DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 75/15 June 1975

Broken SU(4) Relations for Particle Production at Large Angle

Ъy

Takeo Inami

radotearojkse (de Piverrych Wiedukove 196 Paujokevilen 1964) ojsk

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail):

DESY Bibliothek 2 Hamburg 52 Notkestieg 1 Germany Broken SU(4) Relations for Particle Production at Large Angle

Takeo Inami +

Laboratoire de Physique Theorique et Particules Elementaires, Orsay ***
and

Deutsches Elektronen-Synchrotron DESY, Hamburg

LPTPE 75/20 June 1975

- On leave of absence from and address after 1 September, 1975: Institute of Physics, University of Tokyo (Komaba), Meguro-ku, Tokyo 153, Japan
- the Laboratoire associé au CNRS. Postal address: Laboratoire de Physique Théorique et Particules Elémentaires, Bâtiment 211, Université de Paris-Sud, 91405 Orsay, France.

Abstract

It is pointed out that inclusive distributions of π , K and η at large angle have the same dependence on transverse mass $(\mathbf{m_1})$ in a wide range of $\mathbf{m_1}$ at ISR energy. K/π and η/π ratios for the same value of $\mathbf{m_1}$ are consistent with broken SU(3) relations derived from the tensor dominated Pomeron scheme. This idea is extended to SU(4) to derive asymptotic relations between inclusive distributions of charmed particles and non-charmed particles. From these relations we estimate $d\sigma(\rho\rho > D^{\pm}\chi)/d\psi$ and $d\sigma(\rho\rho \to p_c \chi)/d\psi$ of the order of 1-5 μb and 10 - 100 nb, respectively. The consequences of sizable cross-sections for production of charmed particles is discussed in connection with lepton production at large angle in hadron-hadron scattering.

1. Introduction

Among theoretical models for the recently discovered narrow resonances ψ and ψ' at masses 3.1 and 3.7 GeV, (1) one attractive interpretation is that they are $J^P=1^-$ bound states of charmed quark and anti-quark in the quartet scheme (2). This suggestion has given stimulus to the study of production mechanisms of charmed particles. In the Regge model approach high energy scattering processes are governed by Pomeron exchange. The tensor dominated Pomeron model with a low intercept of the f_c ($c\bar{c}$ 2^+ meson) trajectory implies that the Pomeron coupling to charmed quarks is suppressed by one order of magnitude relative to the Pomeron coupling to nucleon quarks (3-6). The prediction of strong suppression of ψ and ψ' photoproduction is one of its important consequences and has had some support from a Fermi NAL experiment (7).

In this paper we apply the idea of tensor dominated Pomeron to Mueller-Regge model in order to relate inclusive distributions of charmed particles at large angle in high energy hadron-hadron reactions to those of non-charmed particles. First we test tensor dominance relations derived in the SU(3) framework by Yazaki $^{(8)}$ with data on π , K and γ production in a wide range of transverse mass (m_{\perp}) at ISR energy $^{(9,10)}$. We find that K/π and η/π ratios for the same value of m_{\perp} are approximately constant from $m_{\perp}=0.5$ to 5 GeV; broken SU(3) predictions for these ratios are valid within an accuracy of \sim 20 %. Then we estimate inclusive distributions of charmed pseudoscalar mesons using SU(4) tensor dominance relations and ISR data on π and K distributions. Our estimate gives $d\sigma(pp \rightarrow D^{\pm}X)/dy=1-4~\mu b$ and $d\sigma(pp \rightarrow F^{\pm}X)/dy=0.5-1.5~\mu b$. For vector meson production we introduce

assumption of helicity independence and additive quark model relation between double Pomeron vertices for π and ρ production. Given distributions of pseudoscalar production, then we can evaluate distributions of vector meson production. We obtain $d\sigma(\rho\rho\to\rho_c X)/dy=30-30$ nb.

In sect. 2 SU(4) tensor dominance relations in the central region are derived and estimated numerically. We compare the SU(3) part of these relations with data in sect. 3. The results of sect. 2 are used in sect. 4 to estimate cross-sections for charmed particle production at ISR energy. In sect. 5 we discuss consequences of charmed particle production on lepton production in hadron-hadron scattering. Concluding remarks are given in sect. 6.

2. SU(4) Tensor Dominance Relations in the Central Region

Let us consider an inclusive reaction

$$a + b \rightarrow c + X \tag{1}$$

where X denotes anything. We shall use one particle distributions defined by

$$f_{ab,c}(A,y,\rho_{\perp}) = E \frac{d^3 \sigma_{ab \to cX}}{d\vec{\rho}^3}$$
 (2)

where E and p are the energy and momentum of the particle c, y and p, being the rapidity and transverse momentum.

In the Mueller-Regge model, the one particle distribution in the central

region at high energy is expressed in terms of double Regge exchange

$$f_{ab,c}(x,y,p_{1}) = \sum_{i,j} F_{ab,c}(x,j) (\cosh(y-y_{a}))^{\alpha_{i}-1} \times (\cosh(y-y_{b}))^{\alpha_{j}-1}$$
(3)

where α_i and α_j are the intercepts of the Regge trajectories exchanged in the $a\bar{a}$ and $b\bar{b}$ channels, respectively. $F_{ab,c}^{i,j}$ represents the product of the external Regge residues and the i-j central vertex. It is a function of transverse mass, $m_1 = \sqrt{p_1^2 + m_c^2}$

At sufficiently high energy the expression (3) is governed by double Pomeron exchange and is reduced to a function of a single variable m_{\perp}

$$f_{ab,c}(\lambda, y, \rho_{\perp}) \sim F_{ab,c}^{P, P}(m_{\perp})$$
 (4)

Suppose we know the internal symmetry property of the double Pomeron vertex.

Then we can relate asymptotic cross-sections for production of different particles in the same multiplet of the internal symmetry group.

