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Abstract

The dearth of solwvable models for e+e_ annihilation often reduces one to ex—
cessively qualitative considerations, leaving obvious dynamical questions open.
We discuss here various aspects of chain—emission models, which can be cast

into solwvable form. In such models the virtual photon decays into a link (a piom,
for example) and some state (e.g. an off-shell vector meson) which decays by

sequentially shedding further links.

Topics include the scaling behaviour in such models (including how it is broken
near w = 0); neutral/charged distributions; the effect of internal quantum
numbers and, in a particularly simple version of the model, the two—particle
distributions. In particular, we show how a large neutral to charged energy
ratio can arise. Finally, we discuss variants on such models arising from
possible variety in the links of the chain,(i.e. multichannel effects), and

also the nonlinear effects arising from the branching of a chain into chains.

*
present address: Theory Division, CERN, Geneva.



It is customary to approach the dynamics of multiparticle production pro-
cesses through the construction of models which embody definite physical pic-
tures of the dynamics. Some time ago a vector meson resonance tree graph model
was proposed in order to explain the multi-pion ete” annihilation cross-sec—
tions in the low q2 region (1). However this model lacked a suitable mathe-
matical framework to extend it in a tractable way to larger q2. We shall dis-
cuss here a simplified version of this model, which can be described in terms
of solvable equations and from which a number of detailed dynamical questions
can be answered. With simple tractable models one can learn piecemeal about’
the physics; hopefully one can learn lessons which may apply in wide classes
of models and might even reflect general features of a satisfactory theory of
the dynamics in question. Ideally, models for ete” annihilation should also
apply to deep inelastic lepton-hadron phenomena; there is a widespread belief
that the two classes of processes are related. On the other hand, we believe
that it is useful to construct less ambitious models for e e processes alone.
The present model may be able to shed some light on the continuation from
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timelike @ = s to spacelike Q°, but it is not with this aim that we discuss it.

We wish to describe here a class of models for e e annihilation based on
the idea of chain emission. For example, the virtual photon is imagined to couple
to a hadron system of low spin and isospin I = O and 1. This system decays by
emitting a hadron or hadron cluster (e.g. a pion or a meson resonance) and
recoiling as a system of the same character but different mass. This process is
repeated until the decay is complete and only stable mesons populate the final
state. The essential feature which makes such a linear chain model tractable
is the assumption that the hadron system remains in some sense the same during
this decay process (we will make this more precise later). Restricting ourselves
to the especially simple case of single pion emission, we can depict this decay
as in Fig. 1. The hadron system which forms the backbone of this decay chain
should be non-exotic (I = 0,1 for pion emission) and should not make large
excursions in spin in the course of the decay. We might mention here a nice
lesson arising from the model with alternating I = 0,1 states: the neutral to

charged emergy ratio can be large.

Further, we can imagine that transition to high spin systems is inhibited
by angular momentum barriers. If for illustrative purposes we imagine the
system to be a heavy vector state starting at large mass and J = 1 on a

Chew-Frautschi plot, then this assumption amounts to saying that the system



cascades down in mass remaining near the J = 1 line as it emits mesons. The
system can be either an on-shell state or one off its mass shell (e.g. a Py
meson with p2 = an or an off-shell p meson with p2 >> mpz). In most of

this paper we shall make the simplest assumption possible: namely, that the
system keeps fixed spin (J = 1 when we need spin properties); we shall see that

relaxing this condition leads to some classic coupled-channel effects.

Remaining with our example, we can see that the hadron spectra in the final
state depend on the way in which this hadron system migrates in mass on the
Chew-Frautschi plot——in particular, it depends in the average jump length in
mass per emitted hadron. We can imagine two extremes. In one, the hadron system
jumps on the average a fixed or nearly fixed mass interval at each emission
step. The final state hadrons then have large multiplicity and low momenta
which do not grow or do not grow rapidly as the mass of the initial system is
increased (though the mean momentum does not tend to remain constant for single
pafticle emission on account of angular momentum effects /2/ (hereafter refered
to as (I))). In the other extreme, we imagine that on the average the system
makes a jump which is a fraction of the distance in M2 sepafating it from the
edge of the Chew-Frautschi plot. In this case the mean hadron momentum tends
to grow with the mass of the initial system (the e'e CM energy) and the mul-
tiplicities temd to grow siowly. A classification of these behavioxs in a simple
version of such models with fixed spin J = 1 has been given in I. We shall
concentrate here on the second case, in which the model has a rich structure
and for which we found the lessons from the model most interesting /3/ (here-

after refered to as T1).

An important ingredient in the model-—indeed, the one which turns the pre-
ceeding remarks into a mathematically defined form - - is the assumption that
there is an orderinz on this linear chain so that on taking the cross section
for Fig. | we get the integral equation corresponding to Fig. 2. On iteration,
this generates ''rainbow" diagrams without crossed links. We do not feel that
relaxing this ordering assumption (analogous to that in the multiperipheral
model) would change the physics in an essential way, though it would vastly
complicate the analysis. With our assumption; we can do a great deal {see I
and I1). Considering e e = h + anything, where "h" denotes the detected
hadron, we can write an integral equation for the single particie distribution
function in the form of Fig. 3 and also an equation in the form of Fig. 4 for

the two particle distribution functions. All this holds for a chain with or



without spin; when we need spin properties we shall consider a "bare bones"

model where the hadronic system keeps J = 1.

The equations of the model can be reduced to algebraic form by standard
Mellin-transform methods. Choosing that solution corresponding to our picture
of large jumps on a Chew-Frautschi plot, we find that the total e e annihi-
lation cross section has a power behavior, the power being promoted over that
for the terminal process e+e_ - h1 + h2 to s*. As the CM energy —+ « for fixed
non-zero W = ZEh//E, the single particle distributions scale in the variable g
(Feynman scaling). A significant lesson here lies in the fact that for small w
scaling is violated at any finite s. Moreover, the multiplicities in the model
grow logarithmically in s, but the coefficient of this logarithmic growth is
not given simply by intégrating the asymptotic scaling function down to the
lower kinematic limit th//g. This result seems quite general for such models
and conflicts with a very popular bit of folklore. The model allows one to
study sum rules for the moments in w of the structure function and thus to
study, for example, the way in which the cross section approaches its asympto=-

tic form. For further details we refer the reader to II.

Some of the most interesting lessons from the model concern its isospin
structure and the distributions of neutral and charged particles. The simplest
version (our "bare bones' model with I = O oder T = 1) would correspond to pion
emission with alternating isospins along the chain (p-like and w-like states).
Since the photon is usually assumed dominantly isovector in character, the
initial transition of a heavy isovector state to a pion and an isoscalar state
leads to a neutral pion carrying off a large fraction of the CM energy. By
using the energy conservation sum rule we can find an expression for the ratio
of the energy carried off by neutral pions to that carried off by charged
pions in this simple model. This ratio can be as large as two in such models;
put differently, the slopes of neutral and charged pion spectra can be dramati-
cally different. A related lesson is that without special effort, such models
as give a ratio of the number of neutral to charged pions equal asymptotically
to 1/2 only approach.this value logarithmically (i.e. as 1/<N>). It is also
possible to discuss neutral/charged correlations (e.g. the mean number of
neutrals for fixed numbers of charged particles) and SU3 in the context of

such models.



Different models which give Feynman scaling asymptotically for single
particle distributions can give quite different results for two-particle corre-
lations. For this reason we consider the latter quite important. We discuss
this in terms of the bare bones model with spin and isospin. Particularly nice
features arise when we insist that of the two detected hadrons, one be fast
(wl + 1). The distribution of the second detected particle is given in terms of
‘the single particle inclusive distribution; it is possible to determine the
normality of the system recoiling against the fast hadron; finally, we note
that the model has no transverse momentum cutoff. This is unlike the situation

in parton models.

Our main aim in this work has been pedagogical. For this reason we have con—
fined most of our concrete discussion to the bare bones model already mentioned:
alJ-= i chain with pion emission and alternating isospins (p, w-like states),
leaving out either spin or isospin or both when inclusion of such effects would
clutter the discussion to no advantage. Nevertheless, we would like to empha-
size that our horiziom is broader. We believe that such models can be extended
to include radiation of particles other than pions (or pseudoscalar mesons in
the SU3 versions) and to allow for some migration in spin of the hadronic
system in the course of the chain decay. We shall also consider the role played

by non-linear terms in the cascade, which we shall show to have a unitarizing .

effect in the model.

