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Integrable Hamiltonian Systems and Interactions through
Quadratic Constraints
by

K. Pochlmeyer

II. Institut fiir Theoretische Physik der Universitdt Hamburg, Germany

Abstract: On” invariant classical relativistic field theories
in one time and one space dimension with interactions that are
entirely due to quadratic constraints are shown to be closely related

to integrable Hamiltonian systems.




1. Introduction

Even in one space dimension, relativistically invariant classical
field theories defining integrable Hamiltonian systems with a
non~trivial, momentum dependent scattering matrix, are not in
oversupply. Actually, up to equivalence and slight modifications
there is only one such model available, the celebrated sine—Gordon

equation [},2,§].

In this paper we shall present a whole series of mon-equivalent
relativistically invariant field theories in one time and one

space dimension, each having a one parameter family of Backlund
transformations and an infinite number of known integrals -of motion.
These conserved quantities are associated with covariant local
conserved currents for which the family of Backlund transformations
serves as a generating functiomal. Further, each one of these models
has non-trivial momentum dependent scattering, and possesses stable
stationary finite energy solutions, so—called solitoms.

By a procedure explained below ("reduction"), the series of new
models is obtained from On ~ invariant Lagrangian field theories
whose interaction arises solely from the condition that the values
of the field functiong be constrained to the surface of a sphere
{(describing a homogeneous space for On). The new examples should be
viewed as generalizations (imvolving more and more fields) of the
sine-Gordon theory , which corresponds to the chiral symmetxy

group 03 (To 02 there corresponds the theory of a free massless
field). The connection with the 0n ~ invariant chiral theories allows for
a simple geometrical interpretation of various computational

manipulations in the new models. For n £ 6 we set up the linear
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eigenvalue equation (for the characteristic initial value problem),
which is the key to the inverse scattering method %,5]. We determine
the evolution of the spectral data and thereby solve the

characteristic initial value problem.

Conversely; the analysis of the new models provides a significant

first step towards the complete description of all finite energy
solutions of the original On - invariant chiral theories e.g.

supplying for them an infinite number of integrals of motion associated
with covariant local comserved currents. Of particular interest is the
04 ffz. SU (2) x SU(2) - invariant chiral theory, the one-space-
dimensional version of the non-linear O - model 16].

Apropos, the original On - invariant chiral theories do not possess
soliton sclutions. However, the solutions related to the soliton

solutions of the corresponding reduced model are expected to play a

special role.
To sum up, the aim of this paper is twofold:

i) furnishing new examples with the same powerful structure as the one
which is at the bottom of the sine—Gordon theory and
ii) contributing to the solution of theories with an effective

Lagrangian comprising the results of current algebra [6].

The present communication grew out of joint work with H. Lehmann
and G. Roepstorff in 1968 when the connection between the chiral

0, - ipvariant theory and the sine-Gordon theory came to light.
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II. Heyristic Considerations and Normalization of Coordinates

We start from the classical theory of n real-valued scalar

. 0 1 o- I, .
or pseudoscalar fields ql(x s X )y aea qn(x » X ) 1n one
time and one space dimension which in dimensionless units, with
the help of a Lagrangian multiplier A(xo, x]), is described

by the Lagrangian density

(IL.1) L °, x') = %EZA’ (_% q;_(x"‘x")x_g?q;_(x"‘ﬁ)
Vs

A=A M=o

v 2 (i 9 () - 1)

This Lagrangian is invariant under the action of the internal

symmetry group On :

. : ' | ' |
5qi<x°, I SO AGEs xh = A6 ,x)

l i=1,...,n j=1,..., n

(IT.2)

I o 1 < o 1.
a5 %) = ;Rji %G5, R= (Roe o

I o ) ° 1
AGC, x) = A, xh.
With the short hand notation:

(11.3)
x=(x0, X]) m.\ .Pz(PA)-..\PW) m
(p-@=§ P, R = NE\\L?;PZ

| 9
gou(” = -&;qf(x) . qﬂ(x) =a—?—<- q (x)
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together with the summation convention , the Lagrangian density

takes the simple form

(11.4) L (x) = %(ﬂﬁ(")"‘lﬁ(xg + l;") ( q:(x)— 1Y

The corresponding Euler—-Lagrange equations of motion are

(L1.5) N O_\'(x\ + (qwu},qﬁtxﬂ qu“\ - O } q:"‘()«) =1
A = - (g 00-g o) .

