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I. Introduction

As we have witnessed at this conferenbe, there are currently
two competing ideas on dynamical problems in high energy
physics. On the one hand there is the rapidly develepping
field of classical solutions of nonlinear equations and thelir
quantization ("soliton"-physies) with many interesting appli-
cations and the promise tc understand things as "gquark
entrapment"”. On the other hand, after the progress at the
beginning of the-70tles in eritical phencmena, there have been
several attempts to use lattice methods for abelian and non-
abelian gauge theories with the aim to understand quark confine-
ment via a charge-screening mechanism. In the latter approach

quantum fluctuations are right from the beginning very important

and one does not envisage classical limits to be helpful.

. . 4
Some models, for example the two dimensional A -thecry have
been investigated in the quasiclassical domain as well as in
. s . “o .
the long range fluctuation (= critical) domain (A Is believed

to have the same critical behaviour as the Lenz-Ising model).

We will in the following scetch the guasiclassical aspects of

the D = 2 Lenz-Iising moedel which are similar to those cof the

Au—theory. In particular, the conclusion that there are new
coherent statesl%hich appear to be Majorana fermions are similar
to the Au—theory. It would be tempting to speculate that there
is a equivalent description in terms of a Lagrangian which
contains a Majorana fermion field in the same way as the sine
Gordon equation and the Thirring field seem to be related. We
have not yet been able to establish such a equivalence. The

only independent evidence for this speculation comes from the

investigation of the critical region. In section III we give

an explicit construction for the scale invariant limit

. n
{corresponding to the A -theory where the two minima ccalesce
for the first time)and show that its most simple field theore-

tical descript can be given in terms of a free D = 2 Hajorana



fiald., All fields, including the basic field variables, can be
written as functions of the Majorana field but for some fields
(including all odd powers of the basic field) the relation is
somewhat nonlocal (involving line-integrals).

We wil; carry out the same‘investigation for the Baxter-model,
which is a nontrivial generalization of the Lenz-Ising model
and turns ocut to be described (in the scale invariant region)
by a Lagrangian identical to the Lagrangian of the Thirring
model. In section IV we will briefly discuss the relation of
the Thirring-model to the sine Gordon equation. Even though
our conclusions agree with Colemagg our method is sufficiently
different as to justify our presentation. In the last section
we will discuss an interesting problem for a one dimensional
electron gas originating from a generalization of the well
known Tomonage Luttinger modef) The formation of a gap which
contains soliton-antisoliton bound states is very similar to

the coccurance of this phenomenon in the massive Thirring model.

-



II. Ztatiorary, FPosition Dependent Hean I'ield 3olutions
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The symsol [ o] irndicates a configuration, i.2. a8t asslynnert
+ . .
of va.ues - 1 to every lattice spin g,
Correlaticn functions may Le formed with the help of the ssne-
ratineg functlional:
-
Kol + % no,
Z[x] = I e - B (Ti.2
r"...]
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Hera the U is a constant determined i- such a way that

nt function is obtained in the

[

‘e connected Ti-po

. \ . th , ; . .
vsual way by taking the o derivative of In 4 with rectect

In order to obtain a formalism which ig more clesely linked to

a continucus fileld variable by performing a furnctional
Laplace-trarnsformation:

Por tihe anisctropic coupliing we will! use K, i=2,1 for the ho
zontal resp. vertical coupling streng 7 37 in a two-dirzensio
N . x

latrice
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Here a lattice index 1 stands for a vector (whose components
.are integer) which determines a lattice point. The Fouriler-

transform of Kr'

. Yo . ik .
K= p S Kk e a7k (1I1.5)
{(2m)

Va

iz the inverse of the "lattice propagator”( a -

Kikx) = 2 K cosaki (I11.6)

1
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Absorbing all k -independent constants into € we have, after

doing the sums of g, = T 1 the folliowing field theoretical

4

problem in functional integral language:

2ok 9+ T tn cosh(®.+h.)
2 ] 3

2 k] = ¢ /o d@i e (I1.7)

1

Passing to the continuous limit by retaining the first two

momentum-space Taylor terms for K—l(k)

= lattice length):



2 3
-1 1 - 2 D a ~ 2
K -+ d _ . .
% ) ] T 0] x+2K (?}l@) dox

we obtain a euclidean field theory with a non-peclynemial Inter-
action:
Hls]
7 [h] =¢ /J d[%] e (17.583
X 101 2 ¢ (3,00 %00 i 5 8? 4P (r1.9)
D= . W d ¥+t == a % co
2K o1 7KD
- £n cosh ($+h)
which in relativistic languape belongs to a relativictic
Lagrangian (in zero external field):
1 1 1 K > T 4
:i:: = 5 & sHe - 224 =, fn cesh ¢ + const Cri.ing
2 u 2 2
2a“D a

rt

Hare a positive mass

orm stabilizes the weakly (asymptotically

inear decreasing) falling off interacting part of the effec-

[

tive potential. In using the effective ¥ Lagrangian (II1.12)
we should not forget tnat the original O is a point transior-
maticn ( C = tanh ® ) of the ® ; this is a direct consegu=ance