Yazaki has applied the scheme of f and f' dominated Pomeron (11) to inclusive reaction in the central region and derived the formula relating the double Pomeron vertex to f-f, f-f' and f'-f' central vertices (8),

$$F_{ab,c}^{P,P}(m_{\perp}) = \sum_{i,j,k,\ell} \beta_{a}^{i}(0) \frac{1}{1-\alpha_{i}} B_{ij}^{P}(0) \frac{1}{1-\alpha_{j}} V_{c}^{i,j}(m_{\perp})$$

$$\times \frac{1}{1-\alpha_{k}} B_{k\ell}^{P}(0) \frac{1}{1-\alpha_{\ell}} \beta_{b}^{\ell}(0)$$
(5)

where the summation is over all vacuum trajectories, f,f' and their daughters. β is the external Regge residue. $B_{ij}^{\ \ p}$ is the Pomeron bubble and $V_{c}^{\ \ ik}(m_{1})$ is the j-k central vertex.

Consider production of a penta-decimet meson. If we repeat the same argument in the SU(4) framework as Yazaki did in the SU(3) framework, we get the same formula as eq. (5) except that the sum now includes $f_c(c\bar{c})$ member of 2^+ hexa-decimet) and its daughters in addition to $f_c(c\bar{c})$ and their daughters. Thus the double Pomeron vertices are related to the tensor-tensor central vertices, where tensor represents $f_c(c\bar{c})$ we make the same additional assumptions as have been made in the case of SU(3) symmetry in Refs. (10) and (8):

- (1) The leading f, f' and f contributions dominate the summation over vacuum trajectories.

With these approximations SU(4) breaking of the double Pomeron exchange is parametrized in terms of the breaking of the tensor trajectories

$$r_1 = \frac{1 - \alpha_f}{1 - \alpha_{f'}}$$
, $r_2 = \frac{1 - \alpha_f}{1 - \alpha_{f_c}}$. (6)

We now apply the model of tensor dominated Pomeron to production of

pseudoscalar mesons. It gives the following asymptotic relations for fixed value of m_1 ,

$$f_{ab,\pi}: f_{ab,K}: f_{ab,\eta}: f_{ab,\eta}: f_{ab,D}: f_{ab,F}$$

$$= 1: r_1: \sigma^2 + \tau^2 r_1^2: \tau^2 + \sigma^2 r_1^2: r_2: r_1 r_2$$
(7)

where au and au are given in terms of octet-singlet mixing angle $\hat{\sigma}$,

$$\sigma = \sqrt{1/3} \cos\theta + \sqrt{2/3} \sin\theta, \quad \tau = \sqrt{1/3} \sin\theta - \sqrt{2/3} \cos\theta. \tag{8}$$

The mixture of $c\bar{c}$ component in η and η' is presumably small and hence is ignored, while the η_c cross-section is sensitive to a small mixture of NN and $\lambda\bar{\lambda}$ components and is not given above.

For production of hexa-decimet vector mesons, asymptotic relations for the same value of m_{\perp} become very simple,

$$f_{ab,p}: f_{ab,w}: f_{ab,K^*}: f_{ab,p}: f_{ab,p^*}: f_{ab,F^*}: f_{ab,p_c}$$

$$= 1: 1: r_1: r_1^2: r_2: r_1r_2: r_2^2.$$
(9)

(The SU(3) part of eq. (9) as well as the π/K ratio in eq. (7) have already been given in Ref. (8)).

It is of interest to note that we can also derive the same relations as eqs. (7) and (9), if we assume additive quark model relations for double Pomeron vertices at the same value of m_{\perp} instead of the same value of p_{\perp} . (12) In this picture the parameters r_{\parallel} and r_{\parallel} are Pomeron couplings to λ and c quarks, respectively, relative to Pomeron coupling to nucleon

quarks (see fig. 1). However, they are not related to the f, f' and f_c intercepts by eq. (6) any more but are free parameters.

To estimate numerically the ratios (7) and (9) we shall take a model of exchange degenerate linear ϕ_c^{-f} trajectory with daughters spaced by two units of angular momentum $^{(5,6)}$. This gives $\alpha_{f_c} \simeq -3.8$ and $r_2 = 0.085 = 0.13$. As for r_1 , linear ϕ_c^{-f} trajectory gives $r_1 = 0.5 = 0.7$. Taking account of $\sigma_{K}/\sigma_{\pi} = 0.75 = 0.80$, we choose $r_1 = 0.5 = 0.6$. For pseudoscalar meson production we take the octet-singlet mixing angle $\theta = 10^{\circ}$. This gives

$$f_{ab,\pi} : f_{ab,K} : f_{ab,\eta} : f_{ab,\eta} : f_{ab,D} : f_{ab,F}$$

$$= 1 : 0.5 - 0.6 : 0.63 - 0.68 : 0.62 - 0.67 : 0.08 - 0.13 : 0.04 - 0.08 .$$
(10)

For vector meson production we have

$$f_{ab,\rho}: f_{ab,\omega}: f_{ab,K^*}: f_{ab,\phi}: f_{ab,D^*}: f_{ab,F^*}: f_{ab,\phi_c}$$

$$= 1:1:0.5-0.6:0.25-0.36:0.08-0.13:0.04-0.08:0.007-0.016.$$

3. Test of broken SU(3) relations

Detailed experimental studies of inclusive reactions in the central region have been done at CERN ISR $^{(9,10)}$ since Yazaki's proposal. We now have an opportunity of checking the SU(3) part of the relations (7) in a wide range of m_{\perp} . Thus we can test the basic assumption of f and f' dominated Pomeron as well as the supplementary assumption of SU(3) symmetry of couplings.

