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’Abstract:

We calculate the cross section for e e —» §%T on the basis

of partial-wave dispersion relations in the 7T channel

taking proper accounf of anomalous singularity contributions.

The appearance of anomalous thresholds is due to the fact that the
vertex @1H?@tuf)becomes internally unstable as the virtual photon
mass is increased. Reasonable agreement with existing data is
found. The anomalous singularity conﬁributionslprovide by far the
dominant part of the cross section which is a warning to using naive
vector dominance extrapolations in estimating the electrom-positron

cross section.






1. Introduction.

Recently a series of experiments om e'e” - annihilation into
hadrons at Frascati and SLAC have produced data on e+e——> ettt
at center—of-mass energies V‘g between 1 and 5 GeV. (1)

The cross section for e+e——-> I shows a broad peak centered
at@ = 1.6 GeV and falls off with increasing q2 like q‘6 (1).

A quite similar enhancement in the four-pion system around 1.6 GeV
has also been seen in the high-energy photoproduction process

‘}/P - 75*7:“7{:"1(:"7‘3 (2). Both phenomena are usually interpreted

as the production of a JPC, = 1 resonance, called g’, which is
directly coupled to the photon and decays predominantly into

2 ®7 2 % (3). Then the reaction Y P> <M*2RP can proceed
through the usual VDM type mechanism. Actually in both experiments
it was found that the 2 2 mass enhancement is dominated by the

S‘"ﬂ':“"h’-" state (1,2). It is well known that the S’I interpretation

of these experiments is not unique (4)

An explanation equally applicable to e+e_ annihilation and to
photoproduction is the opening of quasi-two-body decay modes of the §°
which produces bumpsrighe after their threshold,e.g., 5> ,?"6) F™> _f”f)
£ 7C~"=A:: ete.(5) (6) (7). In particular in ref. 7 it was shown
that the experimental 2 T 2 - mass distribution in e+e— -~y 2 7'(7+ 21T
and in a’P—) 2w 2% p could well bg fitted in an isobaric

model for 2{——) f"m‘“n"’ , where the photon couples directly

to the j’o and an I = J = O resonance, the & , which occurs

in the 7t*®~ channel. The absolute value of the cross section

could not be calulated since the couplings of the S’.to the _f"&

system are essentially unknown. Only 1f one of the §°S’°€ couplings

was related using VDM to the £)) coupling, which had been calculated

IR



in ‘a recent dynamical model (8), it turned out that the

coupling was of the right order te reproduce the measured cross
section for e e > §°WTIT. This procedure was unsatisfactory
in two respects. First the coupling of the §° to the P& system
depends on two independent coupling constants. Only one of them
occurs in the coupling of the real photon to the JE system.
Second it is rather doubtful that the extrapolation in the vector
meson masses squared from q2 = 2.5 GeV2 and p2] = mg2 respectively
to q2 =p]2 = 0 (see fig. 1 for the notation of momenta) for both
vector mesons is well represented by the naive VDM approach.

Both 5” ’s and the & can decay into two pions. Therefore in
all three mass variables of the §$°$%€ vertex two-pion intermediate

states occur which lead to anomalous thresholds in the respective

variables if the others are above 2 m,i,.

In this paper we consider the matrix element for J—=> ¢t

as a function of s, the AM™ invariant mass squared, and for fixed
angular momentum states in the 270  system so that we encounter
anomalous singularities in this variable for the partial wave
amplitudes. The virtual photon mass is also allowed to vary but the
partial wave dispersion relations are written in s and not in q2
This way it is possiblé to take into account the full variation

of the two-pion s-wave phase shift,

The framework of our calculations is similar to an earlier work, done
by two of us, for the reaction Y J¥y->T*x~ with two real

photons (8). We use dispersion relations for the partial waves of

()’-—> S“”IL'*‘R:" in the T*® ™ channel. The left-hand cut



is approximated by 7« and @  exchange while on the

right-hand cut we assume elastic unitarity. Here we vastrict ourselves
to the I = J = O contribution in the vieinity of the & mass.

Using a Breit-Wigner parametrization for the phase shift we calculate
the form factors for J —» fﬂE. as a function of q2. 0f course,
the derived equations can be used also for other partial waves and

for other input phase shifts than the usual resonance parametrizations.

But their numerical evaluation would be beyond the scope of this paper.

The outline of the paper is as follows. In sect. 2 we discuss the
kinematical decomposition of the matrix elements and the relevant
formulas for the caleculation of form.factors and cross sections.

Ta sect. 3 the dispersion relations are introduced and the anomalous
cut contributions derived. In sect. 4 we describe our input assumptions
concerning the ™% phase shifts and prese;t and discuss the results

of our calculation. Finally sect. S is left for some concluding

remarks.

2. Decomposition of the Matrix Elements.
To introduce the final state interactions in the two-pion system of
o - . . . . B

Mg T based on unitarity and dispersion relatioms, we work
. . - > ;
in the two pion center -~ of -~ mass system P, +p3 = 0. The notaticn
of the kinematic variables is shown in fig. 1. To control the
kinematic singularities we also introduce invariant amplitudes A. (s,t).

1

The decomposition of the matrix element for ¥ —> y”nﬂ?t’ in terms
of the Ai (s,t) (i = 1,..5) was introduced in ref. 7 and will not
be repeated here. The next step is to relate the s-—channel helicity

amplitudes {(in the system.gé +‘$5 = 0) to the invariant amplitudes Ai.



