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ABSTRACT

The knowledge of the renormalization constants in
ultraviolet free nonabelian gauge theories is exploited in

v - — —»
exposing a new symmetry, R: Au(x) __e‘Au(X) T, under
which the renormalized field equations of such theories are
invariant. As a consequence, we derive the low-energy theorem
for the renormalized proper vertices T“q"'““’(...,q,...)

i

as: 0 = T‘R"'“"°(...,q=o,...) . The relevance of the
theorem to the existence of the S-matrix, confinement problem,

etc, is discussed.
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0. PROLOGUE

"and God said, 'Let there be light', and there was
light." There seems to be no such theological foundation
for the existence of an on-shell limit for the Yang-Mills

particle.

I. INTRODUCTION

In contrast to its more prosaic cousin the photon,
nonabelian gauge (YM) particles seem to be afflicted with
violent infrared difficulties.1 There are extra divergences
in nonabelian gauge theories as these massless quanta couple
among themselves, yielding more virulent infinities in
internal integrations, and the nonsbelian coupling complicates
any attempt to order the chaos.

In the language of the renormalization group, the dis-
tinction between quantum electrodynamics (QED) and YM lies
in the slope of the Callan-Symanzik function B(g) at
g =0 . For QGED, B'(0) > O , and the theory is infrared
(IR) free? (and ultraviolet (UV) nonfree) for small coupling
constant, while for YM, B8'(0) < O and the theory is IR
nonfree (and UV free). This means that IR behavior in QED
is exactly computable in perturbation theor'y3 and UV behavior
in YM is exactly computable in perturbation theory. This
circumstance seems to preclude perturbative studies of UV
behavior in QED4 and IR behavior in TM.

In this paper we will investigate the IR behavior in
YM theories using technigques we have recently de%reloped.5

We will show that, precisely because of the UV freedom,
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exact6 statements can be made about the zero momentum beha~
vior in these theories. The idea is that the UV freedom
enables the renormalization constants to be exectly computed.7
The implied vanishing relevant ratios of such constants then
implies the presence of certain new symmetries in the theory
which are not present classically or in finite orders of
perturbation theory. These {spontaneously broken perhaps)
symmetries then imply exact zero momentum theorems. The exact
behavior implied byrthese theorems is extremely simple:

the proper ¥M vertex functions vanish when any boson four-

Cmomentum vanishes.

The relevant symmetry is what we have called R invariance,.

-
Under the R transformation, the YM field Ap(x) transforms
as
- - -
AW — ALY + Y, (1.1)

__’ - k]
where the rg are constants. Eq. {(1.1) is a particular case

of the abelian gauge transformation

&(x) — ‘Aﬂ(x) + af” K(x) , (1.2)
for
7\’[?&) = -i(’() = .-‘f:;, X}A . (1.3)

It bas previously been shown8 that for theories invariant

under the scalar version

g) — cp(n) + ' (1.4)



of (1.1), if an S-matrix exists, it vanishes at zero four
momentum of any q?—particle; This result is not useful for
our purposes since the existence of the S-matrix is the very
question we want to investigate. We deduce the consequences
of symmetry under (1.1) for the Green's functions and study
what these consequences tell us about the existence of an
S-matrix, among other things.

Our conclusions are that the transverse YM propagator
has a singularity at q2 = 0 and that the proper YM vertices
vanish when any four-momentum vanishes. These results
suggest there are zero mass excitations in the mass spectrum
of the theory, and that it may be possible to construct
an S-matrix for this theory along the lines of Zwanziger.9
We should immediately emphasize that our analysis is not a
mathematicallly rigorous one in that limits are freely inter-
changed, and functional methods.are cavalierly used. OCur use
of these procedures is more suspect here thsn in the usual
applications since the effects we study are due to renorma-
lization. Furthermore, we have to assume that any counterterms
required by regularization do not destroy the R inveriance.

Our results should therefore be considered as suggestive
but not proved beyond a reasonable doubt.

In Sec. II, we introduce the R transformation and discuss
its implications in several field-theoretic models. Sec. III
is devoted to showing the R invariance present in YM theories
as a result of renormalization. 1In Sec. IV, we deduce the
low-energy theorem implied by R invarisnce in YM theories,

and conclude that all proper vertices of M particles vanish

whenever any one of the four-momenta of the external M



particle vanishes. We discuss the relevance of the low-energy
theorem to the problem of the existence of an S-matrix, con-

finement, etc. in the final Sec. V.