ISR data indicate that one-particle distributions are still increasing in their energy range, although the rate of increase is much smaller than at PS energy. This implies that terms other than the double Pomeron exchange may possibly be not negligible. Since no reasonable way of separating the double Pomeron exchange from secondary terms is known, we had better use data at as high energy as possible. Fortunately, at \sqrt{A} = 53 GeV there are data on π , K and η production with accurate relative normalization (9,10).

In fig. 2a we plot one-particle distributions for these three reactions at $\theta_{\rm c.m.} \simeq 90^{\circ}$ as functions of m₁. For π^{\pm} and K⁻ distributions we have taken the average of positive charge and negative charge cross-sections in order to eliminate C = -1 exchange. The π and K cross-sections vary more than six orders of magnitude from m₁ = 0.5 to 5 GeV. We note that in spite of this large variation of the individual cross-sections, the K and π distributions have approximately the same m₁ dependence all the way out to m₁ \simeq 5 GeV. More quantitatively, the K/ π ratio is more or less constant and is \sim 0.4, which compares the theoretical value 0.5 - 0.6 (see fig. 2b). Using data at lower ISR energies we get a similar conclusion. η and π^0 distributions also have the same m₁ dependence. The η/π^0 ratio is consistent with the predicted value 0.63 - 0.68 (see fig. 2c), although relatively large errors on the η cross sections do not allow us to drwa a more quantitative conclusion.

We note in passing that the data on π^{\pm} and π^{c} cross-sections used in fig. 2a are subject to contamination from decay products of K_{s}^{0} , η and η' mesons. Making corrections for this contamination would largely reduce the discrepancy between the experimental K/π and η/π ratios and the predictions seen in fig. 1b and 1c (it is likely that the contamination is 5-10%).

Further measurement of η production at smaller ρ_1 , i.e. $\rho_1 \lesssim 1.5$ GeV, as well as η' production will be very useful to test the broken SU(3) relations more thoroughly. We give in fig. 3 predictions for the ρ_1 dependence of η and η' production at $\theta_{\text{c.m.}} \simeq 90^{\circ}$ relative to π production at the highest ISR energy.

4. Estimate of Cross-sections for Charmed Particle Production

The above analysis of K/π and η/π ratios has shown that the SU(3) part of the tensor dominance relations is valid within an accuracy of \sim 20 % in a wide range of m_{\perp} . Now we want to use the broken SU(4) relations (7) and (9), or (10) and (11), to estimate the order of magnitude as well as p_{\perp} dependence of inclusive cross-sections for charmed particle production.

Fig. 4a shows the prediction for the m_1 dependence of inclusive D and F production (average of positive charge and negative charge cross-sections) at $\theta_{c,m} \simeq 90^{\circ}$ in p-p reaction. They are calculated from the ratio (10) and the experimental values of π and K cross-sections at $\sqrt{A}=53$ GeV. When we go from the m_1 variable to the p₁ variable, D and F distributions depend on their masses. In fig. 4b are given two sets of p₁ dependence calculated using $m_D=2.20$ GeV and $m_F=2.25$ GeV (I) and $m_D=2.00$ GeV and $m_F=2.05$ GeV (II), respectively. At small p₁ D and F distributions are suppressed by several orders of magnitude relative to π and K distributions. This suppression is due mainly to their masses being large. The predicted D/ π and F/K ratios increases rapidly as p₁ becomes large and are 1-2 % at p₁ \simeq 3 GeV/c.

Integrating the D and F distributions in fig. 3b over p, we obtain

$$d\sigma(pp\to DX)/dy = 1-2 \mu b$$
, $d\sigma(pp\to FX) = 0.5-0.8 \mu b$ (I),
 $d\sigma(pp\to DX)/dy = 2-4 \mu b$, $d\sigma(pp\to FX) = 0.8-1.3 \mu b$ (I).

As for vector meson production, unfortunately there is no measurement of p_{\perp} dependence of either ρ or K^{*} production at sufficiently high energy. We introduce (i) helicity independence of double Pomeron central vertex for vector meson production and (ii) an additive quark model relation between the double Pomeron vertices for π and ρ production. Namely, we assume

$$\sum_{ahim} \overline{F}_{ab,\rho}^{P-P}(m_{\perp}) = 3 \overline{F}_{ab,\pi}^{P-P}(m_{\perp}), \qquad (13)$$

or at high energy

$$\sum_{\text{atim}} f_{ab,p}(s,y,p_1) \sim 3f_{ab,\pi}(s,y,p_1') \quad (m_{p1} = m_{\pi1}). \tag{14}$$

The experimental test of the relation (14) is not unambiguous. The correct way may be to compare ρ distribution with π distribution after making correction of pions from decays of vector mesons. If this would be the case, one should rewrite eq. (14) as

$$\sum_{\text{abin}} f_{ab,p}(s,y,p_{\perp}) \sim 3(1-\epsilon(p_{\perp}')) f_{ab,\pi}(s,y,p_{\perp}') \quad (m_{p_{\perp}} = m_{\pi \perp}). \tag{15}$$

where ϵ is the fraction of vector meson-mediated pion distribution. Experimental analysis at p_L = 24 GeV/c ⁽¹³⁾ suggests that the fraction ϵ may be as large as \sim 30 %. It would be even larger at higher energy.

In fig. 5 we present the prediction for one particle distributions of $\rho(w)$, ϕ and ϕ_c at $\theta_{c.m.} \simeq 90^\circ$ in p-p reaction relative to the π distribution at $\sqrt{\delta}$ = 53 GeV. The upper curves represent the prediction using eq. (14) as input. The lower curves give the prediction taking account of the

above-mentioned correction with $\varepsilon = 0.3$. We see that the assumption (13) implies that the asymptotic ρ/π ratio increases with p_{\perp} and is larger than 1 for $p_{\perp} \gtrsim 1.2$ GeV/c. There is experimental evidence (13,14) that the ρ/π ratio increases rapidly with p_{\perp} .