It is convenient to introduce the characteristic coordinates

(I1.6) . §= E__;_.E.H , q»('zi__;__x_

in which the d'Alembertian X:l factorizes

T AT A6

(=

~

(11.7) b = S{*S’{ i

Employing the notation

1. -1 2
(11.8) % —Eggrlg‘@ , QYL=B—;L<3rU;,~D ke

and denoting the unit sphere in R" by the symbol Sn__1 the equations

of motion read in characteristic coordinates:




T §ch- 9.)a=0 , ge§ .

These equations are forminvariant under general coordinate
transformations which map the light cfne onto itself, i.e.

under the local scale transformations

(g.m) — (E'\-Q‘)
de'= L HEdy | dy = K ldny

(11.10)

with

HE) + 0 % Kin)

The sum and difference of the energy and momentum densities of the
: : 1 q* i La* ‘velv and th
fields are given by 3 qm and 5 q‘i respectively and the

energy-momentum conservation is expressed by the equations

(I1.11) i%qu}i = O = ig;ql}% ,

t Ly
Hence q_ and ql'§ are functions solely of M and g
n

respectively:
S e N

which are already determined by the Cauchy data at a fixed time.

For the derivation of the continuity equations (II.11) note that

Ll WL LU R LTI AL LRV ) LT T L TR DR e e e NP PURT I INERERC W Y1 1] RO NN SNIMURTRIP | PP AIE o oot 18 19 0D IT1EL S R M b e e e e



. . 2
and are orthogonal to in virtue of = ]
% A 4 ¥

and that q‘_ng is parallel to A in virtue of the equation

T+ 4409 =0

We may choose

(II.13) \H(\;)\ =in( % )|
}.K.("l)\ =-\k('vL)\

This amounts to an identically vanishing monumentum density and

%— in the new "normalized" coordinates.

(A situation with W(¥) = 0 for some §=§° and/or

a constant energy density =

&k ( 'rL) = 0 for some 'VL:‘YLG is to'be approximated by Cauchy data
for which ¥( g ) and 1 ( fyL) are different form zero everywhere. )
Without loss of generality we may take normalized coordinates as a
basis for our discussion and omit the identifying primes.

Now, only one of the 01_1 - invariants fcrmed from q and its first

derivatives q_t and an is undetermined, namely (q_g. (iwl) :

2 .2 2

14 = 1, = 1, = 1
(II ) q’ q‘g qut b}
(ﬂ.g- q,);-' 0, (q"l__‘ q.) z 0, -1 £ (q,g' q”'l_) £ 1 .
We set
(II.IS) ( c-{';’ . q_l), = cosxX

I1T1. The chiral O, model and the sine-Gordon equation
.For n = 3 the vectors 4, and already span the entire
3 ¢ g and g, ¥ sp
space R™. Without loss of generality the solutions of the equations

of motion (II1.9) satisfy the constraints
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fr

Conversely, for n = 3 the constraints q? =z i

I
I#

2
¥y
imply the equations of motion (II.9).

Hence, solving (II.9) for n = 3 is equivalent to the construction

of all three component unit vector fields q = g(g‘n’) with

2 2

%y .

il

Next we want to derive the sine—Gordon equation for arc cos ( %E. 11‘).
To this end, we express the second derivatives q and q as
. . - 141 ™

linear combinations of g5 %X and %1,
_ . 1
qru, B G+ Ld% d’%“ qr*g "LOL%M e

R i v . Lol chad g,

(I11.1)

and compute the mixed second derivative of o =are cos ( %g. qu)

A, = m{(gfg'q"‘l‘k‘%ﬂt:—{( ')