From (I71.3) and (I17.8) which lead to:

<o (x)...00e ) > = L (tanh 3(x ). ... tanhd (o ) (PR
C




For large K (small temperature) we have the well known degene-

rate '"mean field" wvacua:

-
iR

? - X log cosh @)

win { )
2
2a%D a
$ = * @o, soclutions of transcendental. equation:
$ =.2 KD tanh ¢ (II.12a)
o © .
resp. ! tanh ! o, = 2KD o (II.12b)
Just as in the {analytically simpler)case of the At inter-

action there exists a stable stationary kink-like solution
with finite energy relative to the vacuum. The identification
of the classical solution as an approximation to the guantum
theoretical form factor in a new state would indicate as in
the A case the Majorana (selfconjugate) fermion nature of such
a state. In contrast to the At case the model has however
ouly one parameter and one can net achieve a weak coupling
regime by a suitable cheice of parameters. We will not persue:
the semiclassical aspects of this model any further but go
directly to the investigation of the c¢ritical behaviour

(i.e. that temperature which corresponds to the confluence of
the degenerate mean field minima)and establish rigorously the
fundamental role played by (in this case zero-mass) Majorana

fermions.



III., Investipation of the Critical Region,

Construction of the Scale Invariant Limit

According to a commonly accepted working hypothesis critical
phenomena (i.e. second order phase transitions) find their
natural explanatiocn in an.underlying scale invariant fileld
theory. The validity of this picture has only been rigorously
established for those cases for which mean field theory is
exact (for example at in D = 4 dimensions) and therefore
cour following construction for the I = 2 Lenz-Ising model

is far from being a simple exercise,

It is well known that the computation of the D 2 Lenz-Ising
partition function (II.2) for C = 1 and h = o
may be reformulated in terms of a transfer matrix (lattice

size H x H, K2 and Kl coupling in x resp. y-direction)

Z = tr VN
(I11.1)
VeV 2 1
M/, M ”
with V., = (2 sinh K,) exp (K Toag)
1 1 1 m
m=1
"
- : X X
Vo = exp (K, }; g 6m+1)
There are several possibilities to simplify this transfer-
. - a . . 1) 5
matrix with the help of "Pauli-Jordan lattice fermions" )
+ . -+ - +.+
C =0 exp-imwwi o©0. G, ,C = (C) (111.2)
m m me1 1 m

€
The relation of these spinors to the spinors used by Kadanoff

are:



1 —
b o=—2 X oy = IX ¥ - (ITI.3)
mt m=-1 - m
2 2
N - A
with Co=cC +c  ,icl =cC - c

Further simplificaticn is reached by Fourier decomposition

l .
-1y -1 - -igm
et oy T2 0 H T e n’ (II1.u4)
o —ﬁ<q<ﬂ 9
and a Bogoliubov-Valatin transformationS)
£ = cos ¢ mn_ + sin ¢ n *
q T a g ¢ -q
(II1.5)
+
g = cos © - sin & n
-9 d n‘q q q
which diagonalizes the transfer matrix:
My
. 2 1
Vv = (2 sinh QKl) exp - L £ (£+ £ - 5 ) (I11.6)
—']T(q(T[ q 4 .
2 C
-4
tan & = B -A
Q qa g
X 5 . L 2
- s _ _ . . \
Aq exp 2 Kl(cosh K,-sinh K, cos q)" + exp(-2 Ki){51nh K, sin q)
x . . 2 T : 2
Bq=exp 2 Kl(51nh K, sin q) " +exp(-2 Kl)(cosh K,+sinh K, cos g)

Y :
Cq=(2 sinh Ky sin gq)(sinh 2 K, sinh K, cos g-cosh 2 K, cosh K2)

1
and ¥ ¥
cosh €q=cosh 2 K, cosh 2 Kl-sinh 2 K, sinh 2 Ky cos q. (II1I.7)

where the notation is from reference 5)

. . T -2K;
in particular: tanh Kl = e



The original classical formula ( II.3) for the O -correlation

functions now becomes a "quantum-like" formula in the Hilbert-

space of the transfer matrix (if il"‘ip are indices in a row):
<0, viviio. > =< loX o ety > (111.8)
i i o 1 i o
1 n 1 n
;wo> = eigenvector of highest eigenvalue of V (I17.9a)
- pX ¥y o y
and g = Cm Moo Cm =uo,, 1 CTr
(II1.%b)
. M -
1+ - -7 m
with MooT oexp-im ) Cs Ci
m+1
M is the "disorder®” wvariable of Kadanoff 7). Using mathe-
matical techniques of T.T.Wu 8) one may obtain a very