II. R-INVARIANCE

The R transfdrmations have been defined on vector fields
in {1.1) and on scalar fields in (1.4), For definiteness,
we will illustrate the consequences of R invariance in QED,
where the transformations for the Maxwell and Dirac fields

anre

A0 —> A/,(x) o (2.1)
Ler-Xx
Yy — e 4wy, (2.2)

This is a special case of the general gauge transformation

AG —> AL+ 9, N(x), (2.3)
9 i e ACX)
$ ) —> pix e J (2.4)
with
Ay = R} =2 y.x (2.5)

As discussed and illwvstrated in pasper I, it is the presence

or absence of R(x) in the gauge group %% Ef; is the set
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of A(x) such that (2.3)-(2.4) is a symmetry transformation ]
that determines whether or not there is a zero mass excitstion
in the theory. Namely, if R € %% , there is a singularity
at zero mass in the transverse part of the photon propagator.
We have deduced the above and other consequences of R
invariance in two ways. The first methéd uses the transform-

ation property [See alsc paper I]

¢ . §
D,qt%) < 0,(4) = D) ? \;%5 (4) (2.6)

of the photon propagator under (2.1) and the invariance of

the Green's function
Sol“xef?"‘<o| T A= T () D Y () . (2.7)
under {(2.1):
M.(3) D) = TT/AK(g) D/KV(g) . (2.8)

Here jp(x) is the electric current and -n;K ig the

photon proper self-energy pért:
= — L 2 2.9
Tr},v(%) (‘gfﬁu ﬁjru) TT(CB ) . ( )
Bqs. (2.6) and (2.8) immediately give

m,() = 0,  (2.10)

which implies that the transverse part



D*) = ‘ (2.11)
3 ) %1+_$1 TT(ﬁl)
of ‘Dp“(%7 has a singularity at q2 = 0
Do) = oo (2.12)

The second method uses formal functional techniques.
The invariance of the lagrangian under (2.1) and (2.2) leads
immediately to exact zero momentum theorems, including (2.10),
for 211 the proper vertices. In particular, the N-photon
amplitude vanishes whenever any photon four-momentum vanishes.
For conventional four-dimensional OED, one has R invari-
ance in each order of perturbation theory and so (2.12)
obtains and the physical photon is thus interpreted as the
Goldstone boson corresponding to the spontaneous breakdown
of (2.1). [ﬁee paper I.] For two-dimensional massless

GED (Schwinger modelqo),

on the other hand, it is shown in
I that R.% %% and that is why the photon becomes massive
in this model. Other models illustrating our conclusion
were also discussed in I. For example, in the derivative

coupl ing model
fr_ = g DA B/C , (2.13)

with A and C scalar and Bp a vector field, R invariance can
be maintained in each order so that A is massless. In
gauge Invariant models of the type recently discussed by
CornW811,11on the other hand, fhere occur for example mass

terms of the form
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M1</’€/. - Cl_l A 9-&)1. (2.14)

This expression is invariant under (2.3) for A (x) such that
gA (x) =0, but it is not invariant under (2.1). Correspon-
dingly, the vector particle acquires & mass in the model.

In all of the above examples, the R invariance was
present classically and order by order in perturbation theory.
The R invariance we will study in this paper is not of this
type, but is true only in the exact theory. To illustrate

the ides, consider a scalar renormalized formal field equation
OQw = ¢ Z g ¢x) , (2.15)

where 7 is a renormalization constant and further R invar-

iant terms may be present. The equatien (2.1%) is not invar-
iant to (1.4) either classically, where Z =1, or in finite
orders of perturbation theory, where 7 is divergent. In

terms of a cutoff K ,

ZK) = 2 §"Z(K)  Z,(*) = =, (2.16)

n=-e

Suppose now that the exact Z(K) satisfies

Z=Z(x) = 0. (2.17)

Then (2.15) becomes R invariant since

Z o g0 _P} 2 Q)+ T Z¢ix] + 7 o= 2 plgln).(2.18)
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It is shown in paper II how such arguments can be made more
precise when formulated in terms of finite local field
equa‘tions.m’13 Ordinary gauge invariance in QED can be
mathematically formulated in that way.12 We assume that
similar methods can be used to infer the presence of symmetries
even if they depend on a circumstance like (2,17)}.

