75~752
DEUTSCHES ELEKTRONEN-SYNCHROTRON n E SY

DESY 74/58
December 1974

Pomeron Factorisation and the Reaction yN + o¢N

by

G V. Dass

'f'or= Labqratory"'chtZton, Dzdcot, Omon
b ’*ﬁ{,‘{?&‘ B :

'NOTKESTIEG 1



To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX ,
send them to the following address { if possible by air mail ) :

DESY
Bibliothek

2 Hamburg 52
Notkestieg 1
Germany




Pomeron Factorisation and the Reaction N -+ ¢N

by

G. V. Dass -
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
and

Rutherford Laboratory, Chilton, Didecot, Oxon, England *

_H.'Fraas

Physikalisches Institut der Universitdt Wiirzburg, Germany

* Present Address




Abstract

Because of the suitability of yN - ¢N for studying the Pomeron, we
systematically investigate the tests for Pomeron factorisation possible

in this rather clean reaction, particularly from the more feasible experiment

which measures the ¢-density-matrix, and also an experiment measuring the recoil

nucleon polarisation; the complete set of initial polarisation configurations has

been considered,

For any two-body parity-conserving procesé, a simple consequence of
factorisation is M-purity which asymptotically corresponds to purely
natural or purely unnaturél parity in the crossed channel. Factorisation
tests, therefore, include M-purity tests, but M-purity does not neces-

sarily imply factorisation,

For the ¢-decay density-matrix we give all the possible factorisation
tests, and show that our tests are exhaustive, A separate measurement
of the recoil nucleon pelarisation is shown to complement adequately
the information obtained from the ¢-decay density-matrix in the

factorising case,

For the ¢-density matrix, some of the M-purity tests refer to dominant
amplitudes and persist even if s-channel meson~helicity-consexrvation
(which is experimentally true approximately) h;lds exactly, These
tests should be easy to perform. The tests which invoke factorisation
more crucially than only M-purity do not persist in that manner; these
referrto the helicity nouconser#ing amplitudes; However, factorisation

for such small amplitudes could be advantageously tested here, because

of their being masked by the large amplitudes elsewhere,

-continued~-
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The fahtorisation.tests for the ¢-density-matrix can be used to distinguish
& pure Regge pole type Pomeron from a) an M-pure 'cut-pole mixture' type
Pomeron or an M-impure (hence nonfactorising) 'cut-pole mixture' type
Pomeron and also b) a factorisingl'cut-pole mixture' type Pomeron or a

- nonfactorising 'cut-pole mixture' type Pomeron. Such tests would require

polarised photons and/er targets.

Present YN - ¢ N data are ngt adequate enough to allow firm conclusions
about Pomeron factorisation, though they do indicate M-purity for the
Pcmerqn, correspoﬁding Lo pure natural parity. This is consistent with
Pomeron factorisation, but M~purity is only a necessary consequence of

factorisation. Better and more yN -+ ¢N data are needed to get a more

complete picture of Pomeron factorisatiom.




1, Introduction

The Pomeron is not yet fully understood. In particular, Pomeron
factorisation has not been experimentally well established, though
there are indications fdr it I. If the Pomeron is some mixture of a
Regge cut and a pure Regge pole, it may or not factorise; in general,
it would not. If it is a pure Regge pole, Pomeron factorisation would

hold.

The present work is encouraged By the importance of the question of
Pomeron factorisation, by the hope that N -+ ¢N is a good laboratory
to study the Pomeron, and by the feasibilify of the appropriate

YN > $N experiments in the near future. Whatéver information one
may obtain from other sources, it seems very natural to appeal to

YN > ¢N before one gets a complete picture of the Pomeron.

[\,Somé Existing Tests of Pomeron Factorisation

Pomeron factorisation has been found to be good, within experimental
. . . . . . . . 2 .
errors, in single particle inclusive distributions ~, Using Mueller's
r
generalised optical theorem these tests refer to zero momentum transfer

where, in general, Regge cut-effects are expected to be the smallest.

I For reviews, see for example refs. [17,[2],[3]

For a review, see for example ref. [4]




A model analysis of proton-proton scattering up to a laboratory momentum of 500
GeV/c.in and near the forward direction indicates [5] only minor (at the

0.1% level) deviations from factorisation. A direct experimental answer would
require polarised protons, and this has been done [6] so fér at relatively low
energies (in the few GeV region) where non-Fomeron contributions are expected

to be significant.

F . . ‘
At nonzero momentum transfers” , Pomeron factorisation tests have been

attempted for ratios of differential cross sectionms 7, [27,(8] of the

type )

do(Ap > Ap)  _ £
a0 (Ap ;ﬁggw) Independent of A (.1

for a given s and t where s is the total c.m. energy squared and t, the
t
squared momentum transfer variable; A is some projectile (w, p, for example)
*
and p 1is some nucleon resonance supposed to be a diffractive excitation

of the proton P . These tests, done in the energy region below 30 GeV,

are generally consistent with factorisation bzing_satisfied though the

. . L
experimental errors are often large .

Unfortunately, some difficulty lies in unambiguously identifying the

* . . .
resonance p taken to be a pure state in Eq. (l.1}. Another point 1s

3

The importance of Pomeron factorisation tests for large momentum

transfers has been emphasized inm ref. [77.

For a review of the corresponding tests at higher energies, see,

for example, ref. [3]}




that in the cases tested so far, other (non-Pomeron) contributions
are notrapriori negligible. Also, results from very different ex-
periments may have to be used in ceftain cases; this brings in
further difficulties. A somewhat formal poinﬁ is that though Eq. (1.1)
is a necessary test of factorisation, it does not test the full
implications of factorisation for the reactions in question: the test
in Eq. (1.1) is senmsitive to the factorisation property of pfimarily
those helicity amplitudes which dominate the cross sections in (1.1);

. 5
even large nonfactorising contributions in the weaker amplitudes
would not significahtly affect (1.1). This calls for factorisation
tests for separate amplitudes; that may be too ambitious, especially
for resonances p* which are not even uniquely identifiable. A similar
'femark about insensitivity to contributions from t-values where do is
relatively small would apply to tests of the type of Eq. (1.1) integrated

over t.

If the Pomeron facto;ises, it would asymptotically have a purély natural

or a purely unnatural parity (see sec.3). The results of polarised proton~
proton scattering /67 in the few GeV range are consistent [97 with 2
domipnant natural parity exchange which could be due to Pomeron factorisation,

but the aSSQmption of Pomeron dominance may be safe only at much higher

energies for this process,

Such amplitudes may become relatively important at "dips" of the

differential cross-section; see also ref. [7].
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I?.Why Test Pomeron Factorisation in yN -+ ¢N?