In the next section we discuss the model divested even of the complexities
of spin and isospin. This exhibits the dynamical features clearly. We shall
comment on the case with spin. The added complexities of isospin and SU3 are
discussed in Sec. III along with the attendant effects on neutral/charged
distributions. In Sect. IV we start to relax the condition that there be only
one hadron system along the decay chain by studying a simple variation with
two different types of decaying states in the context of a model without spin.
In Sec. V, we face up to the full complexities of spin and isospin in a case
where it has most to teach us: two particle inclusive distributions. We also
discusss there the effects of the isospin structufe of the bare bones model on
two particle correlations. Finally in Sect. VI we shall consider what happens
when one adds multi-pronged tree graph contributions to the cascade, which

lead to non-linear terms in the basic equations describing the chain emission

or cascade mechanism.



II. Basic Dynamics of the Model

l. We have already described the model in a qualitative way. In this section
we shall obtain the equations of a particularly simple version. This will
enable to us discuss the physical features of chain emission models with a
minimum of technical encumbrances. The rest of the paper will consist of ela-
borations on the bare bones model. The essential lessons on the dynamics remain
the same as in this section. We shall repeat here many of the points of paper II,

to which we refer the reader for technical details on the model with spin.

The photon spin and isospin is ignored here and we suppose that the hadron
system decays into only one type of particle. The decay chain for the emission
of n-particles is shown in Fig. 1. The coupling of the photon to the initial
hadron system can be absorbed into the definitions of the vertices and we
shall not indicate it explicitly. Two types of vertices enter: one for the
radiation of a single particle and one for the terminal decay into two par-

ticles. The precise form of this last link plays no essential role.

. . . + =
2. We will from now on consider not the cross section for e e - hadrons but

rather the absoxptive part of the scalar current correlation function,

4 2
p(s)y = (2m)" J[<H]J(0)|0>] 8(Q=Py) (2.1)
H
Summing up the contribution of Fig. | to p(s), using the ordering principle

mentioned in the introduction, we arrive at the integral equation depicted
in Fig. 2; this generates rainbow diagrams on iteration. Writing
<p]p2!j(o)[0> = £(S), the first term céntributes p!f|2/4n/§. The second
involves the radiation vertex <k; H —k]j(o)]o> = 41 g(s,s')<H, —k?j(o)}o>
where § = Qz, s' = (Q—k)z. Both f and g are understood to contain the
outermost propagator and the coupling to the photon if the hadron system is
thought of as an off-shell single particle state (a restriction we do not
need to make). The integral equation is easily worked out to be (we ignore
masses throughout)

p(s) = DD(S) + a2 ! dn K(s,ns) p(ns) (2.2)

[« JE SN

where n = s'/s, A is for later convenience and

K(s,s') = (I-n)slg(s,s"){2 = (I-n)h(s,ns)



The inclusion of spin would change the precise form of K , but nothing else.
Of course, we would then have to deal with two structure functions for the
once—-inclusive reaction. Physically, K represents the probability that a system

of squared mass s will decay into one of squared mass s'.

3. We can now proceed to the single ﬁarticle inclusive reaction

e . .

e e - h + anything. If we hold one momentum fixed and sum over all others then
the corresponding integral equation is that shown in Fig. 3. The differential

structure function is defined by

3

d o(s,p)= [ @m™|<H.p}j0)|o> 8(0-p-py) ——-t— (2.3)
H (2m)~ 2E

The first term is just the product of the vertex squared and the function ¢

at s' = (l-w)s, where w = 2p » Q/s = 2Eh/Vs (Q2 = s) is the scaling variable for
the detected particle. The second term is more involved. As in (2.2), a phase
space integral over n = s'/s appears; in addition there is an integration over
the relative angle of p and k. This played no role in (2.2). After changing
variables to w' = 2p - (Q~k}/s'2 and paying close attention to the limits of

integration, one finds F(s,w) = dp/dw satisfies the integral equation

1 w'fw
F(s,w) = F_(s,w) + A J 93—“—;—[ dn n*h(s,ns) Fins,u') (2.4)
W

where

Fo(s,w) = 4 w h(s,(1-w)s) p((l-w)s)

&, The above complications are present in increased degree in the equation
for the two—particle inclusive distributions in e e - P, t Pyt anything. One
can check that iteration of the equation depicted in Fig. 4 generates the
correct set of rainbow diagrams. The relevant invariants are now wy = ZplfQ/QZ,
W, = 2p2'Q/Q2 and Np = (p1+p2)2/Q2. The equation for the two particle distri-

bution function H(s,w], wz,nlz) is



_ (1) (2)
H(s,w sw;,my5) = B0 + H
dw ' w, ' o odw,' w,' -
+ A J 1l J 2 2 f dn n 272 500) n(s,ns) x (2.5)
UJ] l'.l.J1 UJZ UJ2

v H(‘ T ]
nSaLy Tyt Myp)

where
(1) _ - - .
Ho = A h(s,(I.w])s) F((1 w])s,wz)
1 2 23 (s, (mw,)s) F((I~w)s,u.)
fol ’ 2 2777
2 14+ W W (2.6)
1 1]
1+n 2n w, w,
A = det
¥
“1 1 0 M2
1
wy wy "2 0
5. The solutions to these equations depend on the behavior of the vertex

h(s,ns). The model so far is general and can incorporate different behaviors
for this vertex. For the sake of definiteness we want to concentrate here on

the case where the vertex scales,

h(s,ns) = h(n) (2.7)

and is a function of n alone. This is certainly the simplest choice for the
dimensionless function h(s,ns): it depends only on the dimensionless ratio n.

We shall see that this leads to scaling in w for the structure funection

F(s,w). The assumption (2.7) has a simple physical interpretation. It corresponds
to long jumps on the Chew-Frautschi plot of finite mean length in dimensionless
units, independent of the value of s with which one starts the decay of the

hadronic systemn.

Substituting (2.7) into (2.2) and (2.4) and defining the Mellin transforms



5 () = j das s o(s)
1

2 1 (2.8)
F(j,&) = J as s 17 J dw W 1FE F(s,w)
1 o]

we have for 2(j),

3G5) = gy Pl |
' (2.9)

K(3) I (i-n) h(n)

]
O e =
[a
3
3

The asymptotic behavior of 6(s) is determined by the largest 3 = a()) for which
1-AK(2 (X)) = 0, in which case

p(s) po(u)A -g% SO!.()\)

S

(2.10)

Since h(n) is not kmown, it 1is difficult to say anything about the power alA).
0f course, we have assumed that o leads the singularity of 60. Otherwise 0
would have the same s-dependence as p . It is well known that in the case with
spin (where o(s) " s_1 0(s)) an increasing p(s) is not compatible asymptoti-
cally (s 3 &><104 GeVZ!) with one—photon e annihilation (4), and even causes
problems for QED at high but attainable energies (5). This is really an experi-
mental question, and we merely note that it may be interesting and useful to
imagine models where the large s behavior of p(s) 1s not constfained, and in
which the dynamical origin of the energy dependence can be traced out - at

Jeast in principle.

6. Proceeding similarly with F(s,w) we have (6)
F(.E) = e F_(3,8)
PO ST G o
(2.11})
1
. f 141 1- £-2
8(3,8) = | an v’ 15 b
0



The Mellin transform of Fo(s,m) factorizes

F (5,8 = 8() 5,0 (2.12)

where H(j,f) does not interest us here; it has singularities only in the left
half plane for both j and £, and it decreases in the right half plane. Now,
(2.11) will have a pole at J = a(X) and in the 1limit s - ® and « fixed and
non-zerc this will lead to a factorization of F(s,w). Namely

afd) f(w)

F(s,w) v s
(2.13)

cHie

- df  ~—& _ H(u,E)
Flw) = f 211 Y T7h % (a,E)

-0

In other words, the model leads to scaling in the variable w. This follows, of
course, only so long as the singularities of (1-K®(j,£})_l lie to the left of
®(A). This is the case for w # 0, as Es most easily seen by noting that a
singularity to the right of a(A) for F(j,&) would, by integrating the energy

sum rule (2.14a).
2 p(s) = J dw w F(s,w) (Z2.14a)

. . . a A .
produce a contribution to p(s) growing faster than s ; the multiplicity 1is

given by the sum rule

r

@0 (s) = | dw F(s;w) (2.14b)
’
For w = O, inspection of (2.11) shows that 1-2%(j,!) = I-3K(j) so that the
integrand develops a simple pole at & = I. This singularity leads to flw) w"I
. . . . -1 . . .
as w + 0, with a coefficient proportional to (a2/32) ~. 1f we integrate this

singular scaling functien don to the kinematic minimum 2m/vs in the expression

(2.14b) with F(s,w) replaced by s f(w), we would get a logarithmic increasing

1

multiplicity with the coefficient proporticnal to (3%/7)Y '. The muleiplicity
is in fact logarithmic and is given exactlv by (2.15a):
3
<n> p(8) = X 3 c{s) (2.15a)

[+
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b o(s) = (2D 0 (s) (2.15b)

where p(s) is an implicit function of A through alr).
Inserting the asymptotic behavior of o(s) we find

<n> = A %% In s + «ue
Using » 3a/3x = -(X BK(u)/ch)_1 and equationé (2.9) and (2.11) we see that the
coefficient of the w_l term in f{(w) and the coefficient of the exact expression
for the multiplicity are in general unrelated to one another. Physically, this
is because f(w) contains a singularity not present in F(s,w), which vanishes
at the lower kinematic limit for any finite. s. The multiplicity is built up by
the rapid increase of F(s,w) at smaller.and smaller values of w as s increa-
ses. The progressive development of this singularity continues even after
scaling has been established at any finite w. The result is that ome cannot
interchange the scaling limit and the.integral in (2.14b), and to the conclu-
sion already mentioned. This comment should apply to all chain-emission models,
and indicates that in any scaling model with increasing multiplicity ome has to

be careful in discussing the multiplicity sum rule; see II).