M Aol ABAanl

(III.2) ool Coaot + ({— Coaol %1]1 9‘%\-\- (qﬂgg' g(”f‘l_j

Aan
Making usge of the above expressions for q and we
. 113 %L

obtain

(I11.3) d’g = g oy Cooek Codo + (A &gohtcmi)
T srinol
(II1.4) O(ng = = Aol

i.e. the sine-Gordon equation




which can be derived from the Lagrangian demsity T =T
Al

(1II.5) L = %(-‘a%*o&)(%»oq + (Ccmot-’\) )

Conversely, to every solution o of the sine-Gordon equation there

£ Z
exists a solution of the equations of motion (II.9) with q‘_ =4 = Ci"(_
|3

and ( (.\_g- %’“’L} = (5ol .
The sine-Gordon equation is known to possess a one parameter family of

Backlund transformations Ta,. = R

o —> o (- 3y )

where X( - ;) is again a solution of the sine-Gordon equation

.. -4 - o) —
(II1.6,) & 5) +o<.§ = ¥ °A/UVL(OL( ) OQ)
g

L pu

-
ciney %W('sl\ _d}m i (s )

¥  being a constant independent of ¥ and ] 7).,

By elementary manipulations we derive the comservation law

o L (S e 18

P

%

If we expand X (' B X’) ._in a formal power series in Y around ‘

I

the point Y "= O, insert this expansion into the above conservation law,
collect terms involving the same power of B"and set the coefficients
of the resulting power series in Y' sepatatély equal to zero, we obtain
an infinite number of conservation laws for. covariant local currents

involving higher and higher powers of higher and higher derivatives




of the sine-Gordon field &k . The corresponding integrals of ﬁotion
are independent of each other and in involution.-

The soliton and antisoliton solutions are most easily obtained

by applying the Backlund transformations T, with positive

and negative respectively to the wvacuum solutilcn ol= 0.
g y

Next, we would like to remind the reader of Newell's derivation

of the isospectral linear eigenvalue problems 71, ( fyz' )1‘, = ‘gq_},

with the n- coordinate as the deformation parameter [g8}. These
eigenvalue problems play a central role in the inverse scattering
methﬁd for the characteristic initial value problem. The derivation
follows the pattern: one-parameter family of Backlund traﬁsformations-v
one parameter family of Riccati equations — linearization of these

Riccati equations = isospectral linear eigenvalue problems.

We start from the first of the two ordinary differential

equations defining Ty

oL (- ;r\*roé%
L

(II1.6,)

et

and reduce the transcendental non-linearity to a quadratic one

by rewriting the equation for

111. = oL (-3 - .
( . | /43% (\ i;? x \ .
(111.9)) \_% + %} (4 -\-\—'L) = X:1F .

This is the above mentioned one parameter family of Ricecati

equations.
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The linearization is achieved by substituting

(111.10) F = M. .
W,

The resulting differential equation

(1II.11) U(ﬂ-hg - ’l\/«”\\g,& + o_%_ (U(i'Jr W, ) = Xﬁ’q’ﬂ’,\,

is satisfied if Y, and Y, solve the following linear

system of first order ordinary differential equations

| o _ A
AY, + H‘f w’* B o l\/"
(IT1.12))

ol 4
—hq/ns‘\" '3__‘5'1'\/’\ . i}f\'\/,_,

i.e. the linear eigenvalue problems for each value of m

ey LW = (B)Y

- (%)
i Lig) = 4 (1?1\ %‘i T ("Z &5)'

Remember that Y is independent of M {and § Y-
The 'YL-evolution of ’L\/ can be determined from the second of the

two ordinary differential equations defining T,.:
A (- — ol _ : .. oL .
(111.6,) { L YQ } = _X“/W"L(O{'( ‘gt)+ \.
e

(IT1.9,) r”t' + ‘;—:‘A’V\/LO(.(/\-——VL\ — __X'CGUO(.F




leading to

(111.12,) 1\’1 = BF‘-\’ |

with | l
B - ¥ ool | Aol )
2L\ Mol , — Ceaed /.

We confirm the relation

(1;1.15) %—%{ = [B\L]

~ the necessary and sufficient condition for the 'Y_L-* independence

of the spectrum of L ( n ).