9)

transparent derivation of the following Kadanoff-Ceva formula:’

Statement (Kadanocff and Ceva)

At T = TC for large distances the correlation function within

a row are given by the formula:

. 0 ifT = o
< T D (1.) > = (II1.10)
i1 i ¢ [ TiY¥3PiPy ’
I \© (T.—T.)J if T # o
sy ] i
1£i<jgN
*
H < IR
Here Tl T2 TN
1
Yi = t o ] D 0, D T U

N =
|
N2 ] b

In statements referring to the scale invariant limit we prefer the

continuous notatien T instead of the lattice index.



and [

The p. vare determined recursively by:

Qri 2Fi
p. = (-1) s Fi+1 =T, ¢ (-1} Yig

where Fl = Yl and . I' = T

The main step in the proof is the realization that the special
case: K2 (horizontal coupling) =+ o , K o+

. . . 8}
dominates for long distances in a row.

The special formula for the fermion two point functions

- <M Mty =o =< i Ve icViry > (111.11)
X . AY - 1
< C (Ti) icC (Tj) - ,H.(Tj_,ri)

and the statement that the higher point functions of fermions
are just products of two point functions is a side result of
the same considerations which lead to the Kadanoff-Ceva formula.
We want to interpret now the critical long distance correlation

functions as the correlation functions of operators in a

scale invariant field theory. In this theory one may form com-

pesite fields for example:

_3/l+
E(t) = lim (t'-71) o(t) a(t') - (I11.12)
T'=T

Kadanoff has postulated two-dimensional transformation proper-
ties (which cannot be rigorously derived by investigations

on one line only, the best one can do is give certain consisten-
cy checks) for the operators in the scale invariant field theory.
For example cx and i cy are supposéd to be linear combi-
nations of a twe dimensional spinor-field, whereas o , u and E

are scalars. This field theory is a euclidean field theory.



A euclidean field theory under certain circumstances may be
viewed as the euclidean continuation of a relativistic

. 1)
gquantum field theory.

We will in the following indicate the explicit construction of

a relativistic field theory whicn leads to the Kadanoff algebrgg)

Consider the following D = 2 relativistic Majorana (self-
conjugate) two compoeonent spinor field ( &, r = left resp right):
o -
i pu
1 - +
wl(u) = Jooe az(p) dp + h.c.
27
o
(711.13)
o0
i pv
$2(v) = 1L Joe a;(p) dp - h.c.
. 2T
0
with u = t + x . v =t - X

The antiherwmiticity of wg is a result of the following repre-

sentation of <Y-matrices:

o} c 1 X o-1 1 o
= = f =
A (b o) - Y (1 o) Y5 T ()
For T = Tc sy @~ 0 wWe may view our transfer matrix:
-H [ + i .
v o= H = d el A A i71.
e =, Jda e (B L, -3 ( 14)
in terms of a relativistic Majorana hamiltonian:
H = -21- Sdx ¥ yo'r)o::j (TI1.15)

So we expect this Hdajorana field to play a crucial role in
the czonstruction of scale invariant operators.

We identify the <C's 1in the following way with

[N



c* Ty - wl(t) + w?(t)

(I11.16)
1Ty ~ w o (t) - U (1)
: Z 1

Here the tilde ~ means equality after c¢ontinuing teo relativistic
operaters te imaginary time: T = i t .
The energy density in terms of the Majiorana fields is repre-

sented by a the local cperator:

E{T) = % c* 1Y . wl(t) w?(t) = E(t) (I1I1.17)

For the bilocals in/u and ¢ our lattice formulas go over into

the followlng line integrals:ll)

tl
T<T e w(mult') ~ Z exp - im S E(t") 4t = u(t)u(t') (II1.19)
t
1/2 1/
O(T)Y0(T")~1im(€) (et) (W2(t—€)—$l(t—i€)U(t)U(t')(wl(t'+€')+
£¥* o
ETn T\;U?('t"*'E')
1/2
gltlu(t')=1lim ¢ ($2(t~€)-$,(t-€))u(t)u(t‘)
£+ 0 *
1/2

U(T)U(T')=%im £ u(t)u(t')(wl(t'+e')+w2(t‘+e')