Predicted cross-sections integrated over \mathbf{p}_{\perp} for charmed vector meson production are

$$d\sigma(pp \rightarrow DX)/dy = 4-7 \mu b,$$

$$d\sigma(pp \rightarrow FX)/dy = 1-2 \mu b,$$

$$d\sigma(pp \rightarrow \phi_c X)/dy = 30-80 \text{ nb}.$$
(16)

We have used $m_{D^{\#}} = 2.20$ GeV, $m_{F^{\#}} = 2.25$ GeV and $m_{\phi_c} = 3.10$ GeV. Here and hereafter we take eq. (14). Recent measurement at the ISR indicates that the ϕ_c production cross-section is indeed of the order of 100 nb (15).

If we assume the universal slope $\alpha_{f_c}' \simeq 1.0 \text{ GeV}^{-2}$ instead of our model of the f_c trajectory with daughters spaced two units of angular momentum, we have $r_2 \simeq 0.05$. For this value of r_2 predicted cross-sections for production of particles with non-zero charm and ϕ_c are smaller by factor of two and four, respectively, than those given above.

The present scheme of tensor dominated Pomeron invokes several approximations which are not very well founded.

Among others, the f_c intercept is not known experimentally and SU(4) symmetry of the Pomeron bubble B_{ij} may be badly broken ⁽¹⁶⁾. For phenomenological purpose it may be sensible to leave the SU(4) breaking parameter r_2

free and to be determined from data on total cross-sections (see ref. (5) in this connection). Table 1 gives prediction for cross-sections for charmed particle production at $\sqrt{\Delta}$ = 53 GeV in terms of the parameter r_2 together with a summary of the preceding numerical estimate. In these calculations corrections for the input π distribution due to decays of K, γ , γ' and vector mesons have been ignored.

5. Consequence on Lepton Production at Large Angle

One of the simplest method of testing our prediction for vector meson production would be to measure cross-section for lepton pair production at large angle around resonance masses in high energy hadron-hadron scattering. Denoting the branching ratio of $V^c \rightarrow \ell^+\ell^-$ by $B(V^c \rightarrow \ell^+\ell^-)$ we have

$$\frac{d\sigma(ab \rightarrow V^{\circ}X)/dy}{L_{\rightarrow}\ell^{+}\ell^{-}} \frac{B(V^{\circ} \rightarrow \ell^{+}\ell^{-})}{d\sigma(ab \rightarrow V^{\circ}X)/dy}$$

At $\sqrt{s} \simeq 50$ GeV, where we have done our estimate of ρ , w, ϕ and ϕ_c production (table 1b), we get

$$d\sigma(ab \rightarrow p^{c}X)/dy + d\sigma(ab \rightarrow wX)/dy : d\sigma(ab \rightarrow \phi_{c}X)/dy : d\sigma(ab \rightarrow \phi_{c}X)/dy$$

$$\downarrow \ell^{+}\ell^{-} \qquad \downarrow \ell^{+}\ell^{-} \qquad \downarrow \ell^{+}\ell^{-}$$

$$= 1 \cdot 0.25 - 0.35 \cdot 0.003 - 0.003$$
(17)

where we have used $B(\rho^c \to \ell^+ \ell^-) = 4.5 \times 10^{-5}$, $B(\omega \to \ell^+ \ell^-) = 7.5 \times 10^{-5}$, $B(\phi \to \ell^+ \ell^-) = 3.0 \times 10^{-4}$ and $B(\phi_c \to \ell^+ \ell^-) = 7.0 \times 10^{-2}$. As seen from fig. 5, the contribution of ϕ_c to lepton pair production becomes more important as the ρ_1 of produced vector mesons increases.

The estimate in sect. 4 implies that D and F mesons and their vector counter parts are produced rather copiously; their production crosssections are of the order of 1-10 µb, one to two orders of magnitude larger than $\phi_{\rm c}$ production cross-section. Particles with non-zero charm have leptonic and semi-leptonic decay modes such as D \Rightarrow ℓ^{+} + ν + hadrons and $\overline{D} \rightarrow \ell^{-} + \overline{\nu} + \text{hadrons}$. This seems to suggest that leptons among the decay products of D, F, D* and F* are responsible, at least partly, for unexpectedly large cross-sections for ℓ^{\pm} production at large angles in p-p scattering observed at Serpukhov, Fermi NAL and ISR recently (17). How important these contributions to ℓ^{\pm} production would be depends on the branching ratio of leptonic and semi-leptonic decays. Since the particles with non-zero charm cannot be produced singly, there is certain probability that the leptons of their decay products would be observed in pair. However, if the leptonic branching ratio is small, as widely believed (18), these leptons would be observed singly most of the time. To pursue this interpretation of the copious lepton production in a quantitative way and compare it with data (17) we need to estimate the p dependence of the child leptons. This requires knowledge of the decay properties of the parent charmed particles and is beyond the scope of the present paper.

6. Concluding Remarks

It has been widely believed that the energy dependence of inclusive distributions at large angle between PS and ISR energies is largely due to kinematical effect, which dies away at high energy (19). Our numerical analyses of inclusive distributions in sects. 3-5 rest on the assumption

that the double Pomeron exchange is a fair approximation at higher ISR energies. At lower ISR energies our estimate may perhaps give a bit too large cross-sections for charmed particle production. We expect, however, that they give roughly correct magnitude relative to π and K production at the same value of m_1 . For 2 GeV/c $\leq p_1 \leq 3$ GeV/c π distributions at $\sqrt{3} = 31$ GeV are 20-40 % lower than that at $\sqrt{3} = 53$ GeV (20). It is conceivable, therefore, that cross-sections for charmed particle production at $\sqrt{3} \simeq 30$ GeV would be lower than given in sect. 4 by a similar amount.