We can indicate the reliability of our procedure by
illustrating how it works in some diagrammatic model calcu-
lations. We consider a single massless scalar field qxx)
interacting via 3((* . QCur model is the set of diagrams
made of a chain of hubles, where the single bubble is defined

by

W)
T‘ (’E:Pl‘f‘t . )
F ﬁj s CP 3L (2.19)

Thus our model (to be called the whisker model: see also

fec. IV) for the unrenormalized four-point function is

T' (®) = g + g]““)(?) N g[]—.u)a,)]z

.20
y (2.20)

)
The formula (2.19) for T is of course UV divergent, and

this gives the contribution to the Z, renormalization constant

‘ 2
Z‘(IQ = +C L= +(C ﬂmli) £ (2.29)
m /
where_ K 1s the cutoff, and

— ) K
(?) K(:,: C ﬂ"‘- —}:‘ ) (2.02)
2]
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with C a constant, and pu 1is the renormalization poiht.
o),
The renormalized TR (P) still suffers from IR divergence
when p,, D, —> 0 , and here we will allow an IR cutoff

A, so that

1) ~
rhe) C’

N
2 — (2.23%)
e O )A-

R
The IR limit of T’w (P) is then

\W(?) 9]{+3RC Qo\}— +

T >0

| - 2 (2.24)
*‘3&@ L%) oo

Thus 2, is logarithmically UV divergent in every finite order,
R
and ]‘“)CP) is IR divergent also in finite orders. The

infinite sum in (2.21) is however

|
| = C fu

Z,K) = . —> 0. (2.25)

iad Koo
//‘
R
At the same time, the infinite sum for Fw(?) also ameliorates

the IR divergence:

R S l Y
T“’(?) P50 l-c'lK ke O. (2.26)

}l‘-

Thus we have in fact an example of the low-energy theorem

here. The field equation is given by

Q00 = — . qp(f (x) . | (2.27)

2

(Z, is unity here.) Thus precisely as 2, = O , making the
2 J 1
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equation R invariant, then we have the vanishing of the four-
point proper vertex as the external momenta tend to zero, as
given by (2.26).

We have also previously used14 R invariance to study the
problem of reconciling Bjorken scaling with the singularity
structure implied by canonical commutation relations.

To conclude our discussion of nonperturbative R invariance,
we note that it might be possible to reverse our procedure:
that is, to proceed from an exact zero momentum behavior
(inferred from renormalization group arguments in IR free
theories)3 which is consistent with R invariance and to
conclude that the exact equation of motion is R invariant.
Then the renormalization constants would have to arrange
themselves to give R invariance to the equation. One of
the ways would presumably be that the relevant renormaliza-

tion constants wvanish.
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ITI. R-INVARIANCE IN NONABELIAN GAUGE THEORIES
For definiteness we consider a theory of nonabelian

gauge fields Ai(x) interacting with fermions according

to the Lagrangian

»
s

P A & zt obe B
100 = 3 2 [ AW - A0 7t W) A0 |

" 2 o o <ob z ¢ v b
- _‘{;\LU.AR(}Q) + 23 a",.‘ CIR (‘J[ao‘ B\A + '2: aRFa b A(_,‘z (x)J c;_& 0'\)

- 7,
AR Yr[ar g AL T‘J 4 | (5.1)

The subscript R denotes that the gquantity is renromalized,
the Z's are renormalization constants, the fabc are the

structure constants of the gaugé group, T¥ is the fermion
representation matrix, c? and C; are ghost fields, and ag

is the renormalized gauge parameter, Variation of the

Lagrangian leads to the renormalized field equations
O-b v Z[ G\Cb v b b
O = [5 ) *2—; gg{l Ac.z(ﬂ:l[ay Awe ) -4, A#R(x) +

b -
4 -%— 9 {‘—y‘ﬁfa(ﬂ AfRCx):)-‘,_(% D‘.R)‘ Ir a'AaR(Y‘) 4

g, 2;‘ %¢ ‘Fabcar(;'b?’(‘ﬂ) Cz_;\ ) +
+ At 2{1 22 CFRM ‘f/, T. %@Q‘) 5 (3.2)

&

ab =~} cb o |
[S 2,2 g0 b Aﬂﬂcﬂ] ) ¢t =0 (3.3
ab . w - {“‘bA" NI ’ x) O, (3.4)

i 4 B ..
]‘r(aﬁ - 4 2[23. ?R "C[RT&7 q,R(JL) - 0, (3.5)
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Fermion mass terms can be added without changing our cone-
clusions.