The s—channel helicity amplitudes are defined by:

L = <P, pon 100> e¥(x)

= e“()" ., e’(k)
(2.1)

where 411) K are the helicites of the 53 meson and the virtual
photon respectively. The 7/:,;,: are decomposed into gauge invariant

. i . .
covariants F/M; » defined in ref. 7,

7/:” Z; /4;,(5,?-‘) ;‘/—u;

(2.2)

From (2.1) the s-channel helicity amplitudes can be expressed by the

invariant amplitudes, i.e.

5 »
7;1K. = Z A (st Irx (2.3)
e

T

where .
| |
'I._.' .
= AL * T L
7, () ﬁp e”(k) (2.4)
1
|
The 9;{,‘ are listed in appendix A together with the

definitions of the Mandelstam variables s,t,u.




The s—channel helicity amplitudes are decomposed into partial

waves:

Tow = 2 Gisn) T3 di, , (9)

7 : (2.5)
J
where @ is the angle between E and P in the system ?; = 1-):
2
Tor the matrix element X-’ $£°6  we use the following
decomposition:
<o), $ (o) | Ty 0110
G., (‘7"‘) ('Pb'? ?/cu - 7/% Fbp)
(2.6}

+ G.(9Y) ( [ psd) = P9 G * B9l + 9 Pa -&bv)(fww@

where q = Py * P, The definition of these invariant transition
form factors G, and G, for X*‘? §°E differs from the
definitions used earlier (6). The tensor (2.6) is divergenceless
concerning multiplication with q“ but alsc concerning
multiplication with p];"" . In order to obtain the transition
matrix elements for the usual pclarisation states of the S’°
we must multiply (2.6) with the appropriate polarisation vectors
e""(14) . With (2.6) we calculate the helicity form factors
)\.1 o . > . .
I’ for X—?f’ € in the system q = O, introduced in ref. 6.
The relations between the tranverse and longitudinal form factor
1 Q . .
]_7 and 7' and the invariant form factors G, and G

1 2

are:



.774 = G a9 + G ((Pé?)z—/’ffa
- R G @

These two helicity form factors determine the cross section for

e'e’ > £ L i.e  (6)

do _ O(I&_’! 0 j2 oA 1/% cocs8)(2.8)
/d,COS@ 3@2')5/"‘ {/7-7/ sana} + /77/(4+ Sd?

where lﬂ) is the angle between the momentum of the &  resonance
and the direction of the incoming positron_lf)'a] is the momentum
of the &€ in the e+e_ center-of-mass system.

The contribution of the & resonance to the invariant amplitudes

is

7
A = . (G, + (apy) G, )
1 s — Mel + tme ]-é gértTC' 1 T 2
-1
A, = : enn G
> 5= m& +imeld Jerr (2.9)

The corresponding s-channel helicity amplitudes are:

T .
7; C omE-s —tme TL Jenw Vpig* 6:1

(2.10)

y |
7'; - Mel ~ S —emeg I geftf"t((ﬁ:"f} G’I * (@"?)Ldﬂ?z’) é;)

The other helicity amplitudes vanish for J = 0 exchange in the s channel

From (2.10) we can immediately obtain the form factors GI and G2



by evaluating Too and T” at s = Mg :

(;, = e Ig. ~ j[;, »
gen: V Pl‘?"

T; {2.11)
G = Mele I...(T ~Ga) T
“ Genx ((pa)-p1*) " Vpiet )

3, Dispersion Relations and Anomalous Thresholds.

The dynamical calculations are similar to the calculations for the
process )’f—-} X, which have been performed by two of us (8).

Because in J ¥ e*mx the q2 of the wvirtual photon is timelike

in such a way it can decay into real particles we encounter

anomalous thresholds. The one-pion exchange in the t- and u-chamnel is the
first to aquire anomalous thresholds. The next anomalous threshold is |
obtained for 34 exchange in the t- und u- channel. This contribution
will be approximated by & exchange. The anomalous thresholds encountered
here are, however, different from those arising from the one-pion
exchange. For on.e-pion exchange ghe upper (0’-’ R ) and the

lower vertex { g -~ T ) are unstable. In this case the anomalous
cuts are on the real axis. For &« exchange only the upper vertex is
unstable ( f—> FAL } whereas the lower vertex is stable ( _9+m1r
In this case the anomalous thresholds are in the complex plane as will

be seen later.

For our calculations we need the partial wave projections of the t- and

u-channel contributions. Furthermore we must find out which



combinations of the partial wave amplitudes are free of kinematical
singularities and what are the other kinematical constraints in
particular at the different thresholds (or pseudothresholds).

As usual we define the partial wave projections of the

invariant amplitudes Ai (s,t):

i “1 ;
_ 4 -
Ai (s) =% fc(casé? A st) A, ( cosé) 3.1
-1

The relations between the partial-wave projections of the helicity
amplitudes and the AiJ are easily derived with the help of the
formulas in appendix A. In this paper we need only the s-wave

amplitudes. For them the decomposition is:

o _ _ o __->2 - 2 4 o >2 =2 4 2
Ty == (s + C(pg®)-07) P, 545 —( (Pp9)+ 29 P, 3 A,
> 2 ] 2,1 2 2,0
v 2p,l Idl (@ Ay 4Py A) - by q7AL
o _ 2 2 _, 0 4> 2 0 8 » 2 2 - 1 1
Too = Va'p { AT T3P Ay T3Py Ay 2ipglldl (AT + AT
[8]
(P4CI) AS}
(3.2)

All cother s—wave helicity amplitudes wvanish. The Aij can be calculated
from a fixed — s dipersion relation. Then Aij ~ GﬁZ!l"ﬁl )j if

Iﬁaka{) or 31— O for those parts of the Ai for which the t-channel

or u-channel exchanges are stable concerning the decay into §°TU=E

This is, for example, fulfilled for pion exchange. Then Tl]O and

Tooo obey constraints for l“c?l >0, i.e. pyq = i—_l/p,{z q2. For



, D
example, we have in the limit {q =0

| 2
1 °+ T ° =(paxipyarca’

-2 o _J 2 2 0

272
. . . ‘/ !/ 2
l.e. T + T 0 must vanish for p,q = -Vpy, ¢ oOr 5 = ( pi + qz)

11 o0 5
. |/ 2 2 /
and’Tllo _ Tooo must vanish for P49 =¥VPs 9 or s =(¥py; ~ q2)2 .