There have recently been attempts to construct a unified description of inclusive processes in the whole p_{\perp} region at high energy (21). These models reduce to conventional Mueller-Regge model at small p_{\perp} and to constituent-interchange model in the large p_{\perp} limit. In this picture energy dependence of inclusive distributions is of dynamical origin and should be described correctly by assuming scaling in the variable $x_{\perp} = 2 p_{\perp} / \sqrt{\delta}$. We have shown in sect. 3 that the broken SU(3) relations in the central region are in good accord with experiment out to large m_{\perp} . This indicates a possibility that these SU(3) (and SU(4)) relations derived in the Mueller-Regge model can be extended to the large p_{\perp} region in the above-mentioned approach and give symmetry constraints on constituent interchange interactions.

Recently Kwiencinski and Roberts have made estimates of cross-sections for inclusive D and F production at large angle in tensor-dominated Pomeron schemes $^{(22)}$. They have considered a few possible Pomeron coupling schemes depending on the degree of symmetry breaking introduced by the loop integration in the Pomeron bubble B_{ij}^{P} . After the completion of the present work the author was informed that Kinoshita et al. had estimated p_{i} and energy dependence of charmed particle production in a constituent rearrangement model. $^{(23)}$

Acknowledgements

The author is grateful to Dr. T. Walsh for discussions and reading the manuscript and to Drs. J. Kwiencinski and R.G. Roberts for informing us their results. He also wish to thank Professor G. Weber for the hospitality at DESY.

References

- (1) J.J. Aubert et al., Phys. Rev. Letters 33 (1974) 1406; J.E. Augustin et al., Phys. Rev. Letters 33 (1974) 1406; C. Bacci et al., Phys. Rev. Letters 33 (1974) 1408; J.E. Augustin et al., Phys. Rev. Letters 33 (1974) 1453.
- (2) Z. Maki, Prog. Theor. Phys. 31 (1964) 331 and 333; Y. Hara, Phys. Rev. 134 (1964) B701; J.D. Bjorken and S.L. Glashow, Phys. Letters 11 (1964) 255;
 D. Amati, H. Bacry, J. Nuyts and J. Prentki, Phys. Letters 11 (1964) 190.
- (3) C.E. Carlson and P.G.O. Freund, Phys. Letters 39B (1972) 349
- (4) C.E. Carlson and P.G.O. Freund, Enrico Fermi Institute preprint (1974);
 R. Brower and J. Primack, University of California, Santa Cruz preprint (1974); L. Clavelli, University of Maryland preprint (1975).
- (5) T. Inami, Phys. Letters 56B (1975) 291.
- (6) J. Ellis, CERN preprint TH. 1966 (1975).
- (7) B. Kanpp et al., Phys. Rev. Letters 24 (1975) 1040
- (8) S. Yazaki, Nucl. Phys. B49 (1972) 71 and Phys. Letters 43B (1973) 225.
- (9) British Scandinavian Collaboration, Phys. Letters 47B (1973) 75 and 275 and CERN preprint (1974).
- (10) CERN-Columbia-Rockefeller-Saclay collaboration, CERN preprint (1974)
- (11) R. Carlitz, M.B. Green and A. Zee, Phys. Rev. D4 (1971) 3439 and references therein.
- (12) A. Bialas and O. Czyzewski, Phys. Letters 35B (1971) 576.
- (13) V. Blobel et al., Phys. Letters 48B (1974) 73.

- (14) H.A. Gordon et al., Phys. Rev. Letters 34 (1975) 284.
- (15) CERN-Columbia-Rockefeller-Saclay collaboration, CERN preprint (1975).
- (16) J. Dias de Dius and I. Ushersohn, Rutherford preprint, RL-75-042.
- (17) CERN-Columbia-Rockefeller-Saclay collaboration, Columbia-FNAL collaboration, Princeton-Chicago collaboration. Wisconsin-Harvard-Penn-Chicago collaboration, Nusihev et al., Proceedings of the XVIIth International Conference on High Energy Physics, London, July 1974.
- (18) M.K. Gaillard, B.W. Lee and J. Rosner, Rev. Mod. Phys. 47 (1975)
 277; G. Altarelli, N. Cabibbo and L. Maiani, Ecole Normale Superieure
 preprint (1974)
- (19) Chan Hong-Mo, P. Hoyer, H.I. Miettinen and D.P. Roy, Phys. Letters 40B (1972) 406.
- (20) See for example J.W. Cronin. Talk given at SLAC Summer Institute on Particle Physics, August, 1974.
- (21) K. Kinoshita and H. Noda, Progr. Theor. Phys. 52 (1974) 1622;
 R. Blankenbecler and S. Brodsky, Phys. Rev. D10 (1974) 2973.
 M. Biyamima and O. Miyamura, Progr. Theor. Phys. 51 (1974) 1455.
- (22) J. Kwiecinski and R.G. Roberts, unpublished work.
- (23) K. Kinoshita, M. Mizouchi, T. Tashiro and H. Noda, to appear as University of Bielefeld preprint.

Table Captions

Table 1a: Prediction of inclusive cross-sections do/dy for production of charmed pseudoscalar mesons in p-p reactions at higher ISR energies. They are calculated from the asymptotic relations (7) (the third row) and (10) (the last row) and using π and K distributions at $\sqrt{\Delta}$ = 53 GeV (9).

Table 1b: Prediction of $d\sigma/dy$ for production of vector mesons $\rho(\omega)$, ϕ and charmed vector mesons. ρ cross-section is calculated from the relation (14) and using π distribution at $\sqrt{4}$ = 53 GeV as input. ϕ and charmed vector meson cross-sections are then calculated from the asymptotic relations (9) (the second row) and (11) (the last row) and using the ρ distribution as input.