7. The singularity which appears in the integrand of (2.13) can be exhibited
in another way by using the energy sum rule (2.14a) and carrying out the §
integration. Since H(j,f) decreases in the right half plane, we can pick up the

pole in & generated by this integration to find

c+iw

- dj  _j plj) H(j,2) '
2p(s) = J 52T ST oy 703,20 . {2.16)

c—1e

Since the singularity of (1 - A@(j,Z))_l lies to the left of that in p(j), it
contributes the non-leading term to p(s); some algebra suffices to show that
the coefficient for this term is negative. That is, the cross section approaches

its asymptotic limit for below.
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From the preceeding discussion it is evident that the scaling behavior is
broken for small w, since this is where the singularity in £(w) is being built
up as s increases. For any finite s, we expect F(s,w) to rise from zero at
W o= 2n1//§, reach a maximum at some « and then decrease toword w = 1. This
maximum steadily increases in height with s and moves to smaller and smaller
w, so that the region in w for which F(s,w)} scales increases with s. For
some qualitative pictures we refer to II. We should note here that a breaking
of scaling for small w and finite energies emerges from quite different
appreoaches and is probably a feature of any model of ete” annihilation (7,8,9).
8. The behavior as w + 1 is of considerable interest. From (2.13) we see
that at w = 1, £{1) = 0; the rate of decrease as w =+ | is determined by how
rapidly H(j,£) decreases as £ - « in the right half plane. This corresponds
to the simple observation that as w + 1 only the driving term survives. An
interesting feature of the bare bones model with spin is that as w + 1 the
transversality of the coupling (it has the spin structure of the p w 7 vertex
(I1) asserts itself, leading to

W /W

) |
L/ w3 0= (2.17)

where ﬁi and WT are the conventional longitudinal and transverse structure

functions for the once inclusive process. A very similar point will recur in

Section V.
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III. Multiplicities and Internal Symmetries

1. So far we have studied some dynamical features of chain-emission models.
Most of what we have to say in this section is based on the isospin structure
of the bare bones model, For some of this discussion it would be useful if we
could make some statement about the dispersion <n2> - <n>2 or equivalently
about f2 = <n(n=-1)> - <n>2, since it is interesting to see whether the distri-
bution is broader or narrower than a Poission (f2 > 0 or < 0). From (2.15) we

can calculate the dispersion which, up to terms increasing as lmns is (I)

2
<n2> - <n>2 = <n> + hz 30 1ns (3.1
2
gA
(n) _ 4m n
where (K =3 K/oa)
2 Bzd 1 1 1,2 r
A = (2ZR)" - KX. )

322 K (")

2

One can readily wverify that K' < 0 (see Sect. II) and K" > 0, so that the
dlstrlbutlon is narrower or broader than Poission depending on whether

2(x’ ) - K X" 1is positive or negative. For small X we expect l 3 a/ah to
be small compared to the coefficient of <n>, A3a/3) so that the distribution
is approximately Poission. As for the large A limit, we just mentiom that
for a simple example with h{(n) = const one has a distribution which becomes

narrower than Poission for large A.

2. There are numerous interesting features to the bare bones model with
isospin. One of these is the ratio of the numbers of neutral and charged pions.
It is well known that for an isoscalar photon of odd charge conjugation this
ratio (nC =n_, 4 nw_) is <n0>/<nc> = 1/2 averaged over all charge configu-
rations at fixed N (a recent discussion with references: Ref. (10)). We can
use this to find <n0>/<nc> for an even number of pions N = <no> + <né> so long
as we use the bare bones model. This is because an isovector photon, after
radiating a single neutral pion, gives rise to an T = 0 hadronic system. This
decay then yields <no>/<nc> = 1/2 and it is easy to see that for even N,
<n0>/<nc> = (N+2)/(2N~2) and, taking account of the expected 3:1 isovector:

isoscalar ratic we have (now averaged over N)



i3

<n > 2<N> + 3

<n > | L<No< 3 (3.2)

Of course, we have implicitly assumed that <N> is large and the distribution
broad. Otherwise the N wvariation produced by the isovector:isoscalar ratio

would cause (3.2) to oscillate as <N> increases.

What appears significant to us is that <no>/<nc> approaches its expected
asymptotic value of 1/2 only as 1/<N> ~ (lns)—l. A more rapid approach to the
limit would require a more complicated isospin structure, at least in the con-—
text of chain-emission models. It is perhaps worth mentioning that we expect
more general chain emission models to yield <n0>/<nc> + 1/2 as s » =, s0 long
as the radiated particles and those along the chain have conventional isospin
and do not have isospin violating decays. The situation is quite different when
we treat the ratio of the energies carried off by neutral and charged pioms, as

we shall do next.

3. More interesting than <no>/<nc> in our bare bones model is the ratio of
neutral to charged energies. This is also what is most easiiy inferred from
experiment. Just as in our preceeding argument, where the enhancerment of
<no>/<nc> above 1/2 came from the first n° radiated along the chain (for an
isovector photen), so here the only source of asymmetry in the energy distribu-
tion among neutral and charged pions arises from the first radiated 7°. The
entire effect is then due to the fact that in the model with alternating iso-
spins the isovector photon must dispose of its isospin by emitting a 7° before
it can give rise to an I = 0 recoil system. Let the first = carry off a
fraction /5/2(1~ﬁ) of the CM energy as s - ». It is easy to convince oneself
that the remaining pions recoiling against this first ‘one share the remaining
energy equally, so that <Ec> = 1/3 Vs (1+n). Then we have <EO>=]/2/§(I—E) +
1/6Vs(1+n) and

< =

% < 2 (3.3)

This argument can easily be made more precise. In fact, we can obtain an ex-

pression for n. First, note that the above argument corresponds directly to the
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decomposition of Fig. 3 for an isovector photon. The first term om the right in

. , .. . . . o . .
the figure is driving term in the integral equatiom, Fo (¢ is the charge index),

o . o .
and the second we shall call F, . Clearly F* vanishes unless o = 0; F, is
: int o] int

independent of o. We now take over the normalization for the case with spin(II),
as we wish to make a numerical estimate. Now the energy sum rule reads (note

the definition of F)
' 1

]

1 J 2
—— dw w (F_ + 3F, ) = 1 (3.4)
s 204m? P 0 in

t

From this we can express the integral over Fint in terms of that over FO; but

the latter is known. In the spin 1 case it is

FO = (4'“)2 A wz(l—w) h{l-w) p((1-w)s)
and so
: 7 % J dw w2 FO(S,LU) = 'é‘{ 1-X J dn T’]2+a(l—'n)3 h(n)] (3.5)
) -

Finally, we have

1
J du m2 F. =

1
—'—"]"——2 -!" int g (1+T])
2(4m)° P
. (3.6)

1
J an 02 (1-n)> h(n)

an P -n? hem)

O ~———l0

3. . ..
The extra (1-n)~ in (3.6) is due to extra momentum factors arising from the

"owt" vertex in the case with spin.

Just as an example, take h = comst.; then n = (2+a)/(6+a) ~ %—for o~ 1
(i.e. ¢ rising linearly with s). Again including an isoscalar contribution of
1/3 the isovector we get <Eo>/<Ec> ~.9. Of course, this is only a crude guess

since we really know nothing about h{n); however, n < 1 in general.
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It needs to be emphasized that in this model <EO>/<EC> is energy independent
once the energy is high enough so that Feynman scaling is established and n
is energy independent. <EO>/<EC> cannot rise indefinitely. From our discussion

of the bare bones model, this is clearly a general feature.

