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Abstract

We investigate the meaning of the (infinitely many) conserved
non-trivial currents of the classical Sine-Gordon equation for
" conventional quantum perturbation theory of a scalar field ¢
with selfinteraction (cos‘Bqﬂ—] + (B?) . Radiation corrections

produce for all currents  anomalies with contributions on the mass
shell.



It is well known that the integrability of the classical Sine~Gordon equation
in 1 + 1 dimensions
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is neatly connected with the existence of infinitely many conserved local
currentsl. The respective current densities can be found recursively from the
so called trace identitiegj;]For a derivation of these identities we refer to
the work of Zakkarov and Shabagé. We only quote the results. To make expressions

simpler we use characteristic coordinates.
u o= 2+ (x + t) v o= l—(x - t)
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Equ. (1) becomes in these cocordinates
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Define quantities j(vT by the recursion relation
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Use the equation of motion to calculate
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The content of the trace identities is simply that p_ can be expressed
identically as a total derivative with respect to u
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Interchanging the roles of u and v one obtains another series of conserva=

tion laws independent from (4).
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The first two conservation laws (n=1) in (4) and (4a) give energy and momen-

tum conservation. We are interested in the densities (1<n<=).
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{The densities with an even index lead to zero charges.)

To start with we look, in tree graph approximation, for consequences of the

conservation laws (&) and (4&) for a quantized scalar field ¢ with selfinter-

action C08528¢ «glz— + % = z (cb) . For concreteness we concentrate on the
density j3. The arguments apply equally well to all the other currents jn’
T (>

i, (n23).

We decompose, by an elementary calculation, the integrated Ward identity
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[, 5= <1CGiyie) T oG
] i=2

With <'I‘(...)>tr we denote the Gell-Mann-Law expansion of a time ordered va-
cuum expectation value in tree graph approximation. The double points indicate

Wick normal ordering.
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We choose units such that the mass of ¢ 1is equal to 1.



Restricting (5) to the mass shell one obtains after Fourier transformation a

relation for the S—-matrix
0 % iPu,in ¥ % qu,out (6)

. ] denote the momenta of the as oti articles conj
1Pu,1n(0ut) ympt cp Jugate to the

variables u, . To arrive at (6) from (5) one has only to note that the first
term in (5)f d2213%‘ .+..) drops out per se and that from the second term

1
the part with.a factor 8" vanishes on the mass shell because of the nonline-

arity in the field.
Equ. (6) is the first of an infinite number of relations for the S—matrix

emerging from the conservationm laws (4), (4a):
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It is an observation due to Polyakogé:Lhat the relations (7) are equivalent to

the statement: the S-matrix 1s a pure phase.

Turning now to the radiation corrections of equ. (5) we collect several pieces

of information.
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(I) Whatever normal product prescription s » we choose for the current
A .
density
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(compatible with generalized unitarity and caudsality) we can write down an

identity of the form
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where the (unambigously given) term 2i z (...} comes from the contractions
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of the bilinear part of j; with an external propagator leg. The relation (6)
for the S—matrix will be true after the inclusion of radiation corrections if
and only if the rest R does not contribute on the mass shell. This makes us,

in a sense, independent of the peculiarities of any chosen subtraction scheme.

(IT) The requirements of a minimal number of subtractions and Lerentz cova-
riance determine uniquely the Green's functions of an arbitrary set of Wick or-—
dered monomials in ¢ with any number of derivatives (in é% or g% exclusively)
distributed over cne monomial.

Proof: It follows from general principlegz’éj;hat it is always possible to de-
fine minimally subtracted Green's functions, of any collection of fields,

which carry as distributions only those representations of the Lorentz group
which occur in the tensor product of the same collection of fields. Let P(4)
be a monomial in the field ¢ with £ derivatives g%, e.g.

n
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Consider a minimally subtracted covariantly defined Green's function
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From the point of a minimal subtraction scheme the allowed addition to (9) is
~a distribution concentrated at the coincidence point x = Y = o0 = Yo
that is a &—~function with (2-2k) derivatives at most. The latter number can
be derived from power counting for scalar fields in 2 dimensions.

Lorentz covariance on the other hand requires that the &-function addition is

of the form

.
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We see that the conditions of a minimal number of subtractions and Lorentz
covariance clash. This completes the proof.
(III) Let P(y) be a monomial of the form given in (8). Consider the free

field time ordered vacuum expectation values
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obeying the conditions of (IT). There is a number C(i1...in) + 0 such that
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Note that the absorptive part of (10) vanishes. For reasons exploited already
in (II) the right hand side of (10) can be only of the given form. By inspec-
tion of the behaviour at large momenta of the two terms on the left hand side
of (10) one easily wverifies that C(il...in) must be non-zerc. This fact is

the source of the anomalies.

Putting results (I), (I1) and (III) together we inspect now the general Gell-

Mann—-Low expansion of the integrated Ward identity (5)
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Every single term in this formal series is according to the remarks in (I1I)
uniquely determined under the given conditons.(Without mentioning it further

we suppose all Green's functions we speak about to be renormalized by the
unique "minimal" and covariant prescriptions). The strategy we follow to eva-
luate (11) consists (as in the tree graph calculations above) in an application
of the equation of motion for ¢ including anomalies (c.f. (III)), which we

organize as counter terms.
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To justify the equality (12) = (12a) we remark that the listed anomalies with
coefficients C{...), which sﬁoil the naiveté of the tree graph calculation,
emerge generically from graphs with two vertices. This may be alternatively ex—
pressed: An anomalie which apprears for the first time in a graph with more
than two vertices would give there a é-function contribution with the same
iorentz covariance as the normal term. However, such a ¢—function 1s excluded

by power counting arguments (c.f. (II1}).
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Restricting (12b) to the mass shell we see that in general (if g2 + C(‘Q’ ).S.:;
C(3)2-

the anomalous terms with coefficients C(...) are not cancelled.

It follows from the considerations under (I ) that the S—matrix is not a pure

phase and that no over subtraction scheme for the renormalization of the current
will cure this on mass shell anomaly. We have so far not been able to verify the
interesting comjecture that the anomalies of all currents jn’ j, (n23) happen to

drop out for the same value of the coupling constant.



. 2 .
One should note that the exceptional value B = lfﬂ' 15 the one for
which Coleman[]i]asserts an equivalence of the Sine-Gordon equation and

the massive free Dirac field.
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