We notice that the parameter Yy~ of the family of Backlund -
transformations plays the role of the continuous eigenvalue in
the family of isospectral linear eigenvalue problems associated
with the sine-Gordon equation.

Returning to the Backjund transformations T

v let q. be a
solution of the equations of motion (II1.9) for the chiral 03
. L .
model with :_-../l = and . = cos ol .
== (499 |
Then . |

B e

is a solution of the equations of motion (I1.9) with

(qr('aﬂg_\l'z/\ = (a( ‘>43~JZ
'(qfk-sﬂg-‘qr(- -,4@ = Coact(-51),

The vectors q and q_(- 11} are orthogonal to each other. The

(I11.17)
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requirement that the component of e -4 in the

direction of q# vanishes, is equivalent to the conservation law

) | %‘Cm<ot(.-,ﬂ+ot)} N %Cm(ot(-m-oq/} -0

2,

L ] 1

However, for general values of the parameter X*, the
geometrical relation between the solution vector q and a solution q&'3¥)

of the equations of motion with

@Csn, Yy =1=907))
(qr(“’\ﬂg' Q (- 37&«0 = o ol (- ny)

is not so simple.The resolution of this point is presented in

il

(III.19)

gsection VI for general wvalues of n, after the geometrical meaning

of the parameter ¥ has been elarified in section V.

IV Goals and Strategy

We aim at associating a one-parameter family of isospectral

linear eigenvalue problems (with the 1L—coordinate as the

deformation parameter) to the evolution equations for the invariants

of the general chiral group 0n in normalized coordinates. So far,
this task is accomplished for n £ 6 only. A less ambitious goal

is the construction of a generating functional for the infinite

number of covariant local conserved currents.
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Lacking a better idea for the realization of this program we
maintain the spirit of Newells' pattern [8]:
1) introduction of Y as an expansion or contraction parameter for

the sum and difference of the energy and momentum densities respectively

2) adjunction of one discrete Backlund transformation for the chiral

fields qi i=1,e..,

Remark: 1) and 2) yield a one-parameter continuum of Backliund
transformations Ty which. serves as a generating functional

for the infinite number of conservation laws.
3) transition from the chiral fields to 0n -~ invariants

4) derivation of a one-parameter family of systems of (n - 2) coupled
non—linear first order ordinary differential equations involving

at most bilinear terms

5) construction of a one-parameter family of  genuine Riccati
equations

6) linearization of these Riccatl equations to obtain the desired

isospectral linear eigenvalue eguations.

V The geometrical meaning of the parameter X

In this section we shall show that for every solution q_of the
equations of motion (II.9) there exists a one-parameter family

, @) "
of solutions q* } Y-E;WL with

(V.I) qu:) = \K:Lqrz ! qr(j?:) - X‘%'iﬂ
(4790 = (g

(in a general system of coordinates). Actually we shall prove
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even more, namely the existence of coordinate dependent rotation

matrices RLH = &fr’(t,frt-, q_\

(v.2) ‘?p'(ﬂ Y yhor __= watra'%(r) - j&_

the superscript tr demoting transposition

'such that the equations of motion are satisfied for

(V.3) q\,(y) = U{‘”gr
and

(v.a) q}? =y ?R,m% ‘ qf(fz = K&w)qrm

Obviously, for q}ﬂ 20 defined the relations (V.1) hold.

 The existence of such rotation matrices Ul‘“ follows from the

compatibility of the equations
( -4 )
wsp 0 RE) = (YWY M,

wsy WY = () WM

and

(V.5,) R ?R(‘ﬂ)br = Rﬁﬂ’br?flcﬂ - 1
33
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Se—




(v.6) M(i) = M(t) (E\“’L 8 Q\_\ = (M@_)J&e>

and

(V.6,) M(+)~U— = ﬂ;,,;"ﬁ'z';g“ Qeg9e ML-)&LQ: D Qe Tefe .

M (+)k1 are the sum and difference respectively of the zero and
+
one components of the current densities for the chiral field

vector ¢ corresponding to a rotation in the (k,1 )-plane.