It is desirable to have Pomeron factorisation tests which are comparatively
free from the preceding worries. The reaction YN - ¢N may provide the
needed possibility because of the following reasons:

a) The only resonance in question (the ¢ meson) is relatively easy to
identify.

b) It is believed [107,/117 that YN - ¢N gets contributions from

only Pomeron exchange. This is empirically indicated [107,/12/ because

of a decoupling of the ¢ meson from systems (in particular, the secondary
trajectories like £, Ayy Py === N, B e ) which are

commonly regarded as being buil; up from only nonstrange quarks. Within

the éuark model, this decoupling is natural [11] because the ¢ 1is built
up as a AX  system from only the strange quarks.

pr

Though this decoupling is not mathematically rigorous’ , it is experimentically

supported. Thus, one expects the other contributions (like £° exchange) to be

*

é

An extension of this decoupling to other ¢-like systems ¢' is

' systems having even charge conjugation

(e.g., o'= £'(1514), J = 2+,_IG = 0+) the cross-section for YN - ¢'N

interesting. For ¢

should be very small because (unlike the case ¢' = ¢ ) even the Pomeron
coupling is forbidden here by C-invariance, others being forbidden as for

YN > ¢N.

#

There is, for example, a nonzerc branching ratio for ¢ - 3m deca¥.




very much weaker here than elsewhere in hadronic reactions. In that
sense, one needs not go [13] to extremely high energies to perform
Pomeron factorisation tests in yN =+ ¢N. In fact, this reaction has
been previously suggested /17 .to [37,/107,/117,/137 as a very good
place to study the Pomeron.

¢) One can perform Pomeron factorisation tests within the single
reaction Y N + N, so that problems due to data coming from very
different experiments do not arise.

d) Since all the external particles are now well defined, factorisation
tests in YN > ¢N are feasible for separate amplitudes; one can
therefore test Pomeron factorisation also for the nondominant amplitudes.
In fact, existing data on YN -+ $N already indicate several features
for the Pomeron, but as reviewed in ref. [27, more and better data are
needed to allow firm conclusions about, for example, i) its slope,

ii) its being s;channel helicity conserving, iii} its being ; purely
natural parity system, and iv) the phase of the forward N > ¢N

amplitude,

', Our Attempt, and Plan of the Paper

*

The total number of independent functions needed to know the complete

set of YN + ¢N amplitudes decreases if factorisation holds. This puts
constraints on the final state density matrix; we are interested in these
constraints for various initial and final polarisation configurations

because this density matrix contains all the experimental information.
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At present, $-meson deﬁay density matrix data [ﬁg] are available
at 9.3 GeV/c and (2.8 & 4.7) GeV/c as an average over the -t regiom
(0.02-0.8) (GeV/é)2 for unpolarised target and linearly polarised
photons; the errors are rather large. In the energy range 4.6 to

6.7 GeV/c these data are available [15/ for unpolarised photons and
nucleons in the range lt] < 0.3 ‘(GeV/c)Z. It would be interesting
to have all the Pomeron factorisation tests for the general case of
the fiﬁal'joint densitf matrix with the initial photons and nucleons
also polarised in complete generality. The measurement of this joint

density-matrix seems to be a remote experimental possibility; it requires

target and recoil nucleon polarisation infbrmation. However, we shall

see (subsec. 4,B) that in the factorising case, the joint density matrix
does not carry information beyond the ¢-density matrix and (separately)
the recoil nucleon polarisation. Since polarised targets are already

being used for other reactions, we shall give Pomeron factorisation tests
for the situation when the ¢-meson decay angular distribution is observed
and the polarisation of the final nucleons is summed over, the photons and
the target being bolarised in generality. We shall also discuss the con-
sequences of Pomeron factorisation for recoil nucleon polarisation, the

photons and the target nucleons being polarised in generality.
’

We mention four classes of factqrisation tests. The first twe classes,

(4) and (B) follow because factorisation and parity'conservation imply
M-purity [1@7 which relates amplitudes having reﬁersed meson (or nucleon)
helicities (see sec. 3). Asymptotically (to leading order in s), M-purity
means pure normality in the t-channel. The type {(A) and {B) follow also if

only M-purity holds, but no separability of the helicity amplitudes into




meson and nucleon vertices. In that sense, the classes (C) and (D)
may be regarded as stronger tests of factorisation. The type (C)
results from the separability of the joint density matrix into a
meson and a nucleon part, a lack of correlation between the two types
of particles. This relates the density matrices for different polarisation
configurations., The type (D) results from a decrease (due to factorisation)
of the number of independent functions needed to describe a given polarisa-
tion configuration, and relates different density matrix elements (other-
wise independent) within that configuration. Tests of all the four types
(A), (B), (C) and (D) occur when the ¢ -~decay distribution is measured and
the initial state is compietely general; Pomeron factorisation tests for
this configuration are given in subsec. 4.A where we also prove that these
tests are exhaustive for that.configuration. Subsection 44  shows that if
Pomercon factorisation holds, a measurement of the recoil nucleon polarisation
adequately complements the information obtainable from the configuration dis~-
cussed in subsec., 4.A. A knowledge of the complete set of meson and of nucleon
vertex functions does not, therefore; :equire a measurenment of the correla-
tions between the final nucleon and the ¢ -meson. In that sense, a measure-
ment of the joint density matrix of_the ¢ N final state is not obligatory.

’
Section 5 is devoted to the "practical meaning" of the tests of sec. 4:
which of the tests are easy, whicCh ones refer to small am@litudes, how can
the tests help to distinguish between a pure Regge pole and a mixture of

a Regge cut and a Regge pole.

Though the errors on the relevant density matrix elements [7&7 are rather

large, one may regard the Pomeron in v N - 4 N as s-channel helicity

I L 1F CLUT T e e
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conserving to a zeroth approximation [127; this refers to the

meson vertex, see also ref. [157. There are indications for approximate

s-channel helicity conservation also at the nucleon vertex in nN-scatter—

ing 1727,[337. In subsec. 5.A is treated the case of a purely s-channel
helicity conserving Pomeron, to see which of the Pomeron factorisation
tests of subsec. 4.A are for sméll amplitudes., Since s-channel heiicity
conservation is experimentally only approximate at the meson as well as
at the nucleon vertex, we consider separately the cases of helicity con=
servation at only the meson vertex, at only the nucleon vertex, and at

both the vertices.