Thereforewe write down subtracted dispersion relatiomns for

wat b

. . 2
T“O + Tooo with subtraction points s =( Pq * b q2)2 respectively.
This way we . fylfill the necessary threshold conditioms in connection

. . > ,
with pion and @ exchange. At the threshold ]pzl = 0 a similar constraint

d .

as for Jql = 0 does not exist.
With (3.2) it is easy to calculate the contributions of T and w

exchange to T”O + Tooo' The invariant amplitudes for these two

exhanges have been given in ref. 7. To avoid complicatiens with the

bad asymptotic behaviour of elementary vector meson exchange we follow
ref., 8 and assume that the @ lies on a Regge trajectory (g . Otherwise
further Subtractions are necessary in the partial-wave dispersion
relations, The reggeization of the w exchange with the help of the

Khuri representation in order to incorporate the lowest thresholds
imposed by the boﬁndary of the diagram in fig. 2 amounts to a

multiplication of the elementary @- exchange term with a form

factor F o6f the following form (see ref. 8):

F = GXP ((o(w [t)"’f) {(5')) (3-4)

where



...]O_

5(s) = arccosh Z,_, .,

[ 25+t —2mi - g mis (g - mr )(9% ”h")/f}/%":;/’u
I%:. = (ﬁ' = CV‘iT"""rr)z) ("5'(‘/7_"*‘”&')1)/45

(3.5

B
+*
I

(t = (mg-me)?) (+ = (g +m)*) J 4t

b(s) = {(KS-s.)(s—&) + S?LMSL/%‘)%+ 2(5"71“‘"”%)}5?;:#*";

. z .
In the limit C’L-PO y Mg >0 this reduces to the
familiar form (8)

?Ci) = anrc cosh (7 +(5—4—mn2“)(9$—4m;y2)/31,m;)

With this form factor the partial wave projection of the & exchange
diagram is calculated numerically. The result will be called

0 .
ticu (s)y, 1 = 1,2, where

(3.6)

On the right-hand cut we assume unitarity with two-pion intermediate

states, i.e.

T £, (s) = e"‘d;"/s) sdncf; (s} 795(5) (3.7)

where J:,(S‘) is the W s~wave phase shift for T = 0. All

other intermediate states are neglected. This should be a reasonable

approximation at least up to around 1 GeVz, in particular, since
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anomalous singularities will play a dominant role and higher
intermediate states have less chance to aquire anomalous
singularities compared to the two-pion intermediate state.

The elastic ®% scattering amplitude a (s) is written in the usual

N/D form:

% od,(s) .
A, (s) = (S/(s-mr) = s dy(s) = DAQ(:)) (3.8)

Under the condition that the left-hand cut L and the right—hand cut of

(s) do not overlap we can fulfill the eda. (3_7j bEv

writing a dispersion relation for tio(s) D(s) over the left-hand cut:

tz (5) - .D,(S) %,j\dsl D(::)‘Im ‘éi‘o(S') (3.9)

s

In (3.9) the amplitude tio(s) is expressed by D(s} and the
discontinuity of tio(s) over the left-hand cut L. As is well known 6 eq.
(3.9) can be transformed also into an integral over the right~hand

2
cut: #mp £ S < o0 The result is:

_é_‘:d(s) - .é:L (5) = D (5) 4 I’" Dfs") 'éu_(s) 5. 109

fm

T

where t; (s) is given by (3.9) with D = 1. Of course (3.10) 1is the

standard Ommes solution (9 ) The D-function can be calculated from the



phase shift J;(S)

-, 4, ')
Dis) = e«p{ (& s)/’ft‘)f‘is G~ 50" 3) (3.11)
4m Tf

£ %
where SO is arbitrary. We have Im D = — eu{:SmJ;:D ="(5‘ l’”";)/s) /V

Here we have left out the subtraction terms for ease of writing,
and so we will do in the following. Including the subtraction

terms (subtraction point so) egs. (3.9) and (3.10) would read

T(s) = L% 1 [ g5 D6V In £6Y) ) (3.9a)
D&) T Gs) (5 s.) T e L6

t(s)- t,,(6) = f ) ten(s1) T D) .10 a
‘ g 39(5) "74 s'-s)(s'-s,) (3102
"'1r

Eq . (3.10) is valid if no anomalous thresholds are present. In the
following part of this section we investigate how (3.9) or (3.]0) are

modified if anomalous thresholds occcur in tio(s).