4. We now see that in chain-emission models the behavior of 7° and 7 spectra
can be quite unlike. In the simple model we have been discussing we expect a

substantial difference which reaches a maximum in the vicinity of w ~ E. At low
energies this might simply appear as a 7  momentum distribution which is flatter

than that for charged pions. At high energies one should see a hump in

0 +
F' - F' . Also note that as w - I the driving term dominates s¢ that
'TT+ 'PTO
lim F / F + 0 (3.7)
I =1 I =1
wl Y Y
0 .t
There is a well~known relation in the quark parton model, F = F" {10).

. . . o
This arises because in the t-channel of the process yr = - ywu (one of whose

discontinuities gives ) only ¢ a states of I < 1 can appear. Ian chain-emigsion
. o +
. . » T T .
models there is no such constraint, one can have I = 2 and ¥ # F in

general. Put differently, the difference arises because the fragmenting states
are octets and not triplets as in the quark parton medel. If one regards this

feature of the bare bones model with distaste and, out of regard for conven-
o +
\ . . i el .
tional dual ideas, imposes I <1 and F = F , the the chain must be more

complicated and involve Az—like states. The isospin can then no longer alter-
nate as in our bare bones model,
. , T T .
We want to emphasize that the observation of a large F /F  ratio at w # O
has strong implications for the isospin structure of the chain in any model of

this type; the bare bones model offers an explicit lesson on this point.

5. A considerable advantage to chain-emission models is their similarity to
models already familiar in hadronic processes. We want to consider here the
neutral/charged correlations for the bare bones model, where the situation is
particularly transparent. We can then see qualitatively how more general chain-
emission models will behave from their hadromic analogues. The distribution of

neutral and charged pions is (N = n + nc) (1)
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P(no,nc) = PN F(no,nc) (3.8)

where P is the probability to produce N pions and T is the "branching

ratio" of this state into n, neutral and n charged pions. The above are nor-—

malized by
LBy =1
Z T(no,nc) =1
n_,n
[ &4
n_+n =N
o ¢

It is easy to separate N even (isovector photon) and N odd (isoscalar
photon) so as to take account of the isovector/isoscalar ration, and we won't
do this explicitly. Two useful quantities are the probability to produce o,
charged particles, summed over neutrals, and the mean number of neutrals given

that the number of charged particles is fixed,

P(n) = g P(n_,m.)
° (3.9)

< > P(nc) = z n P(no,nc)
c n_

Clearly, the physics lies in Py and F(no,nc). PN depends on the detailed
dynamics of the model; T(no,nc) depends on the isospin structure of the chain,

as we can demonstrate by considering the bare bones model.

We can calculate T by noting that the last three pions on the chain
always consist of two charged and one neutral. A p-like state elsewhere in the
+ . . . o 0 + o~ -+ . [
chain gives (in pairs) ma , 77 and 7 T Wwith equal probability. The number

of such p—like'links (except the last) is

i
s

N even

|

2z
1 [y~

N odd

[\J|
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Writing the number of charged pions as n, = 2 + 2k (k =0,1,...) a straight—

forward combinatoric argument gives

L S
T(no’nc) = §') (3 Ty T (3.10)

- i.e. we have a binomial distribution by pairs of charged particles. In ob-
taining this, we have ignored the channel with only two charged pions. Because

of the decreasing pion form factor this channel should be ignorable.

From (3.9) and (3.10) we can calculate P(nc) and <a > - if PN is known.
. c
Since it is not, we shall just make some comments, ignoring the question of

the isovector/isoscalar ratio.

(1) If PN is a Poission, then the binomial character of P(no,nc) leads to

P(n ) also being a Poission distribution and <a > = <n0>. Even if
¢ c
P(no,nc) is binomial only in pairs, onearrives at the .approximate

equa <n > = <n >,
quality o n_ o
(i1) 1f PN is much narrower or broader than a Poission, then correspondingly
P(nc) is also. This need not be the case in general., In fact the situ-
ation is quite different, when collective effects play a role (e.g. when
the isospin bounds are saturated or nearly saturated (12)). For the chain

model distribution much narrower then a Poission leads to <n0>n decreas-—

ing as n_ increases, because n + n, = N = <N> (for a narrow distribution)
On the other for broad distributions <no>n tends to 1ncrease as n_ in

creases (I1).

Of course, this enly holds of T' is binomial or approximately so. If the
radiated particles are meson resonmances or clusters, then the presence of such

clustering is reflected in the behavior of, €.8., <no>n which then tends to
c
rise as a function of n, even for a Poission distribution. The variety of beha-

viors possible indicates that it is of some importance to try to separate
PN and P(no,nc). This may be difficult experimentally, but it is necessary if
one is to disentangle the dynamical and isospin structure arising from any

model - not just chain emission models.
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6. There is no dimensional scale in the model (such as the Pr cutoff in the
parton model), so it may be that at very high energies the production of heavy
particles is not disfavored. This makes it interesting to conmsider the model
with SU3 included. We shall do this for the simple case where one has an octet
electromagnetic current and pure octet hadron states, including both the radi-
ated particles (the pseudoscalar octet) and the chain states {(C = — vector—-meson
6ctet—like states). The current propagator is diagonal in the SU3 indices and
we can take the radiation vertex to be pure D~type, the driving term in Fig. 3

now being F-type. For the driving term in the inclusive structure functions we

will have a D-type coupling. For the notation we refer to Ref. {(13).

There are now eight 6a(j), a=1,...8., We shall need to sclve for

Bem = 53 3 %-68; given the usual SU, classification of the electromagnetic

current (13). The 6& satisfy the algebraic equation

Pa T Poa A E Kab Py (3.1

where

5o E 5. () =35 (D)

Irs

JNED
(3.12)

R, = I, 07 5 G
r

Writing these equations out, we see by inspection that

After which one is left with three equations

(8x Ko_+ 3) 6, + (2A KO"9) fg = ~ lg oy

(88X Ko + ;) 04 + (7X KO~12) Pg = ~ 27 ¢ : ‘ (3.13)

(A KO -3 o + 37 KO og
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which can be solved without trouble to yield

6,(0) = B8,(3) = 8,(J) = ~——r— (3.14)
3 6 8

The solution for the Mellin transformed curremt—correlation function is then

just

Bon(d) = ——— (3.15)

which involves nothing more than a rescaling of X and 60, and only changes

the eigenvalue equation for a(X).

7. Incorporating SU3 for the inclusive structure functions is a bit more in-
volved., For now we just note that by the same method as above we have for a

. . B . 6 . .
current of index <Yy an inclusive structure function F_ to radiate a particle

of type a and

Ca . b Za,. . .
FLGE) = e Fos8) * 2 g c, FpG,8) 05,8 . (3.16)
where
a _ 2
C,Y - % (da,Yb)
ot et
Quite independent of any model we expect the U-spin relation F' = F to be

satisfied. In order to obtain further relations it is necessary to solve (3.16).

We can obtain some useful relations for the region w > 1 by remarking that
the driving term dominates in this limit. We have already used this feature
several times, and will do so+again; Equation (3.16) then simplifies to the

K

. T . . .
first term, and apart from F = F (U-spin), the other particle ratios are

given by Clebsch-Gordon coefficients for D-coupling,
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°
lim ~— = 2
1 K+ >
“rloF
K+ 5 (3.17)
lin F/F =<
w1
One can even get a ratio n'/K+ = % in this limit, if the n' is pure’SU3 singlet

but one uses the nonet d,., .
i1k

In dual or quark parton models the above relations are lower bounds (14,15,7).
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IV. Multichannel Effects

1. We will now consider some modifications to the bare bones model. Our aim
is to see what changes this introduces in the results of the preceeding sec-
tions. We are principally interested in seeing what happens when we relax the
assumption that the decaying hadron system keeps J = 1. For example, one could
imagine that the system carries out a random walk in J as it decays. By

virtue of the scaling property of the model, and the logarithmic multiplicity,
the number of jumps on a Chew-Frautschi plot only grows as lns, and we expect
that a random walk in J during the decay will lead to predominantly low J
values. It seems worthwhile to simplify the problem by considering a decay chain
in which all particles have even G-parity and the spin is replaced by some

other label. For technical reasons which will become obvious, we also to re-
strict the problem to one with only two decaying states. We thus imagine that
the initial state (which we shall call p) can radiate a ¢ = + "pion", p ~+ o7,
make a transition ¢ - Ar (or the reverse), or that the particle "A" can radiate,
A + Ar. The vertices are characterized by couplings Al,u and~A2, together with
Ku and K

associated vertices K as in Sect. II,

1°? 2
We do not think it necessary to include the spin explicitly but we might
mention that if our G = + "pion" were pseudoscalar, the p had J = 1 and the
A J = 2, then all the vertices would involve the same type of spin factors,
which can be explicitly removed from the problem. The extra kinematic factors
coming from the spin of the A are included in the explicit form of Ku gt
*
Hopefully this two component example can give us some insight into the

features of chain emission models when multiple spin transitions are allowed.