The renormalization constants occurring in (3.1)-(3.5)
can all be exactly calculated, because of the UV freedom of
the theory, <from perturbation theory via the renormaliization
gfoup. If we make the R transformation on the renormalized

-
AH field,

— S -
AuR(X) —_— ‘AuR(x) +T, (3.6)

and leave all other fields unchanged, then in all cases the

changes in Es. (3.1)-(3.5) are proportional to

A = 2

K Z,

In all the UV free theories of the type (%.1), the rencrma-

T (Finde speretors ) . (3.

lization group calculations give

il = O (3.8)
Z, g

and the result is gauge independent. Thus we have the

result that

AR 5 (3.9)

1
O

and so the theory defined by (3.1)=(3.5) 1is R invariant.
Similar considerations apply in performing the R
transformatior (3.6) formally on the Lagrangian (3.1). The

rule to bhe observed here 1s that any term in the transformed
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Lagrangian that gives a vanishing contribution to the equation
of motion is to be discarded. For example, the ghost term

gives

[a ¥

. 2,25 4 7 - e
. % z, (3, Qe @ % G0 ] - Ay "‘73

2,7,
2,

-
-

- - -
G Yr'[a €\ g @) xczR(\q] ,  (3.70)
and this term is discarded since by Z?/Z3 = 0, it does not
contribute to the ghost equations of motion. Proceeding in
this way, we éee L (x) is invariant under (3.6).

The R invariance of the renormalized theory can again
[see paper II] be directly traced to the renormalization
effects on the nonabelian gaugeltransformations under which

the unrenormalized theory is invariant. We write
A ) — ' Ao (

X

ALY =2 ALl x 2o ) x Ap )

+ B2 L1 56 ) (3.11)
R 7 |

— t,:c(\() = A) = [ LR (3.12)

with ? a finite constant vector. Then making use of
Z1/23 = 0 , we see that (3.11) becomes just the R transform-
ation (3.6).
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IV. LOW-ENERGY THEOREM FROM R-INVARIANCE

‘From the R invariance discussed in the last section we
shall now proceed to unravel its consequences for the low-
energy behavior of the exact solution of the IM theory. We
use three different methods to derive the conclusion -- none
of them are completely rigorous, but they should suggest the
validity of the connection.

The first argument 1s due to Kramer and Palmer.a They
consider the S operator, whose matrix elements between in
and out states constitute the S-matrix, and expand it in the

set of normal products of omplete in-fields:

S’ = Z J'(l")( dq‘l“ Z g ()(,"';X“)
' ‘ o, - % Xy v
\ n

h:o ~
& &, . (4'1)
AR - AT () s
where § n. ] denotes all attributes of the field. The
coefficients S£n> a are then the n-particle S-matrix
.‘1 & * & n

elements when S 1s placed between in and out states. The

invariance of S under the R transformation of the Ain

fields:

S[A 1 = S[A ~<], (1.2)

implies, to first order in r,

% n
« = 01)
O ) Z z f&q)(th”él “ “’L{wx'\ 2 S { ¥ R )
w=o 1=l I - v n
0 |
x " « o
XA - AT AN) Y (4.3)
v sl - >

where the hat indicates the quantity is omitted. By renauwing
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indices, (4.%) gives

_'.ﬂ'.&-t « ig‘ﬂ ”ﬂr\-!(gl > g;’\.‘x) ‘j{”’-” ’5:\#)

oL S (4.4)

B
X0 A ) e AT Gy )y

A

Completeness of the in-fields then says that all individual

coefficients of the expansion must vanisgh:

(n
0= la% S ) ) | .
rj‘ L. ﬂ)l "lP)':_[ o ﬁiﬂ "'/)Ji\"l (?' ) ;9(.4 ) X, yfﬂ ;T jh,,) . (4 )

L]

i

for 2811 i =20, ... , n=1 ., Thus, we have

(V]

0= 8

A, oo e “m(%l).'lj E’L:O;“',z‘\)? (4.6)