We start with the case, where the left-hand cut t.°

;1. 1s approximated

by the one-pion exchange contribution ti;ﬂ'

. . 0 .
First we study the analytic structure of tiﬂf' The partial waves for




the one-pion exchange terms are calculated with the help of (3.2).
The partial -wave projectiomns of the invariant amplitudes

(they are given in ref. 7) are obtained as

;
A

- e ?S’mr };(‘72') A

Al = 2egur Fie J
2 egi‘ 7:@)})}_}_? S’A

A“J _ /4; - (3.12)

Al =g jm@@jm# e ) Py(eost)
‘ (G (2) +(__1)J&j(_z)) (3.13)

H/
with

o Soprmgt _ sh(sepi-g)
CRA Gt (s (55"

Here s is the threshold for the process 3’_‘,’0—> of

+ -

whereas in the reaction y > 5)07‘777 the variable s varies

. . . 2 . _ Z 2.2
in the interval: #mp & S £ S- with $p = (VE’_L th,*')) P,r.:n%

Except for the extra kinematic pole at s = p42 + q2 in AZJ, which

must cancel in the sum of all partial waves for plon exchange, the

singularity structure cf the partial waves is determined by



the projections A in {(3.13). For s > S, the partial-wave
projection A is proportional to Qj {z) as given by (3.13),

in particular for j = O:

/(fn Z” (3.14)

A e Qi(=) =

/,o,.//«; / z/,og,//"/

For stable particles so that 0 < q2\< hmg and 0 < me
and in absence of anomalous thresholds, i.e. for q2+ W 26 ﬁmﬂf’

the . expressions (3.13) or (3.14) can be continued to all

complex s as usual. To reach the case q2 +m SZ > 4 m,?

which is the relevant case for &/-> § T where q2 is

above (mj’ +2m1l-)L we start from (3.14) valid for q2 + m o 24 4m,§"
.and continue in m§ and q2. Problems of this sort have been solved
before in connection with deuteron reactions where anomalous thresholds
occur because of the small binding energy of the deuteron. Essentially
we follow the methods developed £for this case (103, As a function

of s the amplitude A° has branch point singularities at s = O, 4m;:

I/ 2 2 . X -
and ( ¥gq * mg )}, which come from the square roots 1n Jpzj and fg[,

and at points s for which
z = + 1 (3.15)

To locate these latter singularities in the complex s plane we must

solve (3.15). We shall do this and study the branch points as a
2
function of m g and q2. Let us start with the case of stable

external particles, so that O,c_q2 £ !un,f:" and 0 5, &mx with

2 .
q2+ m?2$ 4m?c to avold anomalous thresholds caused by bound states



with small binding energies.

The roots of (3.13) are found from

as '+ 2bs +c¢ =0 (3.16)
where
a = MEZ'
- .2 _ 4 2 z
b = 9" mg .Zm,r(7 +m5»)
2 {3.17)
¢ = mz (7%~ )
With s = x + iy eq. (3.16) 1s equivalent to
a(x2 - yz) + 2bx + ¢ =0 ' (3.18)
y (ax + b) =0 (3.19)

So the singularities of (3.14) (and of the partial wave amplitudes)
are given by the points of intersection of the hyperbolas (3.18) with
the pair of straight lines y = 0 and x = - b/a. The hyperbola (eq. (3.18ﬁ
intersects the straight lime only if the discriminant b2- ac £ 0. The
discriminant is equal to
2 1202 2 2 2 2

b® - ac = 7 4 Mg (4mn‘ q) (Aﬂﬁr me ) {3.20)

so that bz— ac 3 0 for the case of stable external particles. Then the

hyperbola intersects only the line y = 0 and we have two branch points



lying on the real axis at points Sy which are
H

as =-b + b™ - ac (3.21)

These two points lie between s_ and Amn_.z. Eq. (3.14) shows that

o . . . " 2

A" 1s real 1n the intervals of the real axis: xe[d,s_) and X’&[-‘#mn} S,]
(see fig. 3 for the transformation s = z(s)), so that A° has cuts

only for —-<c € S §0 and SZS s § 8 - This cut structure is

shown in fig. 4. The corresponding representation, valid for stable

external particles, therefore is

=facs' ! Vs~ Vs
S'=S V6 dmi) (5~5, )(s-52) TS ,/(s lmg)(5 - s,t)(s Cs)

3.22)

Next we take a fixed value of q2 < Am,rz and qz-s m5,2 s replace ms,2 by

m§2 + 1& (€small and positive) in (3.21) and study the branch peints

2

. 2 . . . 2
as a functien of me with increasing mg starting from a value ng < Amt .

Yor ng > mgz + i€ the branch points 5 and 52 lie above

the real axis. If myz 1s increased s_ and s, migrate parallel to the

1
real axis towards :.’gm?tz- as is shown in fig. 4. S reaches 4m7§- for
m 92 = l;m.,éz- - qz, and turns around 41:1175?, thereby crossing the right-hand
cut and reaches the value s = l+mj,!:~;_2 - q2 in the lower half plane if
me = 4mn.2. - s, then has the same value in the upper half plane, since

the discriminant vanishes for mgz = 4“‘11;’2 (see eq. (3.20)). Tncreasing

m$2 further the branch points 5, and s, migrate into the complex plane



(81(52) in the lower (upper) half part), up to the points, where

m92 reaches its physical value, as shown in fig. 4. Now we make

q2 complex by changing q2 into q2 + i?a( M >0, small) and

. 2 . 2 2

increase q° from its value below 4mg” up to 4mg. Thens2 and sy

approach the negative real axis from above and below respectively.
. 2 2 .