The construction of the matrices R ) follows the standard iterative
procedure for the generation of the resolvents for systems of homogeneous
linear first order ordinary differential equations [9] .

Moreover, the following transitivity equation holds

1

v.7) F&C&ﬁ) ( 5 o_\r> = m}n‘)(- )mﬁn)(>%")q-\
: mcm ( - i\

To sum up, the parameter X‘ describes expansions or contractions
of the respective sum and difference of the energy and momentum
densities of the chiral field vector q without at the same time changing
the angle between and .

& % $

VI Backlund Transformations and Conservation Laws

.o . 4
We adjoin to the transformations R.,‘.. ; X- € R 1

(VI. 1) q £ @ = fd&ﬂ{' 5 qr\ %

i fumnny A
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of the solutions of (II.9) onto themselves essentially one more

such discrete non—linear transformation B+:
(VI.2) q. _&:r__—-y qf

which changes neither the energy nor the momentum density, but the

angle between the £~ and ql-Qerivatives:
S 7 . P _ L i
qﬁ, = 9y Am A o
| 1
Caya ) * (4o g0

B, is defined up to some coordinate .independent rotations by the

(VI.3)

four compatible equations:

(VI.4T (c_‘_‘ N q’)g - (gr'qrz\'i(qct‘@ (q'-a)

(VI.AE) (qr‘__ Cﬁ"L — (qg"av' qﬂz‘:(qqﬁ] (q_'+ q_\
(VI.43) q_"” = 1

(VI.4,) ( qt‘. qr\ = Q) .

This transformation corresponds to the Backlund transformation T]

in the sine-Gordon theory. Along with B; goes the conservation law:
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(¥1.5) (q- GV (qu'qr*ga =0.

We obtain a one-parameter family of Backlund transformations Tr -
to be compared with the maps o —= o((-;yﬁ in the sine—Gordon -
theory, cf. equation (I1I.6) - if we combine B, and the Rxn’s

to form

-4
T. - RUB.R,
(VI.6) i

o —=— q( 5+ = (@)™

taking the non-commutativity of the diagram

q iizr ‘ q}r)

v

(VI.7) 5 B+
1 v ‘
! € - ' Y @/
G5 ¥+ Ry ()

into account.: the angle between C¥Q-3gwﬁg and %_K' 3‘$+)qt

depends on Y~ .

Along with Ty, B8O€s the conservation law:

( q(ﬂ','q»(r;)m v (im', qrwn'\t\{

(VI.8) = }(—4 (@r(i ¥4 8 QYO«L*Y(CBF( ‘>Y+\'W Qh)g’o

with

T = R sac m\m RV 59)




wy,
By eXpanding w0/ near the asymptote of R ( ‘Q){%F
y 4 I
Gl

for ¥y~ 0 into an asymptotic series in ¥, inserting this
expansion into (VI.8), collecting all terms of the same order in ¥
and setting the resulting coefficients separately equal to zero,

we obtain an infinite number of covariant local non-polynomial
conservation laws leading to independent integrals of motion

for the chiral fields which are in involution. The first

three continuity equations are given explicitly by

VI.9 {1 =
(VI. 1) 5y C%i

(V1.9,) {L;l\q‘_g\\ (332 (!\2‘:\\)}%}1 - { (_%ﬁ\—q?jl}

;

e E R el

_ g g ) g j ‘a A\
IR TN (52(%@“

Obviously, instead of the discrete non-linear transformation B,

(VI.9,)

we could have taken the transformation B_, up to some coordinate

independent rotations defined by .

- | ([5 \_({..' !
(VI.4) (qr - a_)g - H9 7 ES Qa\(q'4qr\
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. | e - (al- ‘f
(VI.45) (c‘\'Jr qf)"'t = (% - . (3. ) (‘3("9(\

2
(VI.43) q‘_‘ = /\

(VI.4,) (q(' %\ = () | '

To B_ there corresponds the same conservation law as to B+:
eq. (VI.5) and a one-parameter family of Backlund

transformations

(VI.10)

Going through the same routine as before, we obtain an infinite

number of new covariant local non-polynomial conservation laws,

which arise from the above ones by replacin -derivatives b
g ¥

“1’- derivatives and vice versa.