A

for 811 i =0, ... , n, where

—~ ) Y%
g ( oo 'n) CZ'ﬂ) %“( ISR N
fﬂl"'ﬁn %’ ‘B % 5 )
( K ... + .,pL,,,j n)
= &“F."‘OL“‘FV\Q‘% ‘ 3 SL ('*(;”1 K"‘) . (4.7)

Ay - An

The result, Eq. (4.6), thus says that all S-matrix elements
must vanish whenever sny one cf the external momenta vanish.
As we mentioned in the Introduction, this derivation,
while quite satisfactory for the usual (IR free) theories
considered in Ref. 8, is bhowever inadequate for ouf DUrpPOses.
Ir perturbstion theory. the TR divergences for the IM fields

are such that people are not certain if the particle states

DR I R R T I R TR LR IR A T R LT
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can be defined. 1In fact that was the rationale behind
speculations to confine YM gluons (and guarks) by the IR
mechanism. Thus, S-matrix elements need not be well defined,
and indeed the S operator need not exist as an expansion in
the in-fields.

The second derivation is the one used in paper T for
NED, summarized in Sec. II., Egs. (2.6)-(2.12) remain valid

in the IM thecry if color indices are added in the obvious

way. Proceeding similarly with the Green's functions

- 4
CTEAY AS, > end <A A, AL D , we further

ahe
deduce that the proper vertex function T7 K:QL%) vanishes
/U-V

whenever one of the boson four-momenta (p,q,p+q) vanishes:

abe

r (O)TJ) T e

}AVK

o . (4.8)

Our third derivation uses functional methods. Consider

the genérating functional for Green's functions
p 20371
wll“] = e

= [BARIEIEORED exp i [ [£0) =3P AT ]

(4.9)

with (f(xJ given by (3.1). The R transformation on Aﬁ,

as we saw, leaves r)f {(x) invariant. Thus, under R

\I\J[jk] —7 @\l\’)[’i j&“x %;(x)a‘}y] W[J’”] . (4.10)

-
But the transformation of the wvariable Au of functional
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integration does not change the value of the integral, so

that we can conclude that '
“ -
=R
jd*x .Jfl*) W[?)}] = 0. (4.11)

20 . .
Notice that a consiant r" necessitates the integrated
form in (4,11). Now we make the usual legendre transform-

ation to the generating functional of proper vertices r[f%”]

TIA&1=205,] - S TTO R0, )

q;*“(x) - SZ[J/']

> ) (4.13)
¥)
ﬂ/wﬁtr
-JF ) = E'E J ) (4.14)
A W
P
Then we obtain from (4.11)
ST LA -
S‘*q" 4, | = 0. (4.15)

) ﬂ:}, (x)

After taking n functional derivatives of (4.15) we get

(') o
wa ANEDR _ 0. (s.16)
bA, ) e A, (40 - T, (yn)
We thus obtain
‘ 4 N}id‘s'” *a
jd X r (x,g,,-",‘dn) = 0, (4.17)

Y .
where T M%7 % is the (n+1) point proper vertex for

the pgauge fields. From (4.17), we can write in momentun
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space

= O, (4.18)

where

PO g g0) OG0

(g, 47 4G 0 ) ~ .
TR T ey e

= S‘&“‘zl .o 442, e
Our main result, the low-energy theorem (4.18) states that
the proper vertex for the coupling of n gauge fields
vanishes whenever any one of the momenta of the particile
is set eqgual to zero. The same low-energy theorem obviously
holds in the presence of fermions as external lines.

We shall now show how the whisker model for
theory discussed in Sec. II can be generalized to the TM
case at hand. This will provide us with an example in
cauge field theory that illustrates the low energy thecrem,.
Consider the same set of diagrams as discussed in
Sec. II, where now the lines are the YM quanta. We have
to be slightly more careful in multiplying the bubble
diagrams, thanks to the presence of indices. We shall

write the bubble as
Wrcde © e b’ _ PP v v,
ey - T [ @ |
pYOT PV RV ce) co)
__3(0) l)rc,fle

x I},mw ) (¢.19)
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o) - -
where 'r L is the momentum-independent bare
four-particle vertex (of order g2), and the free propa-
gator 1s written as

P ©) g

%) -

ab

Dra (g) . (4.20)

ab (o)