E>0

The Z 1is a renormalization factor due to infinities coming

the endpoints if one takes functions (for example the exponential)
of a line integrail. The problem of this renormalizaticen and of
cemputation of line integralé is significantly simplified by

the existence of"Bosons on a time-like line™,



11)
Thecorern: The operator E{t) <c¢an be written as

£(t) = EY0(t) 4 h.c. (1711.19)
(+) T
with V() = o e cT(p) dp

and: [C(p), C(p')] = o = (C+(p) C+(p'):}
[C(p) (p'>] = p 8(p-p') D(p)

The proocf of this theorem follews from the definition of E

leading to:

Ci{p)= . dk 0O(k) [ar p- k)a (h) d(p-k)- (k)a (k+p)B{p+k) (IIi.20)

- a;(k)a£<k+p)e(k+p)]

The rest is straightforward computation,
The line integrals can be easlly computead with the Hose

potentials

. -iee ()
E(t)=8t®(t), ®(t)= = e S dp + h.c. (111.21)
. .
For the ordered bilccal we write:
iTad(t) -ind ()
pit) p(t') = : e i e : {(111.27)

with the Z  having done its duty after obtaining a well

defined finite operator.



Clearly the 2n-point function of ordered p's on a line computed
from(III.22) by Wick-contractions will be exactly that of the
Kadanoff Ceva formula (III.10). )

11)
With the help of the commutation relations:

. + B - _ )
[[!’)l(t)ﬂbQ(t),-’I’_ (t')]=f;—ﬂ—i log[-(t—t')i.] (lle(‘t)-H{JE(‘C) ) (ITII.23)

y, .
(t-t'). = (t—t';le)2

+

and the corresponding commutation relations for the difference
wz - wl with @i which follows frem(III.23) by taking the hermi-
_tean adjoint one may now Wick order the fermions relative to
the boson exponentials. In this way we may establish the Kada-

noff Ceva formula as a special result of our bilocal line -

integrals of u and ¢ (III1.18). The important commutation relation
(I71.23) {ollows 1f we interprete the infrared infinite ®(t)

with the helip of a particular infrared regularization. An alter-
native more elegant possibility is to realize that the commutator
N
of I
infrared finite and its knowledge suffices to do all Wick

1
+ b, with potential differences 1i.e. @(ti) - 8(t,} is

contractions necessary for the computation of ordered correlat-

ion functions of 7 and p's on a time-line.

Jote finally that all even local functions of 0 , U are obijects
whose correlation functions one can compute for an arbitrary
configuration. Only for correlation functions involving odd
polynomials of 0 and U our computational techrniique force us to

restrict ourself to a time-line.

The main result of our investigation is that the scale invariant
Lenz-Ising model is most easily described in terms of a rela-
tivistic Majorana field._This field is complete in the Hilbert-
space, but its relation to ¢ is nonlocal involving line inte-
grals. Only even polynomials of 0 have a simple local relation

to the Majorana field.



Let us now briefly indicate the extension of ocur methods to the

2) . . . .
Baxter—modef Jhlch consists of two superimposed Lenz Ising models

coupled by a energy-energy couplingga)
gKZnt = -8 g El(x) EQ(x) (ITT.24)

In the scale invariant limit for each Lenz-Ising model the

relativistic interacticn operator takes on the form

Z I I I ,IT
~ 1 ! u ! .
int™ Y1 Y2 V1 Yo (I11.25)

Because of Fermi-statistics one may add terms as

I 11 I ,II | Lyl I T 11
v ST Py Yy Yo ¥y

=
'_l
[y
<
s
<
—
"
o]
H

in order to obtain a 5?é-invariant‘form of the interaction.

With the help of Dirac combinations
b = (v o+ 1Y) (II1.26)

we obtain the U(1l) x U{1) invariant Lagrangian

ci. =2 g $yuxp$y“ap: (I11.27)

Note that all U4-fermion couplings involving only one Dirac-

field are identical (Fierz -identities).

Our assumption that one may construct the scale invariant
limit of the Baxter-model directly from the scale invariant
versions of the superimposed Lenz-Ising models has led us &

the Thirring-model as the scale invariaﬂt limit of the Baxter-

model.




It is well known that the
(1711,27) maintains scale
dimensions change from th
value. The concrete form

parametrization in terms

For example in Klaiber's
1 T
dim b = = + =
Ve
2
i T 1+9,2 hg
Aim oY = e - £y
! m il v
‘s tr 5, 1 Fg2
Simo il Y v ou o= 1 + +
. o .
T
Uther paranmetrizations as
metrization agree with(II
Ate in higher orders. The

to Baxter's p

—

An import intrinsic (p

model that if the chan

+

automatically

+
L b5

called the

3
4

»f the original

)