Tests in sec. 4 hold when the helicity amplitudes factorise, but no re-
striction is placed on the phases of the amplitudes. The corresponding
case of the relativé reality of alil the helicity amplitudes arisgs for
a pure Regge pole, and is considefed in subsec. 5,%. The results

of sec, 4 are more general, and apply when factorising‘cut con-
tributions may also be present. Several of the tests of subsec. 5.B
allow one to make a distinction between a pure pole and a cut-pole
mixture of different types. The case of a pure Regge pole when the
beam and target are unpolarised has been considefed also in ref, 172].
In sect. 6 an attempt is made to confront the tests of sec. &4.A with
experiment, As the tables helow show, tests of the types (A) and (C)
require polarised targets. Half of the type (B) testé and the type (D)

can be applied for unpolarised targets, but the class (B) tests only

M-purity and the class (D) requires photons to be polarised in generality.

. . 8 .
Since the available ~  y-meson density matrix data are for only unpolarised

There are no recoil nucleon polarisation measurements at present.

LLEL T T
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targets and linearly polarised photons, one can hope to confront
only-the class (B) with experiment. Unfortunately, the errors are
rather large, but one test of this class shows that the Pomeron is
unlikely to have unnatural parity, if it has pure normality; this
conclusion is not surprising [167,/207. Better and more data are

needed to allow more useful statements about Pomeron factorisation.

A convenient summary of our main points is in seec, 7 taken together with the
tables, The following sec. 2 is devoted to our definitions and notation. The
factorisation tests of subsec. (4.A.1), (4.A.2) and (5.A) for the ¢-meson

density-matrix are collected in tables.,

2. Notation and Definitions

' 2t 1 '
We shall work with s-channel helicity amplitudes f;aa {s,t) throughout. The

symbols pu‘i are the four momentum and the helicity of the target nucleons,
»

p;,i' those of the recoil nucleons; for the photons (vector mesons) we

write ku,u(k;,a'). The invariants s and t are defined by s = - (p + k)z,
t=- (p' - p)z. Aslo in ref. [16], [21], [22] the polarisation of the
photon beam and that of the target are described'by the conventional helicity
representa;ion of the spin density matrices:

3
o, =51 +33) =2] Po | (2.1)
L |

40

. These references may'be consulted for further information about

our general formalism,

See also footnoté 19.
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and
(2.2)

where the "four-vector" notation implies P = g =1, is the

. . - . .
unit matrix and o represent the three Pauli matrices., The vector

> >
P = |P|j=cos 2 ¢, -~ sin 2¢, O}

describes linearly polarized photons with an angle ¢ between the
- -> .
polarisation vector € = (cos 4, sin ¢, 0) of the photons and

the production (xz) plane; P, corresponds to circular pelarisation. For

3
the target, the parameter ¢, (gz) is transverse peclarisation in
(normal to) the production plane and 'g3 is the longitudinal polarisation.

The unnormalized joint density matrix of the vector meson—nucleon final

state 1is

1'9%,a'8"  _ C _d'a' ij o8 _3's'* :
eyt = £ S . (2.3a)
i N .
N,V i,i,0,8 1 v 18
*
. . . a'pg! {147
The unnormalized density matrix Py of the vector meson and CN'J

of the final nucleon are obtained by summing over respectively the recoil

nucleon helicities and the vector meson helicities:

O:'B' B z i!al pij OCLB fi'B,*
ia N Sy Tig (2.3b}
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L . % (2.3c)
i'j' iial 1J G-B Jfat
= £ £ .
DN‘I § j o 8 a' ia QN D_Y 7 JB
’ ’ LR 4

The normalisation of the helicity amplitudes is provided by the

differential cross secticen

do . (2my2 (2.4)
dQ E* tr pNIV »

E being the photon energy in the c.m. system. The polarisation of the

recoil nucleons is described by polarisation parameters ;i (i=1,2, 3)

analoguous to Ci of Eq. (2.2):

4=
2RepN,
gy =
1 tr DNI ’
- (2.5)
-2 Im Oy
| ..
52 T TT Pyt ' ’
1]
++ p—
p = D
. "
3 tr DNt *

We shall expand the density matrices in terms of the polarisation

parameters of photons(Pm’ m # 0).and target nucleons(gn’ n # 0); for example,
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Py (?m,Cn) = 9,(0,0) + P o (m,0) + ¢ p,(0,n) + P L py(mn) (2.6)

where p (0,0) = P, ®., c.) is the vector meson density matrix
v vTor Uo ‘

for the unpolarised case. The indices m and n will alwavs refexr to photon

and nucleon polarisation components respectively, It is not necessary to consider
polarisation mixtures since all the relevant information is contained

in coefficients like py(m,n) (m=0,1,2, 3andn =20, 1, 2, 3)

of Eq. (2.6). Only the unnormalised density matrix can be written in

i

this form; the normalised denmsity matrix

P Bty /e oy(P ,z )

is not a simple polynomial in the initial polarisation parameters;

similarly the recoil polarisation Ci of Eq. (2.5) is not a simple

polynomial in P and T, . We .shall, therefore, use unnormalised
m . :

polarisation parameters

Yy = 1 3 ' 2.7)
ci(Em’cn) iy L) o tr ogr (B T ) . (

which can be expanded as

’

Y, - r\_,‘. ", vy v : ' 2-8)
Ci(Pm,cn) Ci(O,O) + PmCi(m,O) +z Ci(O,n) + ngnci(m’n) (
11Schilling et al. {22] use a normalisation independent of the initial
polarisations

m B

Pag | = oo (@m,0)/tr p (0,0) |

Theirs =~ Ours
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u
The quantity C{(Pm ;n) is the experimentally measured i-th component
r

of the reccil nucleon polarisatdion,

do 21,2 N,
Ha T &R (2.9)

1

where, as on both sides of Eq. (2.4), the arguments (Fm,gﬁ) of
do
' do . i1
P of a0 and of ¢i are implied.
Experimentally, the angular distribution W of one of the pseudoscalar

mesons from the decay of the vector meson is [21]

* % dg 3 .1, ++ - 2 * oo 2%
w(e -~ (& = == { + in"@ -+ 9 -
( ,¢ ) da ( ,¢) 4 {Z(DV Dv')Sln pV cos

* - * %
- sin2@ [Rep: cos2¢ - ImQ:_sin2¢ 1 - (2.10)

* - * - *
- 1 sin20 [Re(p+°—p0 Yeosd -Im(p+o-—oO )sing 1}
V7 v v v v

%k .
where the angles (9 ,4 ) of the decay product and @ = (0,¢) are measured

in the vector meson rest system and the overall C.,M, frame, respectively

do o P s
[21]: the arguments (Pm, %) for W, Eﬁ-and QVB are again implied.