2. If we now assume that all the vertices scale, just as in the case treated

*

in Sect. II, we cann directly write down the expression for the Mellin trans-

formed p by summing over all possible configurations in Fig. 5,

8

SG) =] B )

n=o
n-r-m m T
n n-r A U A
-~ g n 1 2 . ~r—n
@ =] 1 Cp e — =& GN7 x (4. 1)
T=0 m=0 (n-r-m)! m! r!

< K, GNT Ky GNT 3G
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where K here is just that introduced in Sec. II, with X replaced by

A],Az,u . The cross section for production of N = n+nO pions is given in terms
of the transform of pn(j), which is a homogenous function of Ay kz and u of
degree n. The combinatoric problem to be solved t1ies in the calculation of the
Czr. Once this is done, we can get <n> and <n2>, from the expressions

(0 = B(s,h shy0w))

d d 3
> = —— —_— + _—
<n> p = (% 7 Ay 7, u au) P
(4.2)
2 N E 3 .2
@z Oy o Maw, TH )P
just as we did in Sect. II for the less complicated case treated there.
3. The calculation of C;r can be carried out by constructing the generating

function of the problem (16). To do this, we need to keep two rules in mind: the
vertices Al and Kz are not allowed to be adjacent, and there can only be an

even number of u-vertices separating two identical sets of Al or Az vertices.
The factors taking account of the identity of all the KI veptices, etc., have

already been included in (4.1).

Constructing the generating function requires some patience. It turns out to

be

1 1+ [1]

G(xyAgm) = (=xpa-wy - i7izn
il KZ uz Al
[11 = 5 + 5 (4.3)
1-u° 1=, T
L A uz A
1 2
(2] = — * 7
TR S I=u”  1-a,

n . . . . L
Cmr is now obtained by differentiation
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0 fBTTm S0 T
Cmr - 5y BT LIPS G(AIAZU) A= ==
1 " 2 17 h2THT
(4.4)
- G(n—mur,m,r) (0,0,0)
We can now go back to (4.1), writing it as a Taylor series,
@ N n-m n—-m-r
PR a g ALK
53y = 5 Y T ] O Kp) y
n=0 m=o0 r=0 (n-m-r)!
(4.5)
r
(K )™ (LK) .
N ? 2 % G(n m r,m,r)(o,o,o)
m! r!

from which we see at once that

B() = B () GOUK ARy, wR) (4.6)
4, The asymptotic behavior of p(s) is determined by the leading poles of
5(j), which are in tura given by the zeros of the denominator

-1

g (MKp, A,Kp,0K ),

-1

g = 1 - [1] [2] , {(4.7)

with [1] and [2] as in (4.3). Now e want to introduce a simplification by

choosing K K, = Ku = K. Then the leading singularities are given by

17 %2
(o = a()),
g ! O K, %K@, K@) = 0 (4.8)
where
1 -2 K{m = 0 (4.9)

determines a(i) if X 1is given by a solution of (4.8) with K replaced by 1/X.
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From (4.3), (4.8) and (4.9), it is a simple matter to see that X 1is a solu-

tion of the eighth order polynomial
Py = 055D [0 6%
W0 ~8) (h =6) + w(h #8) (=h +8)] (4.10)
x [ +8) (A= +8) + u(Ao+6)(A—kO*6)]

where ZAO = Al + Az, and 28 = A] - AZ. We now choose AZ < Al and note that

P(AZ) < 0, P(AO) > 0, P(Al) < 0. Thus, in the interval between Az and Al we

have two solutions (Fig. 6) which we denote by A_, Az < A_ < AO < A+ < A].

From the preceeding, we see that the presence of two channels leads to a
classic split-level problem. We will refer to a_ and a_ as the "up" and "down"

soluttons. Then p{s) is given by

1
O(Sskls}\zsldﬂ = 7 (p+ + D_) (4.11)

+ a - + . .
where p, = C s with A K(z,) = 1. This solution has the expected properties:
* £k

(i) as AI’AZ > A(§ + 0) we have A+ A_ and C+ + C_; (ii) as uw > 0, A, =~ Al and

C, > C_. We will not need the C, in the following discussion.

5. From {(4.2), the asymptotic mean multiplicity can be calculated to be
1 1 —(a+-u_) .
<p> = 5-(n+ +n_) -5 (n+ - n_)(]—s ) (4.12)

where n, =A(A %%- s lns. From this we see that the multiplicity increases more
slowly than lns at finite energies. This is because the second term above is
negative. We can see this by noting that A3a/3X increases monotonically

(see Sec. II) in A, leading to n_ > n_. Physically, there are two modes contri-—
buting to the total multiplicity, which is depressed at non-aysmptotic energies

by the presence of the second component n_. Asymptotically this component dies

away and <n> - <a_>.

The most interesting effect of the coupled channels lies in the dispersion
or the behavior of f2 = <n(n-1)> - <n>2. We have, parallel to the result in
Sec. III,

It
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2
<n > — <>

2 D, P
-+ 0% ZIms 4+ (@, - n)° (4.13)
32" Av 4 p '
where
2 2 2
62X -0’ Lp 0Py ]
522 Av 527 =, 32 a=a_

We see that the presence of two channels tends to broaden the distribution at
non-asymptotic energies. This is again what we might have expected: there are
two components at different n_ and this makes the overall distribution in n

broader than for each component alone. Of course at asymptotic energies

_ ! +
P=p,=5C, 5
o
<n> = n+ = (}\ —a-x)?\ 3 (4.]4)
+
2
_ 2 370, 1ns
£, = O =555

Clearly, the inclusion of a second component will modify some of the conclu-
sions in Sects. II-III so long as the energies are not "truly" asymptotic. This
depends, of course, on dynamical details (the exact values of a, and a_). Be-

a(r)

fore, we had leading s dependence for p(s) and now it is split, as in
(4.11). Now we can have distributions much broader than those in the single com~
ponent case, clearly, adding more components would accentuate this. However,

we expect the qualitative features discussed in Sect. II-III to be restored at

I3

sufficiently high energies.
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V. Two-Particle Inclusive Distributions

1. We shall now turn to the two particle inclusive process e+e -+

ﬂu(Pl) + ﬂB(Pz) + H for which we can cobtain some useful lessons from the spin’
and isospin dependence of the bare bones model. The kinematics of the twice
linclusive process has been treated elsewhere (17,18). We shall refer to Ref.(18)
for the necessary details, and simply cite the material we require. The dyna-

mics is contained in the hadronic tensor

aB - L PP -
wuv (PI’PZ’Q) T g §(Q PIPZ PH) %

<of 3 @] 1@, Ty, B (5.1)
< @), WB(PZ), H| J_(0) [o>

We shall need the decomposition of this into invariant amplitudes, which reads

af 2 i o 7
W (PR, Q) = ]ZH o Wy @hupsupngy)
Vv v v, .2
'Y o= g - QiR
(5.2)
YV AU Ay
r,m = Py P,
uv o Au AV
ry = By P,
uv _ l Al Ay AY AL
I, = 3 [P} P2 + P] PZ]
w1 Al AV Av AU
rg. = 7 [B) Fy - By Byl
B F - (e @'/Q°
i 2

: . . : . . . +
We shall not need T5; it is only measurable when longitudinally polarized e e
beams are available. The invariant functions W, depend on the kinematic inva-

riants
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(5.3)
_ 2,.2
= w.w —//wz - EEE V/wz - ﬁEi cost
172 1 2 2 2 12
Q Q
. . . 2

or equivalently using the.missing mass MX = (l—ml—w2+n12) 5.
2. A complete discussion of this process is beyond our aims. We shall re-
strict the discussion to. the case where one hadron (p] say) has g N 1. Then

1
we consider the dependence on wy, coselz, the angular variables, and isospin.

This will demonstrate the usefulness of stuying this kinematic region.