Table la

pp → DX		pp → FX	
m _D = 2.20 GeV	m = 2.00 GeV D	m _F = 2.25 GeV	m _F = 2.05 GeV
17 · r ₂ ub	27 · r ₂ ub 2-4 ub	5.7 · r ₂ μb 0.5-0.8 μb	9.3 · r ₂ ub 0.8-1.3 ub

Table 1b

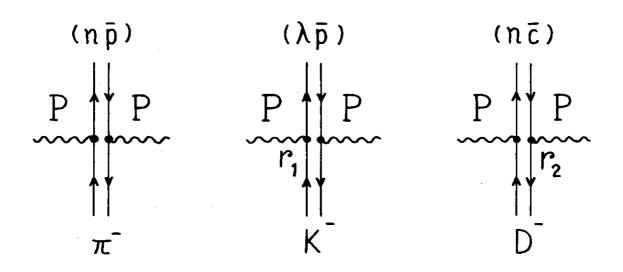
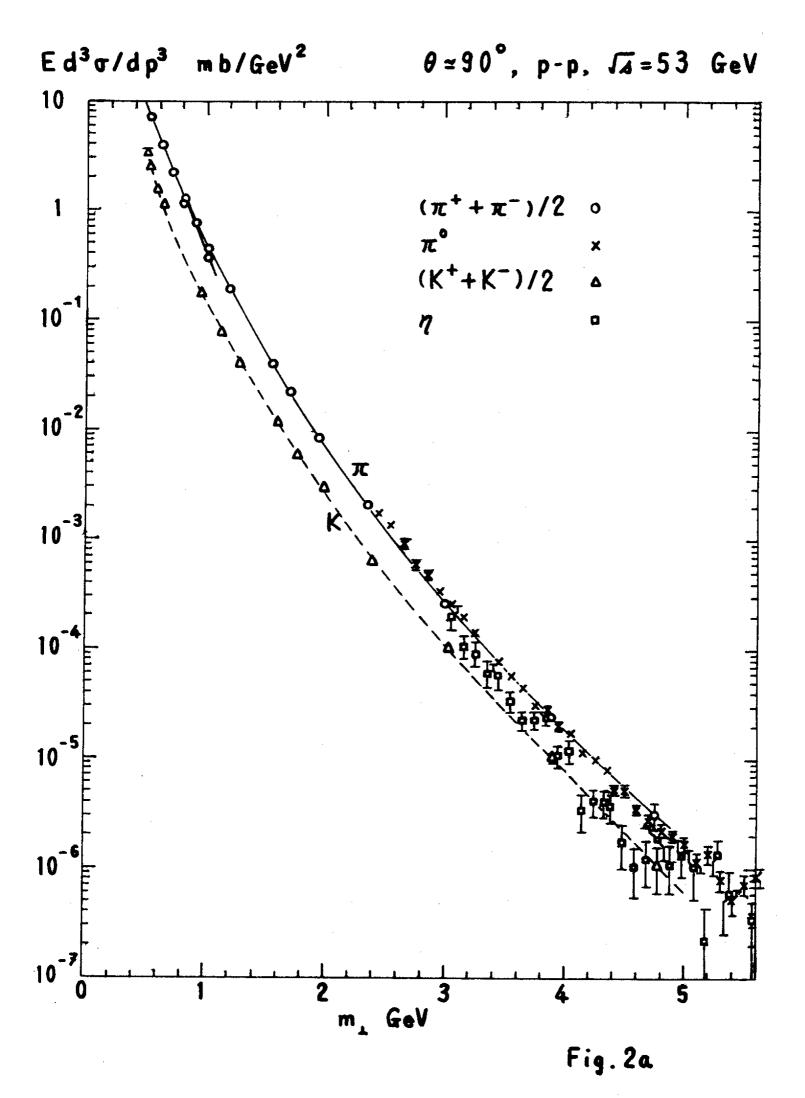
