(x)dato) or in expansions (&) .[We see here the ghost of the
field equations, remember that we count only .nonderivative fields, they transform
differently‘]. Instead the "shadow" of the missing point on the trajectory
appears as the fundamental field with dimension d = D —do. To order g this
relation between dimensions may be checked from the explicit formulae given
above. Because of the normal product algorithm of renormalized perturbation
theory one would expect that towers of fields exist whether or not there
is conformal symmetry. Moreover, one will speculate that in the real world
there 1s a connection between towers of fields and Regge trajectories - the

fielids of suitable rank would serve as interpolating fields for particles on
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the Regge trajectorieslfld] .

e have seen above a model with a fundamental field. It is not a member of
a tower but appears instead as a shadow of a missing member in the tower.
Typically it has a dimension @ < %I) . In the present frame work one could

however very well imagine theories without any fundamental fields.

If crossing relatioms (8) have any solutioms such that expansions (9)
converge, they will usually also have solutions which do not involve any
fundamental field. This is not the whole issue though. Take for instance wzgnv’
the stress tensor. Everybody believes in that local field. Consider vacuum
expectation values of stress tensors, Their expansions (9) will only invelve
fields that are singlets under all exact internal symmetries, and fundamental
fields will usually not appear in them at all. Nevertheless we have at hand
a perfectly respectable Wightman QFT and the crossing relation (8) will be
satisfied. We call this the rudimentary theory. Its main short-coming is
that it will usually not furnish interpolating fields for all particles.
Nevertheless one should see these particles in stress—tensor correlation
functions, because particles could in principle be detected in a laboratory
by the gravitational forces which they exert.

The question of fundamental fields and quanta associated with them is thus

a rather subtle one. Nevertheless it may be useful to remark that one could

in principle start the bootstrap — i1.e. try to solve crossing relations (8) -
without knowing whether there are fundamental fields, or even what the internal

symmetry group is,by considering the rudimentary thecry first.

The rudimentary theory will fix an algebra of observables (measurements
based on gravitational forces). According to vt ecs of Doplicher, Haag
and Roberts in algebraic QFT this algebra will in turn fix the complete

theory uniquely , including internal symmetries [13].

Acknowledgement: The author is much indebted to R. Haag, J. Jersak,
M. LYscher, B.Schroer and K. Symanzik for helpful and stimulating dis-

cussions.,
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