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It is shown in the framework of scale invariant models that a simple
ansatz for the anomalous dimensions allows us to determine the ex—
perimentally observed variation with Q of the one-charged particle

inclusive cross section.

Our calculation sheds no light on the behaviour of Shad with Q

since we have werked with the inclusive cross section normalized to

the experimentally measured “had" »

On leave from the Tel-Aviv University



It may sound odd to check experimental predictions of scale invariant theories
for the one-particle inclusive spectrum when the safest prediction of these
models o, . ~ Q_2 seemsg to be ruled out by the CEA~SPEAR data [1,2]. We feel
however that at the present stage of the game any hint that at least some pre-—
dictions of "conventional' theories are compatible with the data could be

useful.

We consider the one-charged particle inclusive distribution which we assume to
be isotropic and given mostly by charged pions in agreement with experiment [2].

We thus deal with only one structure function.

It is useful to define the distribution

1 dg
h(y,Q?) = 5o 4y (1)
¢ “had
where vy = 1ln %% , E is the pion c.m. energy and H; is the average multi-

plicity of charged pions. The function h(y,Qz) satisfies the sum-rules:

froaay = 1,
(o]
(2)
oo _ {-_;C
j e ” h(y,Q?) dy = 2 ﬁ“' )
Q C

where ECQ represents the fraction of energy carried by charged pions. From

the experimental data for ‘%- %%- X = %?, p is the magnitude of the pion
3-momentum) we can determine h(x,Qz). Unfortunately there are no data for
0 <x<0.] and 0.8 < x < 1. We have thus extrapolated by eyeball the cross
sections to x =0 and x = 1, knowing that %% should be zero for both of

n.=3 for Q=3 GeV and ng= 3.7

for Q = 4.8 GeV. Had we taken the quoted numbers [2] for the average multipli-

these values. In this way we have obtained

city E;= 3.7 *0.4 and respectively E;= 4.2 0.4y our conclusions would re-
main unaffected as we have checked. The function h(v,Q?) for Q = 3 GeV and

4.8 GeV is shown in fig. 1.

Knowing the function h(y,Q?) at Q = 3 GeV we will try to determine it theo=-

retically at Q = 4.8 GeV. Since we are looking for the variation of the



function h(y,Q?) with Q% at fixed Y, we have not considered the data at
Q = 3.8 GeV since in this case the variation of h(y,Q?) with respect to
the Q = 3 GeV or Q = 4.8 GeV data would be smaller and the affect would

drowvn in the error bars.

Scale invariant theories, among which we include Polyakov's informal bootstrap
4 _. . . .

scheme [3], ¢ field theory with an eigenvalue [4] and branching processes [5],

predict the following sum-rules for the function h{y,Q%):

linm  § e™ n(y,00) ay = z(n) WK 3)
(e}

Q2
2
where k = k(Qz) and asymptotically k = a 1In %5. (a is an unknown con-—
stant and M 1is an unknown mass scale). The function &(n), related to the
anomalous dimensions and the short-distance behaviour of the modelyis an in-—
creasing function of n, vanishes at the origin and 1imé(n) = finite [61].
Z(n}), which depends on the long distance behaviour of"the theory, is unknown

and satisfies only the comstraint Z{(0) = 1. In the class of models we consider
the average energy per particle increases like a power of Qz:

EQ -
?g_ . (Qz)I/Z ad (1)
c

(4)

We use Parisi's trick [7] to compute the variation with Q2 of the function
h(y,Qz) for a given value of y. Taking the derivative with respect to k

in eq. (3) and using the convolution theorem for Laplace transforms we have:

ah y 1 1 1 °

T _gﬁ\(y - 3" n(y',Q%) ay' , (5)
where

S e ™ Afy) dy = - &(n) - . (6)

o

In this way we got rid of the unknown function Z{n) and the variation of h
with Qz is given by h and the anomalous dimensions only. We make the

approximation



Sho 1 ShGr0h) 1 h(r,Q223) - h(r,Q?=9) 7
ok k 3Q2 K 14
. dk
where k' =

565 is an unknown constant.

The experimental values of ﬁj%_ are shown in fig. 2. It is interesting to note
/ | 5% sh(y,02) . y

that the shape of the function "_7%?7__ looks very much like the predictions

of scale invariante theories [6] for electroproduction (the correspondence is

2 VW) 2Zmv, , . . .
h(y,Q“) =+ - ¥ Int= 1n may). 1t starts with negative values and changes

sign.

In order to use eq. (5) we have to know h(y,Q0%=9) and §(n). We approximate
h(y,Q3%2) at Q = 3 GeV by a Gaussian:

-(y-¥)2
1 2g2
h(y,Q%) = =y e
with ¥ = 1.3 and o = 0.6. The simplest model that we can think of for the

anomalous dimensions which satisfies the above mentioned constraints is

A
A+ n

§(n) = 1- (8)

where A 1is a free parameter. The expression (8) for &(n) can always be mul-
tiplied by a factor which we incorporate in k. With the choice (8) for &(n)

we have
Ly) = ~ 8@ +re M (2)

and the integration (5) can be done analytically. Taking X = 3 and normalizing
at 'y = 0.9 (since we don't know k') we obtain the curve shown in fig. 2,

which can be considered an excellent fit to the data.

We would like to warn an enthousiastic reader about several points. First, had

we normalized h(y,Qz) (see eq. (1)) not to but to Q@ 2 we would have

g
had
found total disagreement with experiment. In case asymptotia has not yet been

reached for it seems reasonable to proceed in our way and thus satisfy

U
had
the sum-rules (2) at any Q<. It is also important to stress that eq. (5) has

been obtained from eq. (3) under an assumption of uniformity for the right hand



side of eq. (3). This may not be a bad assumption if we consider the overall

trend of the data the way we did and don't specialize to some asymptotic domain.

It could be that the excellent agreement between our theoretical curve and the
data shown in fig. 2 is an accident, but we have considered it worth mentioning
in the hope that it will be confirmed at SPEAR II and thus revive interest in

. . + - ee s .
scale invariant models for e e annihilation.
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Figure Captions

Fig. 1 The distribution h(y,Q02) defined by eq. (1) at Q¢ = 3 and
4.8 GeV. The data are from ref. [2].

Fig. 2 The variation %%5 computed from the data presented in fig. 1.

The solid curve is the result of our model.
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