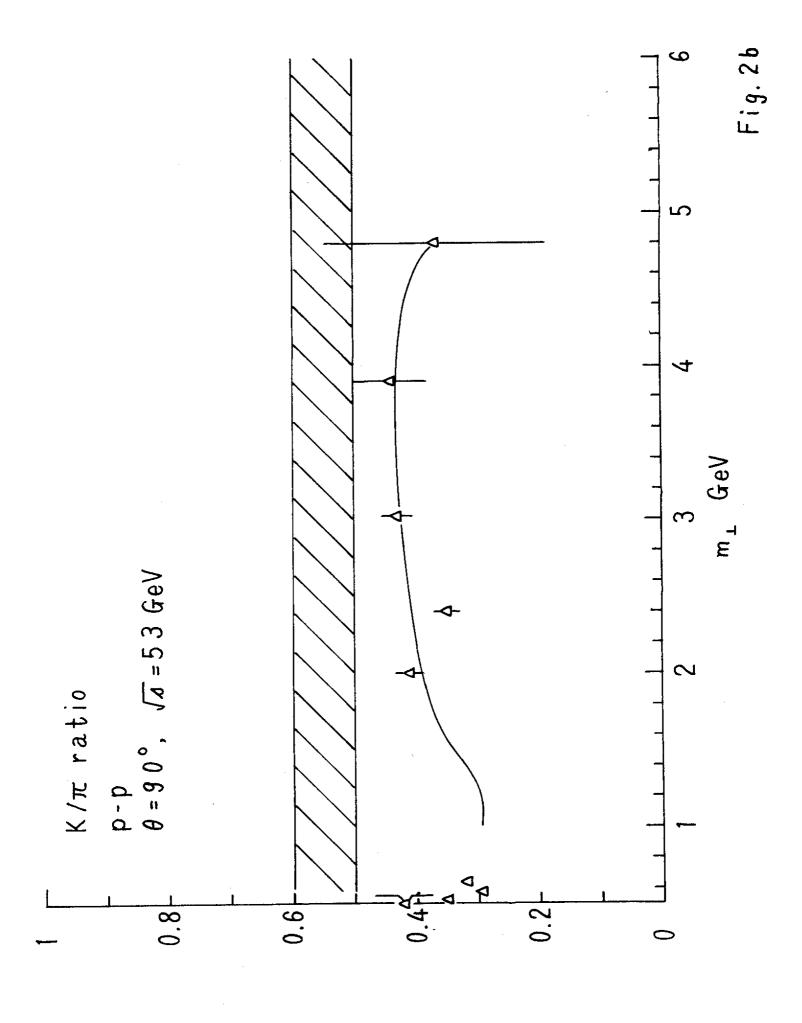
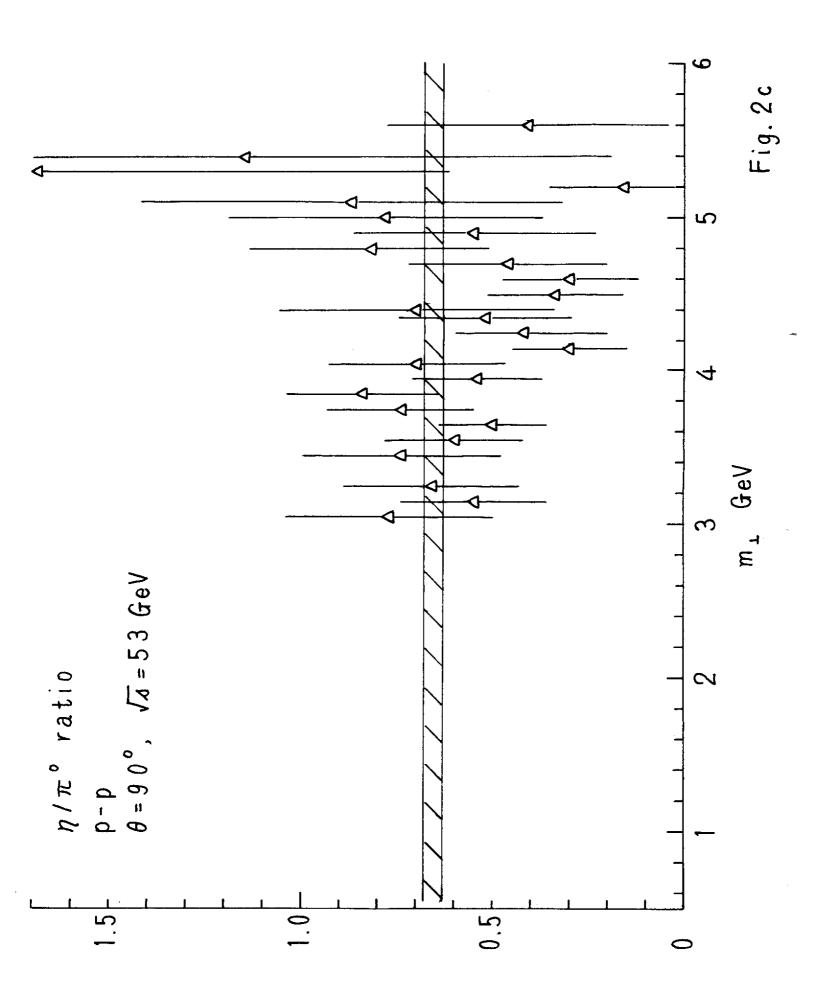
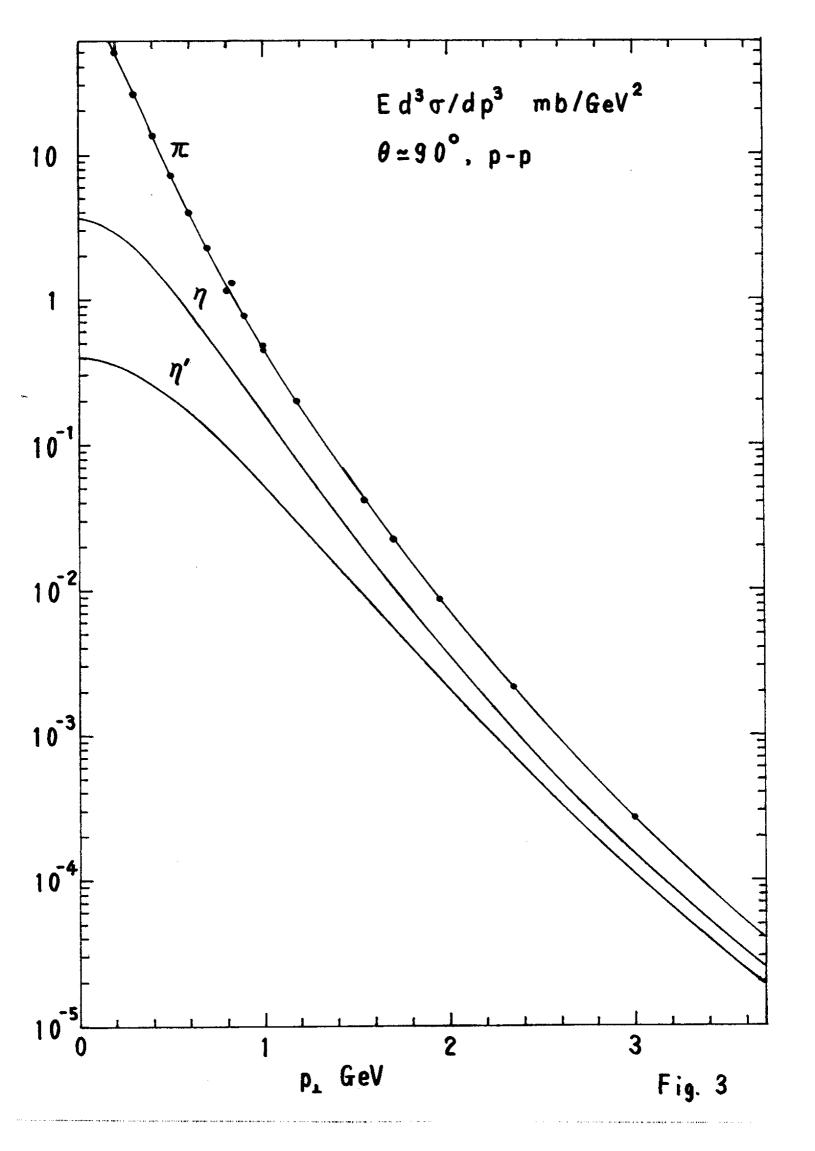
pp → pX	рр → • Х	pp → D X	pp → F X	pp → φ _c ^X
5.7 mb	2.2.r ₁ ² mb	50·r ₂ µb	17·r ₂ ub	4.7·r ₂ ² μb
5.7 mb	0.5-0.8 mb	4-7 µb	1-2 µb	30-80 nb