VII Differential Equations fo'r_tlfua‘or_1 - Invariants

From now on, we shall work with normalized coordinates. In these

coordinates the conservation laws look much simpler than before e.g.

(VIL.1,) | SL .%: qéT]mL =0



(VI1. 1,) { %’, QV;&L = {(Qﬁ'amﬁ}

o1y AT Y.~ (@r;\’"h* \- ﬁ%@%;}f

The coordinates normalized for the solution q serve at the
same time as normalized coordinates for the Backjund transformed

solutions

a(-yxy="la

From the solution vector q¥ we construct a basis in R" with the

first three basisvectors specified

(VIII.2) _/é:i_ =4 ’6__;_= qw @;.: Yo = %G 4

such as to give M, .a simple form with (g;q?-independent entries:

e

(VII.3) Mmf@ = -

‘Mw%ﬁ_gp_t T"]w{)_:_r* O g4 m,

In this basis also M takes a fairly simple form:

)
Mo
M ) =./Mmo£@i_'\ M&)@zo A=

! 3

i

(a3 v, M = conat iy
(VIT.4)

n-%.
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ZQV Q}%)maps this basis into a new one

) | |
wrs Y = W sa)b, A --1,04 -

- e -

We may construct a similar basis i{éli % starting from the solution

vectot QP( )a~j and envisage a derivation of a differential equation

for the rotation C). This describes the change of basis {;@rbg 7{@3&}%
and is symmetric with respect to primed and unprimed quantities.

. . )
The entries of the orthogonal matrix Gﬁr

G (V)! . <) \)
(VIT.6) Ov = ('_6_'_4‘3;_. __/@;&,_

are On - ipvariant.

However, 1t turns out that the E; derivatives of the entries

' ()
(VI1.7) Xh = <er(ﬁ - %__“_4_&_3

of the first column of ()@ can be expressed by at most guadratic

terms in the entries of this very first column, and the same goes

for Fhe n- derivatives of Xk k= (-1), 0,1,...., n-2.

Hence we confine our attenFion to the On—invariants Xk’ and study

two systems of (n-1) coupled non-linear first order ordinary differential

equations involving at most bilinear terms:

X = X Z<_q4_g><
X., >w><><+i< RA AR

(VII.BI)
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..
may X =~ s KX, vt (FX) ), («%;LQX&
et XXy X+ ) G

= Yool (1 =X —poinal XX,

Ai

subject to the constraint

Xo= (X, Xam ) € S,

M-
X =1
e .
£=90 ;
X, is identically equal to zero since (é?)'ﬂquo,

. .. ha
The constraint {(VII.9) reflects the condition kf%)=1,

(VII1.9)

As we see, explicit knowledge of 2R9ﬂ is not required.

We eliminate the constraint (VII.9) with the help of the stereographic

projection

(VII.10) Y = IS N ,&: Ay - MY
1

and arrive at two systems of (n-2) coupled non-linear first order
ordinary differential equatiodns also involving at most bilinear terms.
oL
- 4 <7 @)
o=y Y, + 2. s Y
3 3 m=4 ¥
-1

(VII.11) N (i{mYM>Y3 4_%(/\-——2\(:3

d = A -~ ek
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with
) L (ES) _ ) o
S = 7 55 = (e 4
b= (b))
and
\(Q‘ﬂ gyc@ooL\( Z_\ &)\
(VII.11,) 1,
-y el Y Séﬁggw (12, )
i = A, -0 M- L
with
Sf;w =—3,f:g = (’erz» - %M}

These systems of differential equations are to be compared with the

Riccati equations (III.9J)and (III.92) of the sine-Gordon theory.

VIII Linearization and the chiral SU(?) x SU(2)

All points of our program (cf.section IV) have been realized but the

final one which consists of the linearization of the system of

equations (VII.II]) {and (VII.]]2).