Lt 5,

2o b

Therefore

16

(1) % U(1) Thirring interaction

invariance to all orders, only the

eir canonical value to a g-dependent
of this relation will depend on the
of the coupling constant we use,
. . 1h) , .
parametrization we obtain:
(I71.28)
PR L - ?u‘
1 +
2
A\—__.-*M:—‘M“‘
3 . Z
iy g . + i g
T
i T 2
T 1 E/ ) - [y £ 3 b l F)
the Jchnsott“or the Sommerfleld fara-
I.28) in first order Iin g but devi-
lattice approach which is very compli-

arametrization which again agrees to

arameter independent) feature of this
ge of coupling leads to an increase in
decreases dim P fzerec is limiting value),
strong coupling limit of the model.
Lenz-Ising variables we have
W11 Y
+ E (III.2%a;
I II
~I -
E™ - & {II1.29L)
the addition of a mass perturbation



Index feor correlation length : V¥V = (2-dim ww)‘l=1—%& + ...
(III.30)
Index for specific heat:g = 2(1-din v¥) - 8 t ...,
. U

2-dim Y
Now consider the bilocals. The simplest one is

t'

—iTT f E(t") dt"

t

t < t! u(tiu(t') = Z e (III.31)

In order to see the interpretation of the operator, let us switch

off the interaction, ppye to(III1.29a) we have:

ult) ult') = (¢ (t) u(t'))I( udt) p(e') )II (III.32)

This square of the bilocals, which after switching on the
interaction does not factorigze, is felated to the electric
polarisability of the Baxter-model (actually this statement

holds for the closely related oo -bilocal ).

However in contrast to the decoupled case, the line integrals
over the "dressed” operator E(x} have a power scaling and
therefore our construction of the scale invariant Baxter-

model would lead to a breakdown of power scaling for the
bilccals. A closer examination of this situation suggest that

for g > o the correlation functions of the bilocals may develop

an exponential scaling of the type:

- - * 'T
< u(t) p(t') > ~  exp 35 (pr-¢)272 dim vy (II1.33)
-1 I o
k == (2 dim W - 1)(2-2 dim Py ).

This would be the mathematical expression for a phase transition

of infinite order on the level of correlation functions.




The behaviour of the Baxter-model in the neighbourhood

of the critical temperature is in our language decribed by the

massive Thirring model. The massive Thirring mo?el contains

bound states of the soliton - antisoliton typéVZS will be

discussed In the next section.



IV. GSine-Gordon Equation and Superrenormalizable

Perturbations on Thirring-like models

Consider a massive two dimensional gquantum field theory
with an abelian charge structure. The conserved vector
current ju' can always be affiliated with a curl-free

axial-current:

- v - (IV.1)
3 € ] , curl ]us o

In the classical version of the theory this situation would

immediatly lead to a pseudo-scalar potential:

3 b . {(Iv.2)

The quantized theory will also give a notential, however
its construction is much more delicatelB).
The following definition turns cut to be helpful:

Definition: A state Bjo> is called quasilocal if it is of

the form:

o=

J Flx,...x ) AL (x.,) :b> d2x e85 % (IV.3)
1 n 1 i

1 1 n

[ ==

i

o]

where the Ai are any local filelds {(including spinor fields)

of the theory and the f's are fast decreasing test functions.

First we define the ¢ on the vacuum state:

1 i 1 LS
F $(x) o> =m—3 ies (%) fo> (IV.4)
"

The division by the differential cperator is meant in momen-
tum space; it causes no problem because the vacuum component
of the right hand side is zero and above the vacuum there is
a mass gap according to our assumption. It is easy to see that

even though the division destroys locality, the state is still



- 20 -

quasilocal (after smearing with a fast decreasing test function).

The state transforms as a pseudoscalar. Classically we would

define a pseudoscalar field as:

o
1 i CQ, . 1) 1
- = = i - " ds (IV.5)
= ¢C2(x) 3 e(s) jus(x se) e
— oo
et = space-like unit vector
The independence on e follows apon using the vanishing of the

curl (IV.,1 ). The antisymmetrical definition (1IV.5 ) guaran-
ties the pseudo-scalarity. This classical consideration together
with (IV.4) suggests to define the guantum operator on the

dense set of quasilocal states as:

1. b(x)Blo>= 1 Le (s (x—se)e“,EJ :o> +B 1 BKj {(x) 1o> (IV.8)
o ' 2 15 Mo us
tr . BUB

The commutator poses nc convergence problems. The so construc-
ted 4 in addition to pseudoscalarity (and independence of e)
i8)

has the fellowing desirable properties which we state

without proof:
1. It is local relative to itself.
2., With the other basic fields Aj of the theory it leads

to the following spacelike commutator:
iy T _1 — 2 N
— | ¢o({x) Ai(y) =3 e{x'=-y') [Q, Ai(y)]for (x-y)" < o (IvV.7)
- ,