Eq. (7) of ref. {21] is another way of writing (2.10).
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3. Asymptotic Purity of Normality as z Consequence of Factorisation

and Parity Invariance

Factorisation of s-channel helicity amplitudes follows [237 asymptotically
from the more conventional t-channel factorisation, or may be postulated [24]

separately. The s—channel. factorisation

=1 ..t
f;aa (s,t) = Yala (s,t) ri'i (s,t)

(3.1)

implies that asymptotically one has either purely natural or purely un~

natural parity contributions in the t-channel. This holds for any factorising
contribution in any two body process, but we shall indicate the proof for

qnly the elastic-like reaction YN = ¢N. . This statement becomes interesting

if the exchanged system is more general than a pure Regge pole.
Parity invariance gives [257

S AR fi'u' (3.2)

"'i'-'a'
f = (=) ia

-] -t

Using (3.1) in (3.2) for amplitudes with the same meson helicities

but different nucleon helicities, and taking ratios, one gets

r-—i'—i =M= Independent'Of (i31)
-) Pivg (3.3a)

: and similarly,

T BAITPAHI S T+ b g ] LRI | UNRY L8081 i 1 DR RO UL T 4 il AR RS 3R e e - U S UL S AL
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Yt
——3——— = N = Independent of (d!a)

o -0
(—) . Ya|u

Changing 3 » - 1  and 1i' > - 1' | (3.3a) gives M = l/M, M= 2

1

N

Similarly N = /N = 2 1. Using (3.3a) and (3.3b) in (3.2) gives M¥ = I,

+
M=N-=~- 1., Writing

Eq. (3.3a) gives

+ - TANe]
ST WY

-1, + =

=M=+1or -1

' - + . s .
which holds only if either Fi‘i or ri'i vanishes. Similarly, either
+ - » ’

i s, where
Yota ©OF Yorg vanishes,

- a'ea
= Y i("‘)

+
‘Y .
Tata a'la -at—g

Moreover, because M = N,

+ + .
both Ti‘i and Yoro vanish for M = - 1,
and
both T',,. and vy_, vanish for M = + 1,
i'i o a

ik iy ¥ Ll LT TR IR I HAMIL L A iy e i [

(3.3b)

(3.4a)

(3.3¢)

(3.4b)

(3.5a)

(3.5b)
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12
This M-purity [ﬁéj implies that the amplitudes

A AP | | P |
i'a ita 1i'-i -i'w
n, = £ + (-
io ia =) ~ia
and
i'a? ita! i'-i -i'al
u =TI, - (=) £
o ig -ia
vanish for M = =1 and M = +1 respectively, and are the surviving ones

for M=+l and M = -1 respectively. In the factorising case, Eq. (3.6)

becomes -
ita' _ + 1 + +
n, .= = -
ia Ya'a ri'i 2 Tata r"l » M=+1
and
i'a'—- r- - .l. - I"- -
ia Yata Titi = 7 Ya'q lqvg » M=-1

where the second equalities in (3.7a,b) have used Eq. (3.5). From their

(3.6a)

(3.6b)

{3.7a)

(3.7b)

definitions, (3.6a,b), the n- and u~amplitudes correspond [ié? asymptotically
. *

(to leading order in s) to pure normality in the t-channel. For yN -+ ¢N,

M = 41 (-1) means natural (unnatural) parity exchanges.

While factorisation leads to M~purity (which asymptotically is purity of

H

T_ R )
lesing parity invariance (3.2), one can replace (--)i + f—iaa in (3.6) by

al—g _i'—a’!
=) fi—a

so that one can reverse either the nucleon or the meson heli-

cities.
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t-channel normality), the comverse is not true. Also, of course, testing

M-purity does not test the full content of factorisation.

4. Consequences of Factorisation for the Vector Meson Density Matrix

and for the Recoil Nucleon Polarisaticn

—— e e St e preen e

_j&.The-Unnormalised Density Matrix of the ¢ -Meson

1. Consequences of M~Purity

As showﬁ above, factorisation implies M—Furity which corresponds,
asyﬁptotically, to purity of normality in the t-channel. The first
class (A) of factorisation tests follows from the vanishing of inter-
ference terms between the M = +1 and the M = -1 amplitudes. For the
expansion coefficients of the unnormalised density matrix of the

¢ ~meson, this gives

pf‘f(m,m =0 for n = 1,3 (4.1)
This means that the density matrix bv(ngn) és independent of the
3
target polarisations 21 3 in the production plane. Since some of these
. ]

coefficients vanish due to parity-invariance, and some others are mot

"measurable from the $-decay angular distribution [217, this gives only

24 conditions for the measurable coefficients:

P B O . I 11 PR Yy o e o i, -
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ol = _ - +o o~
o, (mn) = o "(mn) = Rep ~(m,n) = Re(p, =0 ) (m,n) = 0

(&)

+ _ +0 o-
Imp  (myn ) = Im(p "-p_ I{(mn ) =0

for m 2or 3and n=1or 3,

Oor |,

g
]

The other coefficients are linear (incoherent) mixtures [29],[22] of

M=+] and M = ~1 contributions. This gives [16] the class (B) of

factorisation tests

oo ++ 7 +—
gy ) eyt R (w Reo)*(1,n)
- fe]-] B +— N ++ T - +: =M =1/M
p, (O,m) Rep (0,n) oy (Ofn) Repvo(O,n)
for n = 0,2,

These eight relations refer to unpolarised (m=0)and linearly polarised

(m=1) photons, and to unpolarised (n=0) targets or targets polarised

perpendicular to the production plane (n=2). In’'fact, one may determine

M from the (B) type tests.