They meet at the point s, =8, < Gmy— me (see fig. 4). By

increasing q2 up to q2 = mgz the branch point s, migrates along the

real axis to the left up to the peoint S = 4 mgz - n1;/ mﬂ? whereas

s. recedes to the right up to s, = 0 (see fig. 4, the endpoints of

2

s s, and s_ are shown as crosses). For q2 = m?2 the branch cut

17 72

between s, = 0 and s, disappears, s

5 | is not a branch point anymore,

2

as is seen in fig. 3 where z (s) is given as a function of s. Then

A° has the following representation:

e 1
-z A =f‘i‘5's,1_s + [as' -2 £
5% T B A R (G = G
’

(3.23)

The second integral on the right hand side of (3.23) comes from

the continuation in mS? and q2 and originates from the deformation

of the integration path in connection with the endpoint S,

The next step is to continue q2 further up to values above the threshold
for the production of gﬂﬁr final states, q%; (mS + 2m g )2. Then

s, turns around the point s = 0 and migrates to the left in the

lower half plane whereas s, goes also to the left, the same

distance parallel to the real axis. s_ crosses the positive real

axis near the origin without crossing the path of s, and migrates
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to the right in the lower half plane (see fig. 4, the endpoints
of continuation are marked by a star). To write down the
representation of A% in this case we must deform again the
integration path commecting the branch point S Otherwise the

location of the cuts is obtained from the transformation sz (s)

shown in fig 3. The representation for A° then is:
Sqe

f‘sr V;‘T LA | Vé—'
S-S /is- amDlis)Els) 4 S Vel imD)Eis )6 s)

S-

_ fds' 1 Vs’ (3.24)
b $=S ‘/( = hm)(s" s-)(s- ~85)

We see that for equal external masses mgz = q2 the representation
(3.24) coincides with (3.23). A° now has an imaginary part in the
physical region: 4mn’2"58 & s . It is clear that this term will
dominate for ]-9 Ll

As the next step we incorporate the final state interaction in the
s—channel. In the situation where q2 + mgz £ !+m,3. and & anomalous
thresholds are absent the final state corrected solution for - % A° is given
by (3.9). The discontinuity over the left-hand cut (~oe <& § £ @ and

S, £s £ s]) can be read off from (3.22) , so that the final result

is 0
A -t [ 1 Ve DG

e e S s (5 o) () (3.25)

Vs7 D(s?)
hmg) (8- 8 ) (s s)

-P(s) f s'-s V(s-
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Ifxn;Zand q2 are increased we must continue (3.25) in the same
wav we did for A° without final state interaction.
2 2 2 2 . 0

For example for q =mg and m g > 2m - we obtain for A  the

following representation instead of (3.23):
Sy

4 A" = st D)
D(S) 2 S""‘ S (S'—[J.mn?-) (5"._ J{.ms,z)
4m;’ .
285657
+5%7st’ A D) (4 + 77 ) (3.26)
g S-S (s #m;?‘) (s’ J}MS,’“)
Similar to en. (3.9) we can transform (3.26) into integrals

over the right-hand cut. The result is:

2 (Aa__ /41) _ _$;s) 3 dgfw‘(—gﬁ{(i))ltnb(s')
: . 4%2..
by | ‘ &6
+ fals’ 1 2’3{.5_') sndy(s1) e (3.27)
26) =5 VG am) (g5

S,

In (3.27) the phase shift d:(s) must be continued below threshold.

We have

: NC) -
DGs) smd, ) e ¥ = = Im D) = ((5“4”';)/3)%\%) (3.28)

Our eq, (3.27) agrees with the result obtained by Mandelstam (10)

and by Blankenbecler and Nambu (10)for the case of bound systems



with small binding.
Similarly for q2> (m_? + Zm.,r)z we include the final state interaction

when the left-hand cut is given by (3.24). We obtain in this case:

o . b
__.:LAO__ 1 d.s' 1 V- D(S') 4 V-—} D( ) 2";‘0(5)
27 D) s'-5 Y7 ds'T— 7= ’
— o 5-4”!’7[)(5 S’)(‘S S,.) 3(3) §—~5 ]/5; 4,,,77_)(3_5-)(5_&)
2-
g ds’ — Vst D(s') (1 + e,z".'d;("))
D) W sts l/(gf__ 4”'1'12")(5'“3,)(51"54.) (3.29)

2

— 2-'»3;(') Ao s
Vs' D(s') (// - € S)_ KA JJ}SI 1 Vst D[s!)(/f 2 ))

-}--..:.,_ As'! - T
:D(S) s{ s=s WS ‘1"mrr) (5— 3-) (S - Sf-) DKS)O s=$ l/cs— %HL)(S—&)(SLS*)

It is clear that (3.29) reduces to (3.24) if the @@ interaction
vanishes ( D = 1, (5L= 0). If we transform (3.29) into integrals over

the right-hand cut we have

2 N i 1 (-3 A'6) T D(5)
(4 A) :D() n"f s'—- 5
by

;4 AVsT szJB(s)etJ(s)ﬁ(s)

—-
D(SJ[*L S-S 1/(5-4“,,?')(5-5_)(5—%)
e
Sy ENEY
R OV 2Ys zZsudy(s') e“;‘;(s)z’(s') 2
D) S=8 /sl 4m,r)(sns.)(s—s+)

S,

£
1 de’ A LVs! JSMJ:(S')QTJJ‘:(S’).D(S‘)
26) S VG amd)(sh ) (s s
mgE
As’

—

) s
1 ‘)‘ I 2V rsmdics) e <% ) s
D(S) b s’_.s t/(s,—#m"z)(s;“ s—)(sl__s+)
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Since we have no information about the continuation of the phase
shift below the 7®” threshold we shall neglect the last three
terms in (3.30). The inclusion of subtraction terms is straight-
forward.

Concerning anomalous threshold terms,the pion exchange is the

2
most important one. For all other states in the t and u channel
with larger masses, as for example the @ , which make the ¢
stable, the situation is simpler as for the pion intermediate state
as we shall see.