The field ¢ is pseudo-scalar and has negative C-parity.By
sacrificing the pseudo-scalarity in the higher sectors cne may

obtalin with

1]

(] iy

2.';:& d(x), Ai(y-)] = O(x"'-y") l_Q, Ai(y)] | (1IV.38)




Let us now assume the dynamics is such that the current for a

fixed time is complete in each charge sector. Equivalently we

el -~

, d
may say that ¢ and e ¢ form a complete set. In a local
covariant theory we should then expect the validity of an

hyperbolic equation of motien:

3 At e = FC 4, 3. 0 %) (IV.9)

If we demand this equation of motion in each sector, and then

consistency with 2! will lead to the periodicitylg)

'r(¢—=ﬁq,au¢a“¢> = F(o, 9 43" ) (IV.10)

in addition we insist in the absence of derivative couplings

—
Fh

we arrive at:
F(d+{Tn) = F(p), =n= Y1, *2,.... (TV.11)

where we have simplified our notation by omitting the hat on 9.
Clearly F = C sin 2F¢ and higher Fourier-components (the
pseudoescalarity in the vacuum-sector demands F to be anti-
symmetric!) are the only possibilities. Such an interaction is
superrenormalizable (this is equivalent to a finite Schwinger-
term in the currents) and by introducing a renormalized fileld

with ¢R = f & with

iqaR(x), 0, (1] = 1 8lxmy) (1v.12)

obtain the Sine-Gordon equation in the usual form:

(omitting again subscript R):

aua“ 5 = C : sin %ﬁ & (1v.12)

The double dot is the Wick-ordering with respect to the



interacting vacuum i.e.

$(x)° ¢ = linm {d‘)(x)d)(y) - < pl0ly) >
y*x
(IV.18)
03(x) : = lim {rb(xm(yw(z)' S5 < b(y)d(z) > A(x)
Y=Z“*X J
etc.

The wmost likely candidates Tor models fulfilling these require-
ments are the massive Thirring model and certain abelian gene-
ralizations, since their zero mass - respectively short dis-
tfance-limits lead to currents which are known to fulfill the

20) Indeed feor the massive

completeness criteria in each sector
Thirring model Colemanzl) was able to establish a direct equi-
valence between certain quantities in that model and correspon-
ding quantities in the properly parameter - adjusted Sine-

Coerdon equation.

2)

Z . . . . . .
Cur version of this equivalence is the following. Consider

first the massless Thirring-model:

L -

VY B, b s Yoy, b YTy (IV.15)

LIRS

The solution 1s usuallly written in the form

ix (x)

X
[&]

y (x) wo(x) e

(IV.18)

a S(x) + y° B 3 (x)

>~
1

where 3 and ] are related to the free spinor current by:

(IV.17)

(]
1
a2
[N
-
(]
1
a
[89]



Their two point functions and commutateors with wo have been
infrared-regularizedzs), the j and j behave as two free
scalar massless fields and their relative commutator is the
space~like antisym@etric function. From the canonical beha-
viour of j and j as well as their commutation relations
with the spinors the following formula for the dimension

and the spin of § follows by straightforward computation

4 = 1 uZ—Qf?a +82 —2#?8 21 of —af;—ﬁf; :
-5‘1" N —--'2-‘1’

v um v 27

(Iv.18)

For fixed s the remaining parameter may be related to the

coupling conttant g (IV.15), however since in this model there
is no mass shell, we cannot work with the usual "natural”
definition of the coupling constant. The definition would depend
on the way cne defines the current from the y's by a space-

time limiting procedure and there are almost as many coupling
constant parametrizations of the Thirring model as articles on

that model. In common to all parametrizations is the statement

that g - + @ i.e. "strong coupling" means:

dim ¢ + o
(IVv.19)

and dim P 9 + o

The only reason why we sometimes prefer the Klaiber parametri-

L)

. 1 . . . .
zation is that the connection between dim % and g 1is

non-singular on the real g-axis.

One comment on continuous spin.
The Lorentz-group being abelian in two-dimensional space-time

allows for the covariant transformation preperty

t—:‘-SX 0

W vixy Whan = oy | A0 (1IV.20)
O e



fhe spin in the Lorentz-sense complies with the space-like
14)