2.Further Consequences of Factorisation

The separability (3.1) of the helicity amplitudes into a mesonie parc

and a nucleonic part makes the density matrix also separable:

(4.2)

(4.3)
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CH B | 'BT (4.4)
iy, _ ij * of *
e Bpe) =70 (o Hr, ) P ;
N!'v m, n i i'i"N n’ ' ugswoﬂapy (m)YB'B) i
the same property holds for the matrices Pyt and Py . This has the
consequence that
alg’ a'g’ \ (238")
2 = s
e, - (m, )/pv (m,0) Independent of and of the (4.5)
photon polarisation m, '
giving rise to the class (C) of factorisation tests:
++ oo +- +o
o, (m2) Py (m,2) _ Rep = (m,2) _ Reo, (m,2) i
++ T oo B +- ; +o
P, @0 o "(m0) Rep  (m,0) Rep " (m,0)
© | (4.6)

- +0
Imp ~ (m;2) _ Imp  (m;2)

2 or 3,

= for m =0 (er 1) and m'
., +o0
Impv (m}0) Imov

(m30)

Combining (4.6) for m = 0(1) with (4.3) gives (4;6) for m = 1(0) so that
only one of the two m values in (4.6) gives independent tests; this is
indicated by the brackets around m = | in (4.6) which, in all, provides

7 independent tests for unpolarised targets and those polarised normal to
the production plare, for appropriate photon polarisations (m and m').

We shall take m = ¢ in (4.6).

LA i n LU T T TR T T e -y i - et e e et 4t e S p e g
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The tests (4.2,3,6) are summarised in tables (Ja,b,c).

The last class (D) of factorisation tests results because within a

given polarisation configuratiqn, factorisatioﬁ decreases the number

of the necessary independent functions. We list in tablel] d) these three
independent tests for the simplest configuration, i.e., for unpolarised
targets. These tests require the coefficients pis(m,o)_ for ali m, If
data for one (say m = 3) photon polarisation do not exist, one may use

the (D) type tests to estimate the values of the corresponding coefficients

assuming factorisation and using data for all the other three m values.

" 3.Completerness of the Above Tests

In order to prove that the above tests (4.2,3,6) and those of the class
(D) are exhaustive, one recalls that one starts f§L7 with 48 measurable
coefficients piéfm,g) ' s and‘there are, in all, 42 faétorisation tests.
OQut of these, there are 32 tests for M-purity (types (A) and (B) ) and

10 further tests for factorisation (types (C) and (D) ). There are, therefore,

only 6 independent coefficients which may be taken to be, for example,

+= +— +
Repv (0,0), Impv (2)0): Impv (3,0 ,

4.7
Imo?(2,0), Tmp.°(3,0) and Ino?™ (3,2)

which allow, for the factorising case, a reconstruction of the full Py

matrix using the tests given above.
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The above empirical counting has to be matched by the corresronding

dynamical counting in terms of the available amplitude parameters. The

necessary independent meson vertex functions are y++’Y+_ and Y°+

and the corresponding nucleon functiomns are I,, and T, . ¥or an unpolarised
A . . 2+l'[‘ \2 .

target, only the combination G = lT++\ . 1s relevant,

corresponding to a sum ever all nucleon helicities. One, then, obtains 5
independent amplitudes corresponding to the fJ’.vej3 independent real bilinears
(each multiplied by G) formed out of the meson vertex functions. One can check
that the five coefficients in (4.7) for an unpolarised target correspond

exactly to these 5 independent bilinears multiplied by G. Going over to a

polarised target, the only  additiomal information needed is the combination

H=In (1T * | (4.8)

.

of nucleon vertex functions needed for n = 2 (target polarisation normal to

the reaction plane}, the other values of ' (= 1,3) being eliminated by (4.1).

Since in the factorising case,

o:B(m,z)/fszS(m,O) = 2H/G s (4.9)

43

The three magnitudes\7++\,\y+_\ and ]Y6+J and the corresponding two

.relative phases between the three meson vertex functions provide the relevant 5

significant quantities out of which the 5 independent meson bilinears are formed.

r* )
++" - do not

A4 _ : 5
" The remaining nucleonic bilinears [T++]2 - |T+_l and Re(T

appear in o, and are obtainable from the recoil nucleon polarisation, sec. 4.%.
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one needs only one further coefficient to provide the necessary dynamical
parameter H : this 1s the sixth (n=2) coefficient in (4.7). Thus the

empirical and the dynamical countings agree.

In the above discussion, we tock M to be known from outside the system,
Otherwise, tﬁe additional parameter M should be ipcluded among the dynamically
independent ones. The two countings would still match because (4.3) provides
eight relations minus the ﬁnowledge of M; a similar remark would (equivalently)
apply to the tests (DZ); (D3). In fact, if the Pomeron factorises, present data
indicate thét M=+ l.should hold [2], see also sec. 6. One may also determine

M from (4.3) at a particular kinematical(s,t) point, and use it elsewhere.

_Jﬁ,The Recoil Nucleon Polarisation

Recoil nucleon polarisation provides the remaining (nucleon) vertex

functions, and tegether with 0, 8ivesthe complete set of independent

amplitudes in the factorising casé. We show below that thefe are, in the

factorising case, only fwo independent components of this polarisation

providing information beyond o, 3 these components correspond to the two
, 2

nucleon vertex function (IT

‘ %
I IF+_[2)and Re(T T, ) . A measurement

of recoil nucleon polarisation is much harder than that of O; ; we have

included the present subsection mainly for completeness.
. e . vy .
Out of the 48 expansion coefficients ;i(m,n) » 1 = 1,2,3 of the

unnormalised reccil polarisation, Eq. (2.8), parity invariance leaves

only the following 24 nonvanishing:

0 or 2

2or 3, n

It

i=1,3t m=00r !, n

]

Vor 3; m

(4.10)

2 : m

e
I
il
]

2or 3, n ler 3; m=0or I, n=0or 2

LR T AL R TN (PP A1 1Y

w LT LT LT
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The 4 relations (217, due to parity invariance,

. (4.11)
Wy +- oo
cé(m;n') = ZRepv (m,n) -~ Py (m,n)
m‘#_—m, n'_-T_.L n; m' orm=00o0r 1, n' ormn =0 or 2
g -
further reduce the number of Ci(m,n) which go beyond puB to 20.
v
To consider implications of factorisation for the remaining coefficients
! ‘
glfm.n)_ , one notes the equivalent of the tests (4.1) of the type (A)
;L =0 form=2 or 3 . (4.12)
Ci (‘m,n) .
'\J

which makes 12 further coefficients vanish leaving only Ci or 3 (m,n)
where m = 0 or 1, n = | or 3 for examination. Out of these 8 coefficients,
the equivalent of the tests (4.3) of the type (B) gives, form = Q or 1,

v LT

t3(m,3) = M ) (m,1) (4.13a)

v g"

Cé(m,l) = =M Ci(m,B)