As an example, we might mention that already in the single particle inclu-
sive case near u A 1, one can obtain information on the normality (n=P(--)J
where P is the parity) of the systém recoiling against the hadron with w ~ 1.
This is the limit where ome has two body 7 + X form factors, and one can see
from the parity rules of Ref. (19) that a system X of even normality cannot
have a sin29 component in the single particle distribution; a system of odd
normality can. We shall see that a similar situation also occurs here for the
two particle inclusive reaction (Fig. 7a) where we measure the angular depen-
dence of P2 with respect to P] as axis, This is analogous to what occurs in
inclusive electroproduction e + H ~ e' + H' + X in the current fragmentation
region, where definite normality in the Reggeon channel (Fig. 7b) has implica-
tions for the helicity amplitudes of the process and thus also for the angular
dependence (azimuthal terms like those in Equ. (5.7) below. (20,21)

As to isospin, we can compare isospin (charge) correlations between one
particle of definite charge at W, % 1 and another of the same or different
charge as a function of Wy s

In all of this we shall stay with the bare bones model, where the hadron
system keeps J = 1 and we have 1 emission with alternating isospins along

the chain.
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3. We concentrate now on W, N 1 because of the vast simplification it brings:
only the first term in Fig. 4 is relevant, the others being suppressed by

powers of 1 - wy (II). We have already remarked on this in the single particle
inclusive case. Here it means that we can forget many of the complications of

the two-particle inclusive process. We have a factorization property from Fig.4: for

N . . . . . . . .
w, v 1, the W, distribution is given entirely in terms of structure functioms

1 .
for the single particle inclusive reaction with a current of different isospin

from that of the photon. For the moment we shall suppress the isospin, writing

2 _ _ 2
WL R,,Q) = (F(s, (me ) [T e o e ige e X
(5.4)
t 1 1
<72t BE W (py,0R))
where F(s,(l—wl)s) is the invariant vertex and
; 2 !
WV, = @Y - Qe (@ fhy)
(5.5)

The results are most transparent of we write them in terms of helicity struc-
ture functions defined in the lab system with z-axis along Py and x-axis lying

. . + - .. . .
in the plane defined by and the e e collision axis. Then we define

: _oouov *Fo(2)
Hiyo = 8y £y va (5.6)
where
ai = 7 1/¥2 (0,1, i, 0)
U
EO = (0309091) -

Now take the angle of Py with respect to the beam axis (the e momentum, say)
to be & and take the vector P, to lie in a plane defined by P, and P, and
rotated by an angle ¢ with respect to the x-z plane. Then the cross section

(18)

reads



3
ds 3 2, 49,
33 = Z—(1+cos ) 3
dv”® d"R dv
3 3 .
d7o d”o
+ g—sinze L, 2 sin28 cos ¢ T (5.7)
4 3 4 3
dv dwv
d30
3 .2 I
- 575 sin 8 cosd 3
" dv
where
3 327 o p,p
9-% = 21 2 Yo i o = U,L,T,I
dv 3 s
and
1
HU = 3 (H++ + H_)
HL - Hoo (5.8)
HT - H+—
HI = Re H+o
3 3
dv™ = dwl dwz d c:ose]2 ; AR = 4 cosd d¢ (5.9)
Now we simply calculate from 5.4, obtaining
2 2 1 2
= - - | -
H,, [F(s, (1=wj)s) |7 sp] Giy + 5 Pl W,)
2 2,1 2
Hyo = [FGs,(0mu)8) % s ] (5 pop W)
(5.10)
H = 0
+0
H = 0
00
t L
where W, = wi((l—w])s,.wz), with Wy the scaling variable for the system recoil-

ing against pa

29

rticle 1 (we already used this in Sect. II). It is given by
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(5.11)

4, Now we can see that-there is a great simplification in {(5.7), most of the

‘terms being zero,

| 3 3

6 d”ag d7c
_%_E_—E v %(1+c0526) ——53 + % sinZG cos¢ 3T
d”v dR w]+l dv dv

(5.12)

Additionally, we can note that P2T =-% wz/g sin {2 SO 2s to see that for

w, »0, H_ +o0 also. Equation (5.12) is a consequence of the normality struct-

2
ure of the initial pion emission vertex in Fig. 7a. It depends only on the fact
that the recoiling mesonic system has even normality. We can check this for an
. 8|
n = + system of spin J (polarization vector e

J) which has a vertex pro-

portiocnal to

o _T .
P, plul cee Py, © (5.13)

€ oT
UOLI J

which leads to the same structure as the above. This result changes, however,
when we change the normality of the vertex. The n = = vertex which gives a

. 2 \ . . . . . . .
sin“8 component to the single particle inclusive distribution 18

Otl...OtJ

@ Q gy, "0 Q) Py e Py | (5.14)

and we can veritfy by a straightforward calculation that H ,, H__, and H+o are
proportional to (1~m1)2, while Hoo survives as wy 1,

H_>>H_, [H "

o0

(5.15)

5. We see from the preceeding that two particle inclusive distributions can
be used to study the spin structure of the vertices in chain emission models.
Extending this observation, we can obtain a test of the general idea of such
models as we have formulated them. This class of models rest on the assumption
that the system recoiling against a pion has low spin (J = 1 in the bare bones

model). For the case wy | it is useful to carry out a Lorentz transformation
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to the rest frame of the recoil system and then consider the angular distri-
bution of particle 2 in this frame (the z-axis is still parallel to Pl)' The
azimuthal dependence is contained already in (5.7) and the discussion above.

If we define g to be the angle between Pé and the z—axis in the rest frame

of the recoil system, then clearly the polar angle dependence in this frame can-
not be of very high order in cos;, since we have assumed that the decaving
system has small J(again, J = 1 in the bare bones version). It is evident

that sharply peaked distributions (along the z-axis) would not be consistent

with any model where the intermediate J 1is restricted.

A second remark follows directly on this one. Since for fixed w. and s - o

]
]/2, the limita-

the mass of the recoil system grows proportional to {(l—wl)s]
tion of J and the scaling property in m; for the decay of this recoil system
lead unavoidably to the conclusion that the model cannot have bounded momenta
transverse to Py- At low energies there might'appeaf to be a cutoff in trans-
verse moment?m, because the rapidly falling Wy distributions (they must

vanish for Wy > 1) may be expected to lead to falling distributions transverse
to Pys @s inspection of (5.11) will show. Asymptotically, however, the mean

P perpendicular to p, must grow asymptotically proportional to (]*-m])l/2 Vs,
This dependscritically on our assumption that the spin of the cascading hadron
system remains small, and is a test of that feature of'the model. This is quite
unlike the situation in parton models, where Py is bounded and in the rest frame
of the system recoiling ?gainst P, there must therefore appear a marked peaking
of the distribution of P, parallel and antiparallel to Py Moreover we expect
that for a rapid Pr cutoff the azimuthal dependences in (5.7) will all wvanish

at large s (18) (see,‘hOWever, Ref. 22). Physically, the azimuthal dependences
in chain emission models (e.g. H _ # 0 for a pure n = + recoiling system) are
due to the fact that the recoil system has J > 1 and is transversely polarized.
The azimuthal dependence is then a reflection of the angular distribution of

the decay of this polarized system. In the spin one half parton model, such

asymmetries vanish because of the rapid Pr cutoff.

The preceeding remarks would be altered if we allowed the recoiling hadron
system in the model to have large J; the distributions would then become peaked
from the deéay distribution of the high-J system. We wish to indicate briefly how
this could occur, and point out that such a phenomenon can be put in a general

context, a timelike analogue of the Mueller~Regge discussion of the inclusive
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distributions Yy + h > h' + X (20). In that case one starts with a t-channel

six point function and carries out a generalized Sommerfeld-Watson transforma-
tion and introducing a helicity-pole limit. We wish to take over the apparatus
of Ref., (20) to the case at hand where Q2 is timelike and so are two of the
three Reggeon t-values (i.e. we assume that one can cross from one region to the
other, preserving at least the functional form of the multiregge expansion}.

In this way we obtain for the helicity structure functions the following

expression (understood to be a local average in (l—wl)s):

Hoo = 8] (s, (1mup)s) 8y, (s, (I-w))s) -
(5.16)
. [ l*wz ] 2a((l~m1)s) )
L

1
l—wl—wz + §~w1w2(l—c05912)

X F(a, = a, Moy (Imw)s, (1=u))s, ty = 0)

The expansion is a helicity-pole limit of Figs. (8a), (8b); tl =t, = (l—wl)s.
F is a reggeon inclusive decay distribution and the quantity in square brackets
is the asymptotic variable (a t-chanmel azimuthal angle - see Ref. (20)). If

we now assume that the residue scales, i.e.
8(s, (Imw))s) +s' 8 ((1=w)s)

as s > =, 6 fixed, and further that «(t) is linear in t, we see that the cosb,

distributions entering (5.16) are strongly peaked forward and backward, when

1—w2

1
]—wl—wz + 5 wlwz(l‘*coselz)

>» ]

Expressed in terms of P P, SinelZ’ we find that. as s - =, 1 >> (l-wl),

l =
(l-wl—wz) > 0, ‘the transverse momentum distributions are contained in a factor
exXp { - 2u| Elfi:fll p2 }
]_w]*wz

provided pi < <(1~w1—w2)s.
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The model discussed in this section, either Reggeized or in its simple fixed
spin version may be the relevant mechanism for this kinematic region, in de-
pendent of the main details of the cascade mechanism, since the integral or
iterative term vanishes as wy > ] mainly for kinematic reasons. It is there-—

. fore also worthwhile to consider the role plaved by isospin, which we discuss

next, and is independent of the spin issue.