We define the left "whisker" multiplication, (X , of

the bubble with the bare four-point vertex as

w)be b'c/ ) b'c'de
e T, (B
PO SV rveT
- ,,u);cde((E ) : : (4.21)
pv’?d"

and its left "whisker" multiplication with the bare

ab
three-point vertex H(o) . (of order g ) as
v ol
@)*b < M b’ de
X ® [ ()
Aﬁlvu Pivifg®
)b MFr VVa - ae)bf 4
= ¥ [gw > (?-9)] e
/"'V‘ w (o) HaVa P O
W) ade | :
= Y (P . (4.22)
dpo

It is easy to verify that the left whisker multiplication

(e) (o)
on the elements Tﬂ and -Y defined by (4.21) and (4.22)
satisfy the usual axioms of associativity and distributivity
with respect to addition for multiplication. Thus if we
consider the whisker model for the three-point function

YW(Y) _ Yuﬂ{’ Y&o‘@ T.u]+ Y@)@ rw@ru)+ o

?



2 .

then it sums *to
-1

Yu\ © (l _-l-»u)) 3

i

¥ @)
W

~ W o
LeU-T") = v

TR
Thus 'Yw would have to vanish if | diverges.
considerations as in Sec. II then show that Z

P
1

low energy theorem 1s satisfied.

Such models are of course of dubious merit.

(4.28)

(a.

™~
A
S

The same

= 0 , and the

Since the

sum is not even gauge invariant, if need not have anything

to do with the actusl behavior of the theory.
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V. DISCUSSIONS

A comparison of our resulfs with that obtained in the
usual perturbative appr‘oach15 to IR behavior in QD is
in order. The usual approach considers only finite orders in
perturbation theory with the usual bare couplings as vertices.
By virtue of the relative simplicity of the photon-electron
coupling, it is possible to sum (in n) exactly the IR
divergences contributed by n real (external legs) and
virtual (internal integrations) photons separately. The
resulting contributions from the two kinds of IR photons
then cancel each other exactly in the observable cross section.
Our approach, instead, makes use of the decomposition of a
complete Green's function into exact propagators and proper
vertices, and exact statements on the vanishing of the proper
vertices. Expressed in terms of the full propagators and
irreducible vertices, the wvarious Green's functions have a
tree-like structure. Because of our lack of control over the
precise nature of the singularity in the propagators and of
the zeroes in the proper vertices, it remains to be seen
whether the removal of the IR di#ergence from the S-matrix can be
accomplished in the usual sense; On the other hand, the
abelian gauge invarilance [see paper II] of the theory
should perhaps reduce the difficulty in summing tree-like
structures in YM theory, since much of the difficulty is to
be attributed to the noncommutativity of the external l1line
insertions.

In the usual field theories, a low-energy theorem of
the type we have derived is sufficient to guarantee‘the

exigtence of the on-shell S-matrix for the zero mass exci-
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tations. In chiral-symmetric field theories,16 the Adler
self-consistency condition decrees the absence of IR diver-
gences for fhe Goldstone particle. Individual Feynman diagrams
show IR divergences,but they cancel in each finite order of
perturbation. The situation we encounter is more complex:

the amplitudes might vanish as q“—é? 0 but still diverge

2

as the invariant g —» 0 . We have not investigated this

problemn,

Our conclusions are relevant to the guestion of color17
"confinement in hadron physics. A theory of hadrons based on
™ giuons is extremely attractive, largely because of the
uv freedom.17’18 The catch is that massless YM quanta, or
indeed any color non-singlet states, have never Dbeen seen.

The by now conventional resclution of breaking the color IM
symmetry via the Higgs mechanism does not work here unless

the UV freedom is lost,19 and in any case, the presence of
elementary scalar mesons is unéttractive. It is, furthermore,
desirable to keep the color symmetry exact in order to understand
the apparent confinement of quarks in spite of their presumed

small effective masses.2o

The hope was that the "violent" IR
divergences in the YM theory would dynamically accomplish this
color confinement. Our results indicate that the IR behavior
is not really so violent, and it therefore seems somewhat
unlikely to us that the confinement will occur.

This of course does not mean that YM hadron theory is
ruled out. One possibility is to alter the large distance
behaviof of the theory -- a poésibility mentioned in Ref. 17.

Another possibility 1is that nonperturbative solutions of

the theory, with the desired properties, exist. Also, it might



be possible to obtain a desirable theory by some resummation of

the conventional perturbation expansion. As a final possibility,
we note that there might be a2 Hilbert space eof bound-state

(color singlet) stateg which is orthogonal %o the color-non-singlet
Hilbert space, and in which there is a unitavry S-matrix. The
trouble with all this is that no one knows how to do celcule-
tions in any of these suggested frameworks.