5

]

commutation properties of these guantiti

ise(x’ -y 2 . - .
w,(x) w (y) + et elxt=y") woly) b, (x) = 0 (x-y}" < O (IV.21}

i

The sigrnificance on the level of particle states (which in

rassless case 4o not exlast) has not vet been investigated,.
- - N oo oa ; . .
Hote that for s = = , N inteper the f'would be called in the
5 ;
u3sual lanpguage a nonlocal fieid.
. . .o w223 . s
1t is convenient to "bosonize' the free fermion field by
applying first a Klein transformation:
; N P
I (G+l)
b o> e 7 ! .
O / (I‘w 2[)

if

Hh

e nt

=
0]

i

setween the two

O
o
tr

: ari

which wilill lead to commu

~r

fu

el

o

T
irreducible Lorentz-components, and then to write this f

{no new notation introduced) as

LT O§ o+ 1oNT oy

-
1
L
i
Q
-~
k-
<
.
]
w
~—

flere is the Thirring field for d, = O = Sy i.e. a constant
o . 1D A Lo :
fleld which commutes witno i ang i .. It Is constant uni-
s . C L C L 2H)
tary operator which can be diagonalized in terws of angles ;
21 2%
l 's
I 1 ¥
Lo > = 2, D> 4D, 49 (IV.24)
; - 2 1 Z 1 Z
(2) -
c o
+ igi
with g. 9,0, >=e g, 0.>
i Y1 72 Y1 Y2

We would omit this field in  (IV.23) if we would




infer the uniqueness of the vacuum i.,e. the cluster property.
The latter property applied to the U4-point functicn of two ¥'s
1] R

and two w+ s would i.e. yield
<Y Y > = o (1vV.25)

for consistency regions. The Oi's and their subsequent averaging

{(Iv.24), i.e.:

~

i A ‘ 1 +
< 9ix.) T T (y.)> = ae 4o, <Mp (x )Y (y.) .
L 1’ > Y 19%2 i i 6.6, (IV.26)

would build in our formalism these bose consistency relation

(the Q@ and Q selection rules of the fermion language) in

a "fecolproof" way.

The next step is to bring the symmetric energy momentum tensor,
obtained by applying Noether formalism to the Thirring-model into

the Supawara form:

9 ., =7 (i 3, - % 811y SEE (Iv.27)

The easiest way is by short distance limiting procedure on the

completly bosonized Thirring field

o1 T S T
‘b = _I—_ T oexp iaj + 1BY Jj O ( Iv.28 )
‘QW
with
L0248 aB

b Tr * Su T 27



(X}
but even without knowing anvthing about hosonlization we may

.

obtain (IV.,27) by performing a shor+t distance limitinzg prcoce-

=

near spinsr-part of O .

ju—

dure directly on the 1

N
rotion formula  {(IV.23) will he cnly uszed in an essential

¥ we vewrite the mass perturbation on the Thirring-model:
i ,
-
AT i :+ 3 K
m_on w) g + nh.o.
0 L‘l ?i
tare the normal product U is cefined by a space-time limiting

Lrnacedure In the Thirrinz-rmodel. Using the Thirrins-nedel as
v Interaction picture for the massive case, we obtain wit?

srm o of the mass term, w

el
—
—+
:ﬁ/
o]
o
%]
9
]
[
e
rh

aTter diagonalization of & depenis on? . In terms of the

familtonian density ?( = goo we 20t the expressicon:

O o - T e
(3 ;)4 L= O O PF (Ln’/ +7) i e

N0
I
)
-
[}

,f
ot
x
)
Sl
B

S =D -0 o= 1
- - i 3 Tl
1 P
b s oty T B ) H + TR S oA N R i e T ) - 3o e I
. Hidos perturibatlon 1 Tne LLIrring 1nterac tion pllTure 45

=]
ct-orf In order to Le Infrarei-finite.
- - 200 . P . .
Cr orelference this infrarved cut-off {(i.e2. a space-box} has
seeu seriocusly considered. We taxe a3 Coleman a formal polont of

bote
€
=



since at the end the non-perturbative Sine-Gordon problem is
supposed to be the infrared cure for the infrared disease of
the mass perturbations on the Thirring-model., Let us consider

expectation values of § differences:

N o N
<M (x)-0(y)) > = == | d9,d0, < Mo (x,)=$(y,))> (1v.30)
1 _ b 1 ) ?{'O

In mo-perturbation‘theory there is no difference between a
Thrring computation and a computation with D?O' Imagine now
that in the summed up perturbation series we perform the field
translation:

. 62-81

b > b - e

28

In this way we completely eliminate the © -dependence of the
hamiltonian and we are not generating an explicit dependence

in the potential differences. The cluster property is maintained

and the Gi averaging is rendered manifestly superfluous. By cluster
arguments (taking some coordinates "behind the moon') we may get

rid of potential differences.The relation to the Thirring

. 2
currents is precisely that given by Coleman .