6. When we consider the isospin dependence of the bare bones model, we see

that it predicts marked charge correlations for wy > 1. Let us first consider

the isovector component of the photon. By referring to Fig. 9a one can readily

see that

+ -
) WEEI = 0 and W;EI is non-zero to leading order in l*w], and is

independent of B(a,B=+,-,0).

Simitarly , referring to Fig. 9b, one has for the isoscalar photon case

af - :
(2) Voo © Wil 84, £OT wy ¥ 1 or wy ¥ lmuy (coss , X 1)

Putting this together with an isoscalar/isovector ratio of 1/3 we find for

the region Wy No1:

3) WP 5> B rfor' all w, and § = +,-,0.

(4) WO > W s> W' for wy V1 or 1 - w, (cosd , v 1)

(5) Wh=w YW o for 6y V1orl-w (cosd , ¥ 1).

(3)-(5) imply marked differences in dc/dwldw2 for the different charge
configurations. We illustrate this schematically in Figs. 10a,b,c, where we
comparé 6,8 = (0,+),(+,-) and (+,+), plotted as a function of the variable

-~

w, = sign (cose)wz.

We have considered the bare bones model here because it shows in a clear
way how charge correlations can tell us about the isospin structure of the
chain. The same arguments can be repeated for other chains of different
isospin structure. We reiterate the remark in Sec.III that the above reflect
the octet character of the recoiling system. By contrast, one cannot have

such dramatic effects in the parton model where the fragmentating states are
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triplets (quarks) /7/,/23/,/24/. Of course, statements like wreaw’™  as
Wyswy > 1 is a reflection of the suppression of exotic states in the missing

mass and is presumably independent of the model.

VI. Non-Linear Effects

So far we have discussed the linear chain model and its variations. We
remarked in the introduction that such a model can be understood as an
extension of the low energy production of states like 7w , allowing the w
to ga off shell as Q2 increases. A similar fate could occur to low energy
processes like ete” = p+p_. The ¢ mesons being allowed off shell as the
CM energy increases. This branching into two off-shell states introduces
nonlinearities into the original model. Besides mentioning this possibility
we should note that the entire model would look suspicious if a(X) could
become arbitrarily large; if we were not dealing with a two-point functiom,
one would supsect the model of being in some sense non—unitary for large
a{A).

Some time ago, Polyakov(ZS) showed that one could rewrite the discontinuity
equation for the propagator in a form similar to unitarity equatioms. We
shall show here that the inclusion of monlinear effects via a somewhat
similar expansion (but with the linear chain as driving term) leads to a
constraint on the value of a()). TFor small enough «(X) the nonlinear
effects are of little importance at asymptotic energies. Therefore there
are conditions under which the linear chain model is stable against the

introduction of such branching effects.

The equations, including nonlinear terms, are diagrammed in Fig.(11).
Note that the interference terms shown in Fig.(lla) have to be explicitly

included, as they would not appear on iteration of the remainder. A new
2
],
the initial state to branch inte two similar states of masses /6? and VE%.

branching vertex appears, V(Qz, d Gg). This represents the amplitude for

For the two-propagator term shown in Fig.(l1b), we have

6.1y o)

. |
J Sk [ve?ef, (@™ |2 J ao? o (oD)2v §%(Q}-0%)

x

J dU% o (G%) 27 6+((Q‘Q1)2 - 0%)

2 2
(a2 asg 0 6D 0 ] [V(Qhe3.09)12 1,0 0% ,00)
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IL, (Q ,02,02)

8(Q” 105,05 )

A(Q],U%,c%)/ﬁws is the two body phase space factor, where

a(n) 2172

(Q R ],02) » A being the usual triangle function.

Introducing Mellin transforms as in Sec.II and writing 0% = n.;s we can

rewrite (6.1) as

dj-dJ R I4t]
6.2y @ s) = —L-J 2 172

i | 3T P (JI) o (32) s

x dnl dnz A(l,nl,nz)n] nz S IV(s,n,s,nzs)I
The contours run from =-ie to +i= to the right of all singularities.

We shall study the case Nys N, >0, in conformance with our practice

2
of assuming dominance of the off-shell region in the equations. We further

assume again a scaling law (y is a convenient scale factor)
2 =3
(6.3) sTVIZ e usT e (|2

as s + » , Now we take the Mellin transform of p(z)(s)' and find

. . (2)y,. .
~ L2y 41y di, . PR G S DY)
6.4) o) - [zﬁz}j s P8y 12
(33173 ,*6)
where

@), . | iy 3y,

The corresponding analysis of the interference term Fig.(llc) is more involved.

Written out in the same way as p(z), ’
6.5 5P (o) = [ a7 403 a3 0 (Do 020 (53 x
¢odtqp dRg,
JW O 21§ (QI—02)276 (Qz—c2)2'n6(Q%—c%) %

X

V' (s, (0,400 %, 010" ((Q,+04) ?,02,02)

X

T+ %, 03, oDV(s, (@) 00 .
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The reduction of the three-body phase space integral involves some algebra;

we only state the result.(26) Introducing the scaled variables (Q2 = g)
2 2 _
ofy =mn; s Q Q)" =-(1 - p.)s

and the cosine of the angle between the momenta of the "legs'" 1 and 3

= - o _ oo M2, o, 2. 1/2
Z c05913 = 2(.;31 4n1) (03 4ﬂ3) X

!
x {np + g+ 500y - 1T+ o+ ”2}

3 s

we have for the Mellin transform of ¢

2 JZJ djl djz dj3 ~ ~

6.6 o) =5 {u 71 et zen C e e ls) x

16 |4m<

e (521,005

* 37535735728
where, allowing for the other interference term,

(3) _ | 242
@5 Re{fdpldpzdnldnzdn3 G(D] 4n])

i, d, 3
2 3
8(0%-4n2) 8(1-]z}) nll n, " g

¢6((]_pl), nl) ¢6(n2/(1_01)9 ﬂ3/(1'D1))

¢6(n1/(1"03), UZ/(1*03))¢5((1‘D3), ﬂ3)} .

At this point it is appropriate to remark that we can treat a type of diagram

not included in Figs.(lla—c¢)(i.e. Fig.(12d), where the propagator is replaced

by a pion and uV by AF , the pion radiation vertex) by setting c% = mi .
In the model without spin this leads to a kernel of the same general
structure as {7) with j3 >0 and 26 =+ & in (6). This will lead to a
singularity to the left of that in (6), and to a contribution which decreases

faster asymptotically in s than the interference term of Fig.llc.

From this we see that the Mellin transformed integral equation — including

even complicated interference terms ~ will have the form
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6.8) () = o () + AKG)p(D)

o N-1p N di . oM™ 5
M K . & 1 N
+ 2 I "_'Q(JK) T
2 k=1

4n 271 jl— . -jN+ (N-1)

i r~18

N

We shall not attempt to solve this, but rather search for a condition under
which the linear chain servives as the asymptotically dominant contribution
to p(s). An obvious precondition for this is that the sum in (8) make
sense. To find the condition, we demand that ;(j) have the same leading

j plane pole as the linear chain itself (see Sec.II),

Tery - _x(3)
p(3) = j:azxy +‘...

where r(j) 1is regular at j = a , and o(A) 1is given by 1-AK(a) =0
picking up the contribution of the rightmost poles in the sum in (8), we
see that the condition we desire is that the remaining pole in the summation

not lead that at j = a(}), so
(6.9) N a(d) - (N~-1)8 < a(M)

i.e. a(A) < 8§ . The singularities of the summation now lie to the left of
w{r), and the eigenvalue condition for the linear chain determines the
asymptotic behavior. The presence of the non linear effects is felt through
the existence of a non linear equation for r{j) which can be read off from
(6.8). If we assume that the singulafities of (6.8) besides those at j = o
are known, then the integral remaining after extraction of the poles at

j = a in the sum can be absorbed into the driving term. Under these condi-
tions the equation for r(a) simplifies to the point that we can argue that
as af(ir) = & the residue r(o) + 0 - i.e. the linear chain decouples.
This is most readily seen when the interference terms vanish {(i.e. @CN) =0
N z 3). This is clear from the fact that the quadratic term in r(a) is
multiplied by (a—é)_l; o + 6 corresponds to a solution r(a) > 0. We have

(N). This

checked that the same occurs for a wide variety of Ansitze for ¢
indeed looks like a condition putting an upper limit on o(X) - a kind of
unitarity condition. If this is unchanged when including other singularities

than those which can be included into the driving term, we expect that for
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a(2) > & the nonleading terms will become the dominant ones. Presumably

the branching process will then become the only relevant mechanism.