The IR hehavior is also relevent to san-shell quantities of
nf theories with mass.3 To investigate processes like form
factors and large-transvers momentum hadronic col}isions,z1
one needs information both at the UV and the IR ends. It
would however be necessary to know precisely how fast the
vertices vanish in the IR regime, and that is lacking. It
would be desireble to investigate models which peossess both UV
freedom and low energy thecrems. It is clear from the derj—‘
vation that even though the UV freedom gives a logarithmically
vanishing value for Z1/Z3, this does not meen that the proper
vertices vanish at that rate in the IR limit. In fact,
we snticipate that the ((g) function for I theories would
vend over to vield a nontrivial IR stable fixed point, so
that the vertices ran vanish like a power for example in the
IR 1limit.

Fascinating questions like these must await future efforts

for their answer.



-26H-

ACENOWLEDGEMENT

We acknowledge the hospitality of the Institut fiir
Theoretische Physik der Freien Universitidt Berlin, and the
Deutsches Elektronen-Synchrotron, where this research was

completed. We are particularly indebted to Kurt Symanzik

for helpful discussions.



v
.

VO

10.

i,

12.

-27-

See the reviews of YM theory: E. Abers and B.¥W. Lee,

Phys. Rep. gg,‘W (1274); M. Veltman, in Proceédings of

the 1973 Bonn Conference; S. Coleman, Lectures given at

the 167% Frice Summer School.

pActually this is valid only for zero electron mess. See,
however, Ref, 3,

K. Symanzik, DESY rnreprint 72/73 (Dec. 1972); Commun. Math.
Phys. 34, 7 (1973).

An exception is the JBW electrodynamics: K. Johnson and

M. Baker, Phys. Rev. D 8, 1110 (1973), and references

therein; S.L. Adler, Phys. Rev. D &

5, 3021 (1972).

This peper is the third in a series of three investigations
on YM theories: R.A. Brandt and W.-C. Ng, New York Univ-
ersity preprint, which we refer to as paper I, and DESY
preprint 74737 , which we refer to as paper II.
Provided that ordinary pertﬁrbation series is at least an
agymptotic expansion; _

W.-C. Ng and K. Young, Phys. Lett. (in press); T.P. Cheng,
W.-C. Ng, and K, Young, University of Missourl preprint.

K. Nishijima, Nuovo Cimento 11, £68 (1959); G. Kramer and
w.F. Palmer, Phys. Rev. 182, 1492 (1969).

D. Zwanziger, Phys. Rev. Lett. 30, 934 (1973), and references
therein.

J. Schwinger, Phys. Rev. 128, 242° (1962); J. Lowenstein
and J.A. Swiéca, Ann. Phys. (N.Y.) 68, 172 (1971).

J.M. Cornwall, Orsay preprint IPNO.TH. 74-10.

R.A. Brendt, Ann. Phys. (N.Y.) 44, 221 (1967); 52, 122
(1969); Fortschr. Physik 18, 249 (1970).



13.

14.

16.
17.

18.

19.

2C.
21.

~-28-

W. Zimmermann, Commun. Math. Phys. 6, 161 (1967); 30,

325 (1968); in Lectures on Elementary Particles and

Quantum Field Theory, edited by S. Deser et al., (MIT Press,

Cambridge, Mass. 1970).

R.A. Brandt and W.-C. Ng, Nuovo Cimento 134, 1025 (1973);
Phys. Rev. D 9, 373 (1974).

S. Weinberg, Phys. Rev. 140, B516 (196%), and references
therein. |

See, for example, B.W. Lee, Chiral Dynamics, (Gordon and

Breach, New York, 1972).

H. Fritgzsch, M. Gell-Mann and H. Leutwyler, Phys. lett.
47B, 365 (1973).

See also the review of R.£. Brandt, talk at the IXth
Balaton Symposium on Particle Physics (1974), F.U. Berlin
preprint.

T.P. Cheng, E. Eichten, and L.F. Li, Phys. Rev. D S,

2259 (1974).

Related to the presumed small violation of Bjorken scaling.
T. Appelquist and E. Poggio, Harvard preprint; M. Creutgz

and L.~L. Wang, Brookhaven preprint, BNL-19078.



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