In the following we shall now consider thed exchange, especially

the continuation of the partial wave amplitudes as a function of qz

Here the partial wave projections of the invariant amplitudes are (7)

7
L )
1

-1
] 4 - 4f+4m;—S—Paﬁl 4ot +hmr— s-pi.g®
-4 (3% .:Lj:(cose ! + " ikt N Y %
1 g ggc.m“ ga'a"l:‘ ),g, J Z —mZ Py J(Cosﬂ)

T

] 1 1 1 (3.31)
2 As— = .'g.- ??"‘ﬂ.‘ 3{@1:(?*’) %J\dcose (f- M‘j' + - MZ{') F)‘?] (Cas@)
~1

s
LIy
i

-
j v 4
Ay =y ==fﬁ%'39at:%&mﬂﬁa)%ljknnse<ié_'4§ —_ 1(-»2};)13(?”33)

Let us depict one of the partial wave amplitudes free of kinematical

singularities, e.g.on. A° now is given instead of (3.13) by :

,
° - i 1 - -7
A = %fdcose( st %,,) e R, (z)

(3.32) °
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with

z = (s~p*~9* +z(m;—m,€'))/4;p;u:ﬂ | (3.33)

The singularities in s, which correspond to z = + 1, are found

from (3.16), where a, b and c are now given by:

a = "ma;z
b o= ma — mE (Zm,?-r?z’f— mj'“) + (m:w?z)(m"—wg") (3.34)
. = m,?’ (‘?L _ m;_)z,

The discriminant b2 - ac is for this case equal to

S e o RO

(3.35)

.83

. _ 2 2
so that b2 = ac 2 0 for the case of stable particles’ (mep — m,‘.:)2< m?< (mg, + Mg:-)

and {(m, - m],r)2 < q2 < (m + mw)z. The physical ¢ mass is

such that this constraint for mgz 1s satisfied so that only q2 must
be continued up to the range of physical interest. For the constra::mt
on q2 above we have two branch points S, 2 on the real axis given

by

a s ==-5b + b2 - ac {3.36)
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For q2 = (mg - nqr)z the two branch points coincide and lie below
2 ml% on the real axis. As before we give q2 a small imaginary part

. . 2 . .
and study the branch points as a function of g . The migration
of s15 S, and s_ as a function of q2 is shown in fig. 5. For

2 2 2 2 . .
g3 =2 (mg *+ Teg) ™ m e the branch point crosses the physical cut

8 l;mxz, and migrates into the lower half plame to the left up to

the point s = s, where s, and s, start to migrate into the complex plane,

I 2

when q2 = (mg,+ m,t.)z. Below the critical point q2 + m?2
2 (mm2 + m'n:%) the s-wave amplitude A° has the same representation
as for pion exchange as given by (3.22). The corresponding fimnal
state corrected amplitude is then equal to (3.23), of course with
the integration limits 5 and s, as obtained forw exchange. If q2 is

increased up to the value of interest we have to correct for the fact

of & and s. migrate into the complex plane. The result is:

I 2
~% Ao = jds's” Vs’

2o TS V(S - amE)(s-5) (8- 54)

Se :
+-\f;515;?$ Vgaf i +1f;$’ L (
5, V(s'- 4m) (s —-S*){s ~5¢) : s-§ \/CS‘L#-m,,‘)(sLs_)(s'_&)d'37)

(]

S.
2Vs
- j‘ds’sf_ p s
b V(' hm@)G'-5.) (50 )

Based on (3.37) the final-state corrected amplitude is:

~14° — r 1 Vsr D(s')

Z $ =
1)(5)_00 5~5 Y(s-4mP)(sts.)(s"-5.)
Se
, 7 DG 238
+ ds'—21

D(s) J $~5 VG hmg) (55 ) G se)
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4 V-—' D(s’) e’abof;(si)

DCS) s Vst 4md)(s' -5 )(s"~s.)
TS ﬁcsf ‘v o) (14 *4E)
S ‘- 7

iz VG amt) (5D (5 5)

.
A Ly

- fd-gf 1 Vs D) (1 - QZL‘J;(SI))
D(s) $'=s /st brg?)( s'-s.)(s"~ 5,)

Of course (3.38) agrees with (3.37) for vanishing final state interaction.
It is convenient to transform the result (3.38) in such a way that

mostly integrals over the right-hand cut appear. We denote the
uncorrected amplitude (3.37) by AO and obtain:

e ey L 4 R s Ae) Bane)
-3 (A% AL ) ;“f )

s'~ s

2
bmg

-1 fds' 1 2V5" DGt) 1sad (s) e
A = TS TPy

<, (51)

84 p i
" 1 ds' p -LV;" :D(S') ‘blfov‘sc;; ) e -C-J;(SJ
26) s STS VG- 4t (5'- 5. )(s'- ) (3.39)
“m'ﬂ' | 4 i
A4 Vs D(Y) vsmdy(s) e i)
D(s)

S=s Vs ami ) (s-s)(s- 5, )

The last two integralg will be neglected since we have no information
about the phase shift d;(s) outside the physical region.
One should mention that the integrals in egs. (3.30) and (3.39) are

finite at s = s and s = 4 m

3 « even though it seems they are not.

For this we remember that the last three integrals in equs. (3.30) and

(3.39) proceed along the lower rim of the cut.
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4. Results
Before presenting the results for the 93 transition form

factors G] and G, we shall put together the input parameters.

2
We need values for gflcit‘ ) gg,_,t the form factors Fg (qz)

and ?3‘"‘; (1'-) and the Regge trajectory 9.

The coupling constants are chosen as follows ?rn: = 5,97 ,
-1 -1 .