We may go one step further and consider spinor-bileocals i.e.:

RPN
wl(x)wl+(y):: %? :exp[’ia& EUU8V¢(x—s(y-x))euds
z 2 c
; iB(d)(y)-fb(x))J: o, o (1V.31)
2 2
+ 1 ~ 1 v b - +
:¢l(x)¢2(y):: 5= iexp ia Sguva b (x-s(y-x))e ds+iB(¢(y)+¢(x))0102

o}

& = unit vector in direction Y =X

B
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The reader may ceonvince himself that the explicit 0, factors
i
in the g, together with the O-dependence coming from the shifz

leads to a complete cancellatiown.

In this approach, the two point functions F (: : = Boson-ordering!)
b, () 0+(y).: F.o (x-v) : #,(x) m+(y) : (IV.32)
1 "X ikK ’ i " K U

are not zomputed directly, they have to be reconstructed by

applying cluster arguments from the higher expectation values of
the ordered bilocals. Note that operators as ¥ which do not

commute with the charge involve line integrals teo infinity. In

[

the massless Thirrinpg-model such infinite line integrals decrease

e

= G -
W1lth o an

averse (noninteger) power of the line-length. The
corresponding line integrals cover the non-perturbative Sine-

Corcon fleld ¢ are expected to decreacse exponentially In the

ance leading 1n this way to a vanishing of expectation

-
i
o)
w
%)
+

Tt would be desirable tc establish rigorously

o
i
-
i
[
Ll
[V
)

those properties by fermion reconstruction starting from the
Lilocals (IV.31). Our results are as yet incomplete and do
not merit further discussion. On this rather formal level of
our consideration we have not.yet seen any reason why the
reconstructed H-fielde should anticommute for space-like distan-
ces. This problem may be traced back to the problem of whether

!
by - - - 1
the massive Thirring field has to have s = > - The mass

perturbation : IJwal in

i:

e - m N[Tﬁ\p] (IV.33)
Tnirring o]

is a scalar field for any spin sy . Due to the nonlocal nature
1,

of continuous spin we should not exmnect a local field equation
for ¥ . The ordered hilocals (IV.31) satisfy however locality
properties (in the massless version of the model)} consistent
with thelr formal bilocal nature, and have a gocd chance of
satisfying bilocal massive equation of motions. This would

t the tentative conclusion -that the solitons of the
Sine-GCordon equation may have any spin, a problem which clearly

merits further investigation,
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One remark on fermion mass-renormalizations. For dim %Y < 1,
the infrared-regularized perturbation theory indicates that

in addition to the Thirring normal ordering resp. the Wick-
ordering on the Sine-Gordon level there are no ultraviolet
divergencies which require the introduction of a mass-counter-
term. For 1 < dim ¥% < 2 we do not have a clear ultravioclet

picture yet.

Let us finally discuss an abelian generalization of the Thirring-
model which has played a role in solid state physics as a physi-
cally interesting generalization of the Tomcnaga-Luttinger-

mode127).

Consider a doubled Thirring field:

- b (x,8) , s = 1,2 (1V,34)

-

Let 'ZiTh” be the Lagrangian for the twc decoupled massless

Thirring fields with identical interaction strength and add the

interaction:

2o = w w1 vk, 2T (x.2) w.(x.2) + h.c. (1V.35)
int i 2 2 1

Written in terms of two-dimensional y-matrices this interaction

is a superposition of scalar and pseudo-sclar quadrilinear

terms.

The short distance limiting procedure con the energy-momentum

tensor again leads to the Sugawara form for the Thirring part.

"Bosonization", as explained before, yields

A cos |2 B(2, -2,)] (17.36)
(2m)?

b

28 1, 2,1 2,
Ho=1 Gia s 74200 0%+

3 = - T -
with @ 92(2) 91(2) + 91(1; @2(1)
Introducing the linear combinations(w andﬁosuitably determined)

d = - g 2 == ’ (IV.37)



we obtain with

7 _ 1 2 .. 1, 2., 1. 2, : 32
J(@ = 5 (ao¢) P+ 3 .(al¢) Dot G (Boo) s+ t (3,07

N

+ > cos (QBOEG +0) (IV.38)

(zm)?
a decoupled hamiltonian.
The 0 -part is of the Sine-Gordon type and if we take over the

7) that the W K B

conjecture of Dashen Neveu and Hasslacher1
method is exact for the Sine-Gordon equation we obtaln a gap in
the o excitation spectrum (twice the soliton mass) and depen-
ding on the size of 80 a number of bound states inside this

gap. Small coupling 2 i.e. small dimension of the perturbing

o]
cperater (i.e. big Thirring couplings resp. field dimension) are
favorable feor the formation of bound states, and there is the
usual critical upper limit from which on the perturbation
becomes nonrenormalizable and the Sine-Gordon theory looses ist
"ground state bottom™,
A proof of the Luther-Emery gap conjecture using the more
convential formulation ¢f the Tomonaga-Luttinger model has

, . : 27
been given elsewhere .
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