(4.13b)

further reducing the independent coefficients for consideration to only

E{(uhn)- wherem =0 or 1, n =1 or 3, i = 1 (or equivalently, 3). Thus

given p; and M purity (which is only one consequence of factorisation), one
has only 4 coefficients to 4est factorisation with. These & coefficients require
target polarisation in the proeduction plane. Factorisation, Eq. (3.1), further

relates the two m values:
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= ¥1(0,m) 79, (1,0) /tx0,(0,0)] 4. 16)

i
H—
~
|-—l
-
f=1
S’
|

cr

~
[ sl
=]
—
|

= Ci(O,n) for n =1 or 3

(and similarly for i = 3) leaving only two independent nonvanishing
coefficients which may be taken as E;ﬁo,n), n=1lor 3, 1=1
(or, equivalently, 3) requiring (final and initial) nucleon polarisations

in the production plane, for unpolarised photons. These coefficients

Y _ . 2
23 (0,1) = ¥ (r |2 - I, [®. ¢

-~ M, Re(r,T L | (4.15)

[

Ny
£1(0,3)

A R R PR M &

' provide the two remaining nucleon vertex functions which did not appear

—

in Py the factor L corresponding to a sum over mesonic helicities.

The fact that the reccil nucleon polarisation and;ai cover all the meson
and nucleon vertex functions is not surprising because, in the factorising

case, the most general observable (the joinﬁ density matrix of the 4 -nucleon
) ‘
final state) is given in terms of p and g ; . The expansion coefficients
) v N

of this joint density matrix are
itji’alsv a _:!_-_ a!B! i‘:]'
N',V (mn) =7 35~ + K ’
a'g" _ B
‘Im AR (Um) YB'E s (40163.)
i!j' . ij %
Kn li'i(on) I‘j'j N

v re g 6 91U 1 R T warent ] " - " em ey Im e ma e e
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while the density matrices Py and o, are given by the expansion coefficients

i'3! 1 .,i'5! oo
pN|J (myn) = 7+ K g I ,
(4.161)
a'g! _1 _a'g! i1
o, (mn) = 7 In . Z K™ o
i
so that
il ',afgl il" Ct' L
N‘:’}V (m,n) = DN|J (m,n). QV B (m,n)/X
X =tr DN:‘ﬁm,n) = £x pyy (myn) = tr o (m,n) (4.16¢)
1 ao ii
=% Ly z K
i
where, as in (4.1, 12),
ii oo
):Kn=2Jm-—-0forn=lor3,m=20r3. (4.164)
i a .

The relation (4.16c) shows that, in the factorising case, o containg

Y

no information beyond Pyt and Ot

5. "Practical Meaning" of Qur Factorisation Tests

»

In order to see how feasible our tests are experimentally, we consider in

subsec. 5.A the simplifications that result if s-channel conservation
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holds for a) the mescnic helicities, b) thé nucleonic ones, and

¢} both-the nuclecn and the meson helicities; experimentally, there

are indications for this conservation of mesonic helicities [147,/157 -
in vN oN y énd of nucleonic helicities /187 ir =N elastic
scattering, at least as a rough [17/ approximation at the 20 Z level,
Factorisation tests which persist even in the case of helicity com-
servation would, in acttal practice, be easier to perforn experimentally
Because these tests would refer to the dominant N + ¢N ' amplitudes.

The other tests which exist only when helicity conservation does not hold

refer to sméll YR ¢N

amplitudes; factorisation properties of these
small amplitudes are better studied through the density matrix than
through the spin-averaged différential cross—section where the large

amplitudes mask them.

: In subsec. 5. we shall see which of our tests can help one to distinguish bet-

| ween a pure Regge pole typeand some mixture of a pole and a cut-type Pomeron.
For this purpose, we consider the case“of the relative ;ea}ity.of all

% ' amp}itude;, és éﬁéqld ﬁold qu a pqre‘ﬁoig type Poméroﬁ;l

Since the present sectiom is@'feasibility study', we shall consider
) . ‘

factorisation tests for only the % =decay density matrix for a generally

polarised initial state, i.e.; the tests of the types (A) - (D) of subsec. 4.A.

A, " s—Channel Helicity Conservation

: Since p (the quantity under study in this sectiom) iavolves

‘a summation over nucleon helicities, conservation of s~channel

mesonic helicities will be seen to be much more powerful than

[T —— [T ap— ot e i
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that of nucleonic ones. Our results are presented in tablei]:a,b,c,d)
corresponding to the tests of the types (4), (B), (C), (D) respectively,
The completeness of the tests can be easily checked in the case of helicity

conservation also.

Conservation of mesonic s-channel helicity gives

(5.1) i
4- = |
Imp (Zyn) = ~ Rep, (1,n), n =0, 2
4 d— 5.2
and R,epv (2,n) = Impv (L,n), n-= 1, 3 .2)
without any reference to factorisation or M-purity.
Similarly, nucleonic helicity conservation gives
pus(m n) =0 forn=1, 2
v ! ’ (5.3)

without invoking M-purity or factorisatioﬁ. For nucleonic and mesonic
helicity conservation, only the n - 0 part of (S.f) is non-vanishing. Eqgs. '
.(5;1 to 3) are, of course, ohly some of the consequences of helicity |
conservation; | . . -

Thé tables show that for mesonic (or mesonic and nucleonic)
helicity conservation,'the only‘tests are for M-purity which, of course,
may hold even without factorisation . Because of the experimental &g, Ns7
indication for.mesonic'helicity-consérvation in YN > ¢N , it would, there-
fore, be relatively difficult to perform tests of the types (C) and (D) which

test factorisation more crucially than the types (A) and (B). On the other

.hand, testing factorisation for the small (helicity-nonconserving) amplitudes

[P S

[ — we Ik e e — e ot e it
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relevant to the types (C) and (D) would be feasible through pv(m,n) and

almost impossible through the overall cross-section.

For the case of full (mesonic and nucleonic) helicity-conservation, M-purity
tests of the type (A) require longitudinally polarised targets, and have not

15
yet been performed. The only {(M-purity) test™~ of the type (B)

Reo "7 (1,0)/5, " (0,0) = ¥ (5.4)

requires only unpclarised targets and linearly pelarised photons. Data []é]
indicate (see sec. &) that M equals +1 if (5.4} holds, though the errérs are
large. In fact, this is the only remaining test for unpolarised targets,
aﬁd the ones of type (A) are the only ones for polarised-targets if full

4

helicity-conservation holds.

" B.Relative Reality of All Amplitudes

For a pole type Pomerom, the amplitudes would all have the phase of the
signature~factor, and therefore be all relatively real. In distinguishing
between a pole and a cut of varicus types, one should of course, note that,

by definition, 2 pole is not ounly M~pure, but also factorising.