Qowre = 2.1 ng, Qront®) =0.112 w_ withm ¢ =0.77 GeV,

The form factor of the pion is approximated by the @ dominance

form

T, (9%) =?’:Lz_ (4.1)
-1

which gives a fairly good representation of the pion form factor

in the space and timelike region (11). The &% transition form

factor is also assumed to be given by the 9 ~ dominance form

. 2
?;w(‘i") = ?xmx(")—é’-’f—;’-—; (4.2)

with g‘“ﬂfo) fitted te the partial decay width F@""H’?)= 0.9 MeV.

gggn‘; is obtained from gJ“"‘(O) through the usual S) dominance
extrapolation. This is a reasonable assumption here since anomalous
singularities are not to be expected in this case.
The @) Regge trajectory is chosen to be k) = 0.5 + t.
These definitions completely specify our left-hand cut parametrization.
For the right-hand cut we need the ®X s-wave phase shift.
There exist many phase shift analysis for the WW s-wave, which,

unfortunately , are not unambiguous. On the other hand it seems
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to be established now that the s-wave phase shift goes through

90° under the ¢ and the f mesons (12). The change of phase

is rather slow and inelastic effects near the KK threshold are

certainly present. Therefore one is reluctant tc describe the

behaviour of the s-wave phase shift by T-matrix poles. To obtain

a realistic description of the m# s wave , a many channel representations
should be used. Then besides the process J'» P& we had to

consider also other processes as for example y> ¥ KK

which are coupled to @ "W via K’exchange. Such many channel
calculations would be beyond the scope of this paper (13).

Here we take for the I = 0 s-wave shift a simple Breit-Wigner ansatz

(S.;(S) = arc cot {, (/me"- S)/,S’(S) ag) {4.3)

where
$() = (s~ i) )s)%
(4.4)
Re = Teme/g(me)
The parameters m c and 7; are m o = 0.7 GeV and
7; = Bmt.

With the parametization described above we calculated the
g,oa transition form factor G1 and G2 with the help of eq. (2.11).
We considered three cases: (a) 7p and & exchange is assumed

and the contributions of the anomalous singularities are fully taken
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into account, (b) only the 7 exchange contribution is taken into
account instead of w+4& 1in (a), (c) the contributions coming from
anomalous threshold singularities are neglected, but both exchanges
® and W are considered. The results are shown in table 1.

Instead of G, we give the results for

2
~ 2 22
G, = ( {p, 9}~ pa) & /P (4.5)
N a - -
go that G2 has the same dimension as Gl' Both are given in units
- ~
of m,cl. The numbers of G1 and G2 are such that Fl_(qz) as given

by eq. (4.1) has been factored out. Therefore to obtain the actual

~
form factors, G, and G2 in table 1 must be multiplied by F,l_(qz).

. . . - 2
From equ. (2.7) we see that the longitudinal cross sectlon Oz ~/rlo/

is proportional to G whereas the unpolarized transverse cross

1 >
2 s ~
section O;L ~/T"/ is proportional to (G1 + G2)2.

Without anomalous thresheld contributions the form factors G1 and

~
G1 + G2, which determine the independent cross sections O and Oz

are rather small. These cross sections are exhibited in fig. 6 c.
Near threshold they are of the order of 0.1 mb, which is much to small
compared to the measured cross section for O“(e*e“-> -27:"‘.21;'-) .

S
Including anomalous thresholds the form factors G] and G2 are much

larger, in particular G1 which contributes to both cross sections

O and 9

, » whereas G, seems to be less dependent on the inclusion

2
of anomalous threshold terms. The comparison of the column (a} and
~
(b)Y of table 1 shows the influence of the &? exchange. It reduces G2
2 . . .
for larger q which has the effect that the cross section 6;'w1th T

and & exchange is larger for higher g 2 than the cross section U with

7t exchange only . Furthermore the inclusion of the&causes a second maximum
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in O3, Dear VQE = 2 GeV, CE_ is much less influenced by the

&) exchange (see fig. 6a and b).

In fig. 7 we compared the calculated cross sections for the two cases

(a) and (b) with the recent data of Bernadini et al. (14) and Mehrgardt et al.
{15). These data are for e+e_-> ST*N- W+ ™. The analysis shows that the
dominant part are $°f¥TR™ states. We assume that £°7A*®™ is dominantlyf‘e .
To account for the decay £-+2n°® the cross sections @ = Sgtg in fig. 6a
and fig. 6b must be multiplied by 2/3 to obtain the'fqm*n'channel. The
agreement with the experimental data is reasonable . The model with only

M exchange agrees even better (version (b)) than the M+& exchange

model. In both models the fall —-off of the form factors with increasing q2
1s not strong enough. Furthermore the threshold region is not well
accounted for. This may be caused by the quasi-two-body approximation of
the fo"‘*ﬁ:' state. If the final state is treated as a genuine three-
body state the cross section near threshold increases and the threshold

is shifted to lower energies (7). It may be that this effect is not
sufficient to bring the theory into agreement with the data. In the

moment we cannot exclude the posgsibility that a ‘f’(].6) is needed to
explain the large cross section near threshold. Nevertheless we see that a
reasonable interpretation of the Frascati data for e+e"-) 22 can

be achieved by assuming the dominance of g°8 quasi~two-body final

state and with our dispersion theoretic model of the goe transitdon

form factor. Of cours we can give a similar interpretation to the

four pion enhancement in the photoproduction process J'P-} 2t zn'fi

(2}

observed at SLAC . It was essential to include the anomalous
threshold ceontributions into the left-hand cut to obtain the

right order of magnitude for the form factors G1 and G2 to fit
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the e+é--’.2E*22E' data. On the other hand the agreement with these
data is not perfect (see fig. 7). In particular the <& exchange
contribution needs further study. Second the inclusion of other
exchanges, like for example A] - exchange, might improve the large

q2 behaviour of the form factors. Another problem is the inelasticity
of the T™T s wave, already mentioned, which might also modify

our result. The study of all these effects is left for the future

now where the basic mechanism has been_established.