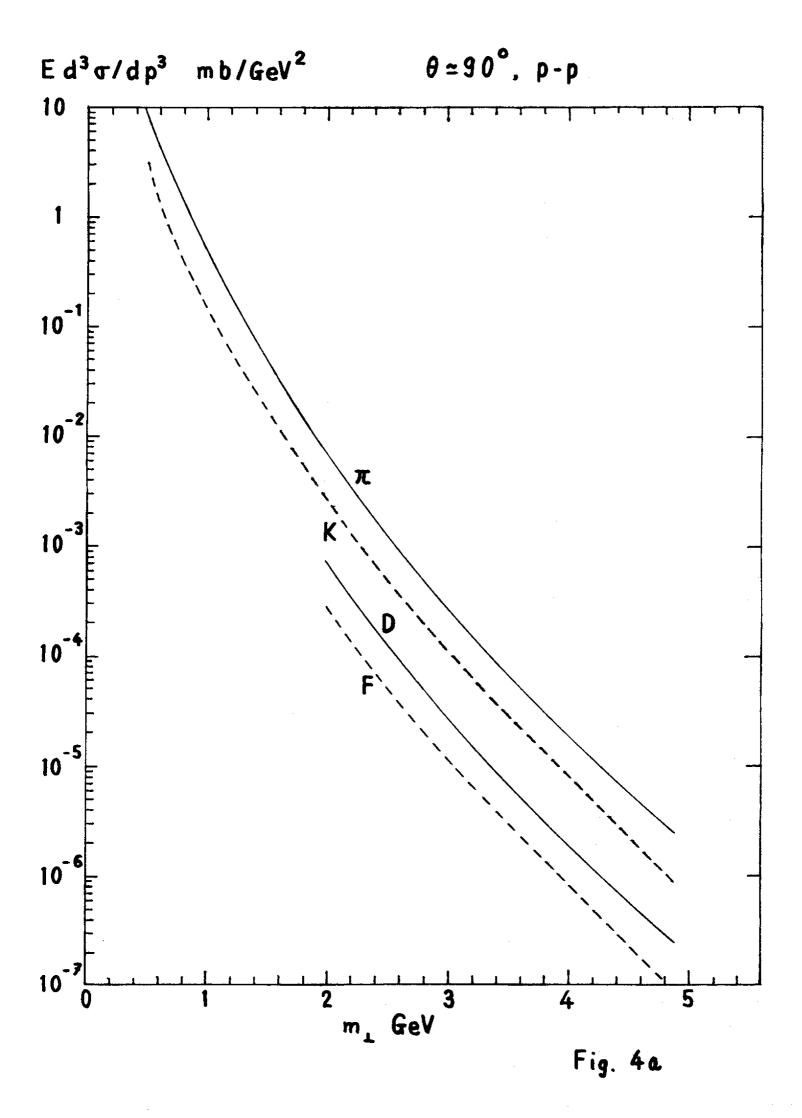
Figure Captions

- Fig. 1 Additive quark model diagrams of double Pomeron vertices for π^+ , K^+ and D^+ production.
- Fig. 2a One particle distributions as functions of m_{\perp} for π (circle and cross), K (triangle) and η (square) production at $\theta_{\text{c.m.}} \simeq 90^{\circ}$ in p-p scattering at $\sqrt{\Delta} = 53$ GeV. The solid and dashed lines are smooth interpolations of π^{\pm} and K data points. Data are from refs. (9) and (10).
- Fig. 2b,c K/ π and γ/π^0 ratios for the same value of m₁ calculated from the π , K and γ distributions given in fig. 2a. The predicted ratios, eq. (10), are shown for comparison.
- Fig. 3 The predictions of the p dependence for γ and γ' production at $\theta_{c.m.}$ $\simeq 90^{\circ}$ relative to π distribution at higher ISR energies. Data on π distribution at $\sqrt{\Delta} = 53$ GeV $^{(9)}$ are plotted.
- Fig. 4a The predictions of the m₁ dependence of D (solid line) and F (dashed line) production at $\vartheta_{i,m} \simeq 90^{\circ}$ relative to π (solid line) and K (dashed line) production at higher ISR energies.

 Data on π and K distributions at $\sqrt{s} = 53$ GeV (9) are plotted.
- Fig. 4b The p₁ dependence of the same quantities as given in fig. 4a. The lines I correspond to m_D = 2.20 GeV and m_F = 2.25 GeV. The lines II correspond to m_D = 2.00 GeV and m_F = 2.05 GeV.

Fig. 5 The predictions of the p_{\perp} dependence for p, ϕ and ϕ_c production at $\theta_{c,m} \simeq 90^\circ$ relative to the π distribution at higher ISR energies. The upper lines are the predictions using eq. (14) and the lower lines are the predictions using eq. (15) with $\epsilon = 0.3$.


Fig. 1