For n £ 6 the system (VII.I]I) can be cast into a single equation for

(VIII.1) x = Y\ + 'LYL + A R,

where 1,i,j,k is. the conventional basis for the quaternions:

= ) 4 @ @ Ay= 1
(VIII.2)) Xg SR S N Bl A S v A A i T
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(VIIL.2 ) (szﬁxgm¢xa&u@”g &ydm+x%%@fWX))

with
@ - i(s)-t NS,

+/k(s(”
:£44&£2+¢Q4'k{q

and where the bar denotes quaternion conjugation.

+% (g

~1)'s,S

(VITI.3)

Linearization is achieved by the amsatz

(ay) (EyY

(VIII.4)

with.a and b satisfying the compatible equations:

( _ A
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(VI11.5)
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More conventionally this can be written as

(VIII.SI) \_('Y‘O H{ = (ib?) ’Y

(VIII.8,) ‘B%L-T = B'\f

where {4
Y - :_
Y
/10 L O ((6_?: £)..)
(VIII.9) L(’U = A 0O -1 & ) 1 ((%:’R:)Aax O A

—w L, e (@E),)
(VIII.10) ’B = :Y_— — 4
L \ s (B8 5) | Coact 1

! 0 Cay 7€y =Gy -Gy
(VIII.11) I = 4 A (CA ) - C,_‘ Cay =Cy, G
0 1 La Ca'\ C‘*\ Al C’\ 3—C1
Cu ~Cy, Cu, C
3 3 Ty A .

By setting up eguation (VIII.10) we have determined the
""L-evolution of the spec‘tral data for the.linear eigenvalue problem
(VIII.BI) and hence solved {in the sense of the inverse scattering
method) the characteristic initial value problem for the models

obtained by reduction from the ¢ - invariant chiral theories for n & 6.
. n
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To complete the proof that these models define integrable
Hamiltonian Systems we would have to solve (in the sense of the
inverse scattering method) the Cauchy initial value problem and carry

out an analysis similar to the one of ref.[?l‘

Among the models under discussion there is a particularly
interesting one, n = 4, corresponding to the one-space -dimensicnal

version of the non-linear & -model (6],

The SU(2) x SU(2) - invariants in normalized coordinates are:

o« = AT Loo <qr£"qm\f

(VIII.12) _
o= q . [C‘_'a—§1c‘imlj 19 = (%r . Lgf\ﬁ.i\qﬁlgl
TSR A ) L Aaned
[-\ ,} denoting the vecter product.

The equations of motion for these invariants are:

o W
(-UL = _?_éi#__. S r-U‘l- _ Q("’(_
LRI e S A S

It was noted by H. Lehmann that the last two equations possess '&%%é

as an integrating factor. Thus we set

o ol
(VIII.14) u:(gi/df%.?: ) z\,c:__(é”ulc%.i
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and obtain two hyperbolic equations for the scalar fields ol -

and ﬁ :

oLy

2ol
. M _
(VIII.15) '

o |
g+ SHEEZ = 0

These equations can be derived from the Lagrangian
virae  L(Em) = ok 4 TASE AP, + Conel-]
_ L 3 5B 2y :

For the formulation of the family of linear isospectral eigenvalue
problems associated with this model, we can dispense with the

. quaternions:

Leow = G50y

(VIII.17.)
: ~ (%)

A W
, (e ifag Ve
L(n»(\ = /L(?g #o/‘\ &O% Ty (W@’if&*‘ﬁ)ém» ﬁg’%) )

. where W is defined up to some constant by the equations

Aol

(VIII.18) (OE &L Y cort
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The m-evolution of o and P , i.e. the solution of the
characteristic initial value problem, is obtained from the
Yd-evolution of the spectral data for (VIII.I?I) which in turn

can be read off from

(VIII.17,) EH" = BU{
(

This completes our analysis of the classical theory related to the

one-space—-dimensional version of the non-linear @ -model.

An essential part of the work presented here was done while the

author was visiting CERN. Jt is a pleasure to thank all members of

the CERN Theory Division for their kind hospitality.
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