5. Conclusions.

We conclude that anomalous thresholds play a dominant role in timelike-
2 . . .
q +leptoproduction of hadrons which makes any vector—dominance
extrapolation into this regime rather doubtful. In the particular
channel under consideration the effect is most significant at
. 2 : P
medium q° where the anomalous singularity contributlons account

for 98% of the cross section. At higher q2 this fraction reduces

somewhat but the anomalous singularity contributions still stay dominant.

One wonders why the naive vector dominance extrapolation of the
E.)’fcoupling constant in ref. 7 gave the correct order of magnitude for
+ - . . .
the e e & g°€- cross section. The reason is, that the actual E€X) coupling
constant neglecting anomalous singularities would decrease as
z 3 2 . _ ' . .
9 = P; -> Mg in addition to the vector dominance corrections
due to the fact that the left hand cut integral (eq .(3.22))starts
o e B 4 2 2.f 5. .
at sy = ( m g Ny D )/.,,'|r instead of s, = O which has not been taken

into account in ref. 7. It 1s the contribution from the anomalous

thresholds which compensates this decrease so that the naive
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. . 2,
vector dominance extrapolation looks correct. Tf (say) q° is
. 2 . . _
increased further (but pl = mg fixed) then the coupling constants
(see tab. 1) start to increase again since in this regime

. . . . 2 .
kinematic factors (involving q )become important.

The dominance of anomalous singularities makes the dispersion

relation approach a rather clean model for describing exclusive
channels in electron-positron annihilation into hadrons. First of

all the left-hand cut is well saturated by the exchange of a few light
particles giving rise to anomalous thresholds. Secondly, intermediate
states higher than two pions are unlikely to acquire anomalous
singularities so that they can be ignored. This makes electron—positron
annihilation into hadrons also extremely suitable for studying

T T scattering. Finally, we have achieved a fairly good description
of the .e+e——+ PET cross section.

We should mention that similar anomalous threshold effects

are to be expected in form factors of other unstable particles,

like for instance S’*?-( 7¢ exchange), AA-(N- exchange) and many others.
After completion of this work we learned that a calculation of the

°E electromagnetic form factor was done by Gutbrod and Weiss (15)

based on a more field -theoretic model. The assumptions and the methods
used in this calculation are completely different, although the

final results agree qualitively with ours.

Acknowledgement: We thank F. Gutbrod for discussion on his work.
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Appendix A.

Here we list the transformation coefficients ?AT'K, defined in (2.4},
1

which relate the s-channel helicity matrix elements to the invariant

amplitudes Ai(s,t) (see (2.3)):
4
344 = = Th

j 2 = 2 9P 'P:‘Z s — Q? Qp

44

? _

“ —71P’a
4‘: = —"P'l(fa

340 = ?’I: = ?45 =0

3" "2VIV%1P;1.S‘»;9@0@

10

3 —
9o = —VZ VRN (Pa-q,) 5w

1 5

?01 = ?o.: = ?01

=0
z 2z .
?M = -2z Vp* P s coof

4 -3
Jor = = V2 VPR RIIBL (9,-p,) s
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Jee = - Vi

]

3: 4} 72P12' 16:,2' cond

i

2 Varpl RG] 6

Gos = 2 V7R (BIF] et

Y

> . .
and p2 in the two-pion center—of-mass

b= [ﬁl ,lﬁé[, P and g camn all be

8 is the angle between

+

system. The variables |

(R

expressed by s = (g-p,) . The other Mandelstam invariants are
1

2_ 2, 2
t = (ap,))" =mg +q" - 29 P, + 2 [Al (B cosf and u = (g-p,)

2, 2 2
- s-t +q° + mg~ + 2m . Furthermore Q = Py = Pg-
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Figure and Table Captions.

~
Table 1: Transition form factors G, and G2 divided by Fy as a

|
function of q2 for three cases (a) W+« exchange with anomalous

threshold contributions (atc) (b)Texchange with atc, (¢) % +& exchange

with atc neglected, G} and C2 are given in mge’.
Fig. 1: Kinematic Diagram for J —» §x%

Fig. 2: Diagram which determines the boundary.im the Khuri.

representation for @ exchange.

Fig. 3: Transformation s —» =z (s) for the three cases

2 2 2 2 z

() mg +a’ ( tng . () mg =q »dmand
2 2 2 2 2 2
(c) g >mg » WM og z dme, ¢ 2 Z;mr.

Fig. 4: Continuation of s,, s, and s_ for increasing mg

17 72

v

and q2 up to values of physical interest for the 7T

exchange diagram.

: Continuation of 8 58

W3]

Fig. and s_ for the & exchange

2
diagram

Fig. 6: Cross sections U;Land 0;_ for e+ed+g°£ as a function
of the total c.m. energy q2 for the three cases (a)
N and & exchange (b) T exchange, {c) W and @ exchange

without contribution from anomalous thresholds.

Fig. 7: Comparison of the theoretical prediction with the data of ref. 17
and ref. 15 . as a function of the totocal c.m. energy qz.
+ - <
The curves show 2/3 6"( e’e > ¢ &)
The dashed curve if for the T exchange model, the full curve
is for the T+« exchange model. The full points are the data

of Bernadini et al. (14) , the two cross points come from Mehrgardt

et al. (35‘)
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