.. o8 . .
Qut ¢f the ceoefficients o " {m,n) and pv‘(m;n) occuring in the

M-purisy tests (4,2) of the type {A), relative reality leaves only the

j“ST"m'.ss test is valid also if only mesonic or only nucleonic helicity is conserved.

W - ————— [T——— T PR TR T TR P AT R R L R R L L L A I E R LY WHLIRY LD TV L, b

Lol
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eight with m = 3, n = ] or 3 nonvanishing. Since a pole is M-pure,
vanishing or otherwise of any of the 24 tests of type (4) does not

give any crucial information beyond M-purity; of course M-impurity

would hold for only the non factorising cut-type component of the Pomeron.

_ - af
The n = 2 coefficients Py {m,n) of the tests (4.3) of the type (B)
. 16 ,
vanish™ " because of relative reality, their vanishing being, therefore,
. 1
an evidence for a pole-type 7 Pomeron, If these do not vanish, the tests
(4.3) would distinguish an M-pure cut component from an M-impure cut

component being present in the Pomeron, The n = 0 coefficients of (4.3)

do not go beyond testing M purity.

The coefficieqts 038(0,2) of also the test (4.6) of the type (C)

vanishl7 for relative reality, their vanishing, therefore, provides
evidence for a polemtype Pomeron. The coefficients Imp "(2,2),
mpZQ(Z,Z), (3 0) and Imp °(3,0) in (4.6) also vanish for relative
reality. Then, factorisation requires also Imp (3 2)

and Imp (3, 2) to vanish; this is also clear from the internal comsistency
of (4.6) and the vanishing of p (O 2) in that equation. Again, therefore,
the vanishing of Imo (3,n), of Imp (3 n), n = 0 or 2, and of Imo (2,2)

and Imp (2 2) is evidence for — continued -

»

Pt

One should remember that exact nucleonic helicity conservation also
‘gives a similar result (5.3), but experimentally this conservation is only
approximate.

1}

would hold also for cuts,

We are excluding the somewhat accidental possibility that 'relative reality'
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a pole type Pomeron. If these coefficients (and similarly p$8(0,2))
in (4.6) do not vanish, the corresponding tests in (4.6} would
distinguish a factorising from a nonfactorising Pomeron of the

'eut-pole mixture' type.

No essential change occurs-in the type (D) tests for the case of

relative reality; there are some simplifications because the

coefficients Imp (3 O) and Imp (3 0) now vanish. The simplified tests are

o't 1o1,01% - [pfj‘(l,on + [Impt” (2,017

(02)": [Imp:°(2,0)]2 % °, 0) 15+ 0,0y +Mp:+(l,0)} , (5.5)
+o ++ +- ++ '
3y Reoy 0,00 ! (0,0) -MImp} (2,0) - o (1,0)}M |
]
MImp °(2,0) :*(o 0) - MImp:“(z,O) + p:i_(l,O) '

which should hold for a pure pole type Pcmercm. If these tests are not -
satisfied, a 'cut-pole mixture' type Pomeron is ipdicated; factorisation
for this mixture can be tested by the more general tests (D1), (D2) and

(D3) given in table (Id).

The "feasibility" of the tests of this subsection can be studied exactly

as in the preceding subsection 5 A .,
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6. Comparison with Data

= e

The final state density matrix data are for only the ¢ ~meson decay
density matrix a) for unpolarised photons and targets jj§7 and b) for
linearly polarised photons and unpolarised targets [iﬁ?. For the case a),
one can show that there are no factorisation test;% . For b), tests of the
type (B) are the only oneé possible; one may also try to estimate the

coefficients P, {3,0) using these data and assuming factorisation

in the form of the (D) type tests.

The 9.3 GeV data, which is an average over the range 0.02 ¢ [t|-5 0.8 (GeV/c)2

serted in the (B) type tests (4.3) gives, for n = O,

~0.08 2 0.12 _ -0.18%0.13 _ 044015 _ 0.20 % 0.1 . 6.1)
0.00 + 0.07 -0.14 % 0.09 0.50 £ 0.035  -0.01 % 0.06
.11
where we have used the relation
‘ L
m ap
oy | = o_ (m,0)/trp_(0,0) | (6.2)
oB X v v
Theirs Ours

18 . . . . . .
This situation is not changed even if (separately) the recoil nucleon

polarisation is also measured., In fact, the only nonvanishing coefficient
v . .
;5(0,0) is already given, Eq. (4.11), by p:B(m,n). Using [16] M-purity,

4"
(4.3), one gets Cé(0,0) =h{trpv(0,2).
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of our notation to that of refs. [;f'g’p.Q . Because of the rather large

errors in (6.1) one cannot draw a firm conclusion, especially since the
9

data are an average over a large t-range. However, the third {and to

a lesser extent, the second) ratio does indicate that if the Pomercn is

M-pure (which is necessary for it to'factorise), it has M = +1, Of course,

all the four ratios in (6.1) can be regarded as consistent with M = +I,

The tests of the (D) type could be used to estimate the expected
Imp:_(B,O) and Imp:°(3,0) using data [14] for linearly polarised
photons, and assuming factorisation - for comparison with future data for
circularly polarised photons. Unfortunately, the errors are large; for
example, the value [147 of impi_l violates the positivity bound in
table 2 of ref, [22/ on it, even if one allows a one standard-deviation
error. From the relation (DI), the;efofe, one can ouly say that Imp:“(B,O)
is very small, Similarly, the relation (D3) is rendered inéffective.

The relation (D2) does not involve Impi_l and gives

[Imp:;"(s,on2 < 0.012 | (6.3)

normalising to trpv(0,0) = 1 and if the errors gare interpreted literally

to mean that a quantity quoted as x * y lies between x + y and x - y. From

7

This is confirmed also by the more accurate measurements [20] of the
asytmetry I ; see ref. [147 for definition of I and for further

references. See also footnote 20.

o e e - » i r—
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(6.3) also, keeping in mind the large errors, one can only say that

| 1m0 +0(3,0)] is expected to be small.
v

20
In summary therefore, present data indicate that the Pomeron is

M-pure with M = +], Better and more data are needed to make more

useful statements about Pomeron factorisatiom.