For o(X) < & , the main emission process is that due to the linear chain.
The non linear effects arise at the end of the radiation process when the
hadron system no longer has asymptotic masses (i.e. in the driving term). The
particles in question have low w« , so that we have identified one more

mechanism which ruins Feynman scaling at small « and nonasymptotic energies.

We close by considering some of the qualitative differences between a
linear chain model and a model where the branching process dominates. For
this purpose we introduce the rapidity of the produced hadron
0<y=4in E%g < in %? = Y. The chain model has a plateau of constant
height for o ! do/dy as long as vy > 2 and Y -y =2 . This plateau
grows in length proportiomal to Y .. At finite y < 2 o} do/dy can grow
in height proportional to Y ; ‘we discussed this anomaly in Sec.II. The
region Y - y § 2 is where the structure function falls rapidly in x
corresponding to the fragmentation regionm in hadronic reactioms. We might
mention that the behavior of o~ ! do/dy 1is similar in the parton model,
except that no anomaly occurs for y ¥ 2. See Figs. (l12a) and (12b).

(25)

Branching models are quite different; they have been discussed by Polyakov,

(27) Under certain

and, in a different form, by Rittenberg and Orfanidis.
assumptions 0_1 do/dy becomes proportiomal to a gaussian in y , the width
growing as ¥Y. Neglecting the width, the distribution is centered at

v % (1-¢)Y where ¢ is given in terms of the multiplicity growth,

> « (Qz)s/2 (see Fig.12¢). A power growth of n, e > O, is typical for
such models - independent of the precise form of o_] do/dy — as is the
conclusion that KNO scaling holds, Un/c = €n>—1 v{n/<n>). In the model of
Ref.(27), the gaussian form holds provided Iy*}\ is not too large. In

. Y .
general, then, the area under o do/dy increases as e° in such models.

All these statements hold for large Y. In the linear chain (or parton)
models one needs Y 2 5-6 for the full structure to appear; for branching
models, similarly large Y should be necessary as the .number of 'branches"
per event (proportional to uN in Eq. (6.8)) is proportional to Y . Such
large values of Y <correspond to ¥s 2 40-50 GeV. At presently attainable
values of s ~ 5-8 , Y ~ 3-4 and most models can probably be made to look

like the data, which shows a hump in y of width =~ 2 units.(zy)
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At such low energies correlation measurements of the sort discussed in the
preceeding section may help to sort out the different physical mechanisms

. . . + - _ .
which might be responsible for e e annihilation.

VII. Conclusions

We wish to recapitulate briefly what we have learned. We have studied
chain—emission.(cascade) models for e+e_ annihilation. Such models lead for
a power law behavior for the ete” total cross~sections, somewhat analogous
to the multiperipheral model for hadronic total cross-section, however in
the latter case the power law is restricted by unitarity. Although a
forward unitarity condition restricting the power is absent in ete” annihila-
tion, a unitarizing mechanism can be constructed. This was discussed in
Sec.VI. The chain models lead to Feynman scaling, except in the limit w - O,
where it is brokenin a well defined way. The multiplicity grows as fns , and
an instructive feature of the models is that the coefficient of this logarith-
mic growth is not given simply by integrating the scaling function down to
its lower limit. Since the model is solvable, it is possible to use the
energy sum rule to study the approach of the cross section to its asymptotic
limit, which is from below. These features have been discussed before

(I,1I), but we treat them here to emphasize their generality.

Since our main aim in this paper is pedagogical, we carried out much
of the discussion for a simplified version of such models, in which the
spin of the decaying hadron system is fixed at J = 1 while it emits pions,
the isospin of the hadron system alternating I = 0,1. We find that,
although the ratio of neutral to charged pions approaches 1/2 asymptoticaliy,
it only does this logarithmically in energy. More interesting, the alternating-
isospin model offers am explicit example of how the ratio of neutral energy
to charged energy (total) can deviate even at asympéotic energies from 1/2.
We conclude that if, in fact, the neutral pioms carry off much more energy
on the average then the charged ones then the isospin structure of the chain
is strongly restricted. Further information on the isospin structure of the
model can be gained from studying the mean number of neutral pions for a
fixed number of charged pioms. Much more informative, however, is the
behavior of the "branching ratio" of a state of fixed pion number into n,
neutral and n, charged pions. This contains the isospin structure in a
particularly clear form. We go on to mention briefly how one can incerporate

SU3 into the model.



40

An important question in chain-emission models is whether they can be
generalized to include other states than appear in our simple example. We
ha?e demonstrated that this can be done in the case of SU3 symmetry. A more
important case 1s that in which the hadron system which decays be emitting
pions has spins other than the J =1 of the simple model. We can claim

no complete solution; instead we have studied the problem in a simple example
. where there are two states (e.g. with J = 1 and 2) with transitions possible
between them. This is a coupled channel problem, and we see that the features
of the simple model with one state are recovered at very high energies. At
lower energies there can appear corrections: number distributions can become
broadened due to the presence of two components, and so on. Considerations
of this sort may also become important if one wishes to drop the assumption

of alternating isospins which we have been using for illustrative purposes.

We go on to study two-particle inclusive ete” annihilation. Here the
properties of the simple model show themselves most clearly. We study the
particularly useful case where omne hadron has large momentum W, = 1. Then
we find that the mean momentum of the second particle transverse to the axis
defined by the first should grow asymptotically like [(l—wl)llng , L.e.
there is no transverse momentum cut off. However since the coefficient of
the growth is small in the Wy - 1 regiom, large transverse momenta will
only be seen at very high energies]. The cross section for the second particle
turns out to have an important dependence on the azimuthal angle about the
direction of the first particle. This is unlike the situation in parton
models with spin 1/2 partons and a transverse momentum cutoff. In fact, these
azimuthal dependences have, in chain-emission models, useful information on
the normality of the system recoiling against one fast hadrom. As a by-
product of our discussion we note that it might be interesting to analyze
the angular distribution of particle 2 in the rest frame of the system
recoiling against the first (fast) particle. This can.tell us about the
spin of the recoil system and would check a fundamental assumption of the
model: that the spin of the hadron system does not become large. We have
also considered the possibility that the spin of the intermediate states are
controlled by a regge trajectory in the time like region, in this case the
spin grows slowly with s and a strong damping in pi emerges. In the
latter situation, which can be thought of as a time like Mueller Regge
expansion, the normality and isospin relation remain the same and the main

difference lies in the transverse distributions.
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In conclusion, we would like to thank those few who have actually read

through to this point for bearing with us.
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Figure Captions

Fig;l The decay chain.

Fig.2 The integral equation for p(s).

Fig.3 The integral equation for one particle inclusive production.
Fig.4 The integral equation for two particle inclusive production.
Fig.5 The decay chain with two states p and A.

Fig.b Sketch of the polynomial P(A).

Fig.7a The two-particle inclusive driving term near w, = 1.

Fig.7b Diagram for single-particle inclusive electroprlduction.

Fig.8a Thecrossed channel six-point function, in which we have indicated
the partial wave decompositions of the my channels with channel

. invariants t, and t,.

Fig.8b The time-like Mueller Regge diagram, which we have assumed can be
got from Fig.8a by crossing.

Fig.%a,b
Diagrams for two-particle charge correlations with Wy s 1.

Fig.10 Qualitative picture of the distributions in wy = sign(cos@)w2
for a pion of definite charge at w; ~ I.

Fig.1la The equation describing the cascade with non-linear terms.

Fig.1lb The two pronged contribution.

Fig.lle The three pronged interference term.

Fig.11d An interference term involving a single pion.

Fig.12a A reduced rapidity plot of the one-particle distribution for the
‘chain emmission model for two very large values of Qz.

Fig.12b The corresponding plot expected for the parton model.

Fig.12c The corresponding plot for branching models.
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