7. Summary and Discussion

Because of the suitability (see the Introduction) of YN -+ &N

for studying the Pomeron, we have considered testing Pomeron factorisation
in this reaction, assuming that the Pomeron is thé only driving force for
YN + ¢ N, . This assumption is very natural in the conventiomal quark
model, and is supported by data. Even conservatively speaking, the energy -
at which Pomeron dominance is expected in yN -+ ¢N should be much
lower than that in other reactioms. Hénce one need not go to extremely high
energies for testing Pomercon factorisation in YN = ¢N . We have listed
in detail (subsec. 4.,A.1 and 4.A.2) the possible tests for the more feasible
experiments easuring the  4~decay density matrix, and alsc shown (subsec. 43
how a measurement of the recoil nucleon polarisat}on adequately complements

the ¢—density matrix information in the factorising case.

A simple, but quite important, consequence of factorisation of helicity

20

The asymmetries P , and I mainly depend on the ratio

Reo:—(l,o)/p:+(0,0) and do not provide really independent [167

tests of M-purity, because of (4.3).
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amplitudes is M~purity as defined in Eqs. (3.6). This holds for any

type of a driving mechanism (including arbitrary mixtures of cuts);

M-purity corresponds to purely natural or purely umnatural parity

exchanges in the crossed channel’ to leading order im s. M-purity
is a necessary (but not sufficient) comsequence of factorisation, but of

course, it could hold without any reference to factorisation.

Factorisation tests, thefefore, are of two categoriés: M-purity tests
and secondly, those testing the separability, Eq. (3.1), more crucially.
To thé.first category belong the types (A) and (B), while the second
category includes the types (C) and (D). for the ¢ ~density matrix,

see subsec. 4.A . These tests were shown in subsec. 4,A.3 to be
exhaustive if only the ¢-density matrix is measured. As summarised

in tables (Ia,b,c,d), various types of target and photen polarisatioms

are needed for the different tests.

The question, "which of the above tests are easy to perform experimentally?“
was considered in subsec. 5,A by using the experimentally indicated
47,157,/177,/187 criterion that amplitudes which do not conserve
s—ghannel helicity are comparatively small. Some of the M-purity tests (bf
the types (A) and (B)) persist even for helicit; conservation, and
therefore, refer to dominant amplitudes. These tests should be easy to
perform in contrast to the ones of the types (C) and (D). If mesonic
helicity is exactly conserved, there are no testé of.the'types {C) and

(D) left. These latter types which test factorisation more crucially than

the other two types, therefore, refer to nondominant amplitudes. This is
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not purely discouraging, however, Factorisation for such small amplitudes
would be almost impossible to test in the overall cross—-section wherein
the large (s-channel helicity-conserving) amplitues would dominate them,
The reactiom yN =+ N, therefore, provides a chanﬁe to study Pomeron

factorisation even for these small amplitudes through the ¢-density matrix,

The question, "Can these tests reveal further 1nformat10n related to Pomeron
factor15at10n7" was considered in subsec., 5.B by con51der1ng the special

case of relative reallty of all amplitudes ~ as 1is relevant to a pure

pole-type Peomeron. Since the demsity matfix Py simplifies for this relative
reality, it was found that useful distinction betwéen a bole.Pomeron, an M-pure
'cut-pole mixture' Pomeron and an M-impure (and hence nonfactorising) 'cut-pole
mixture' Pomeron could be made bv considering some tests of the type (B) requiring
a target polarised normal to the producticn plane. Similarly, distinction between
‘a pole Pomeron, a factorising 'cut-pole mixture' Pomeron and a'nonfactorising
'cut-pole mixture' Pomeron could be made by considering some tests of the type (C)
requiring unpolarised targets and targets polarised nmormal to the production

plane; this remark holds also for the (D) type tests which require.only unpolarised
targets.

fresent data give some indicaticn for ﬁhe M~purity (with M = + 1) of the

Pomeron - its having a purely natural-parity character - especially [20] at

small momentum transfers -t , g 7 Gevz, see also sec, 6. While M-purity

is required by factorisation, it does not prove factorisation. More and

better data are ﬁeeded to confirm this M-purity, as embodied in tests of

the types (A) and (B), and also t¢ confront with experiment the types (C)

and (D) which test factorisaticn more crucially. One could get a more

e P gy Rrvaeres iy - -
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complete picture of Pomeron factorisation by measuring also the
recoil nucleon polarisation, but only the ¢-density matrix can

already give a lot of information.

In conclusion, we repeat that because of the rather clean nature of

the reaction YN = ¢ N, and beéause of its being a good laboratorvy

for investigating the POmefon, it is only natural to appeal to this

reaction before one hopeé to get a complete picture of Pomeron factorisatidn.
Some of the relevant factorisation tests are relatively easy; others are

not so easy. Those of the latter variety refer to nondominant amplitudes
which may be "uniquély" studied in YN - ¢N as noted above, The

importance of the question of Pomeron factorisation justifies am experimental

investigation of the tests presented in this paper.
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Table Captions -

Table 1a: Influence of conservation of mesonic, of nucleonic,
and of both (called "full") mesonic and nucleonic helicity
conservation on the factorisation tests of type (A) for the

¢ -meson density-matrix expansion coefficients of Eq. (2.6)
Table Ib: Same as for Table Ia, but for tests of type (B)
Table Ic: Same as for Table Ia, but for tests of type (C)

~

Table Id: Same as for Table Ia, but for tests of type (D)
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Table Ic

Type of test;

Tests in the general case

Tests in the case of helicity-conservation

Eq,

+-i- 0o +- 3 + N . B
(C); Py (m,2? oy {m,2) Repv {m,2) Nucleonic: Coefficients with n = 2 vanish.
(4.6) ey = Jeaving no test of the type (C). The sane,

++ = oo B +
ey (m,0) oy {m,0) RepV {(m,0)

_ Repto(m,2) ) Imp:“(mlz)
) Reoto(m,o) ) Imp:—(m}O)
Tmpto (m32)
) Impto(mzo) ’
m = 0® s ~
m' =2 or 3
TRNEEN

Need unpolarised targets and
those polarised normal to the

production plane.
B e o

Total no. of (independent} tests

7

of course, holds for 'full' helicity-
conservation. g bt

Mesonic: Combined with the two tests
for the 'mesonic' case of table Ib,

Eq. (5.1) leads tq_p¢+(g,2)/p$+(0,0)

= Imo+'(2,2)/1mp:'(2;0) which is the
only surviving relation out of those

in the previous column. No independent
test of the type (C), therefore, remains,

Total mo, of (independent) tests = O

See

subsec, 4.A.2 for m =

1 which is not independent of m = 0,

B e ot TR TR LR
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