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ABSTRACT

The ultraviole* asymptotic freedonm af a lerge class of
nonahelian gauge theorieg enable the rennrmalization constants
+Aa be ccmputed exactly in perturbation theory. This exact
knowledge 1s used in investigating renormalized field equations

of ench theories., They are shown %o be invarisnt mcfer an

4
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shelian gauge transformation on +he renormalized vector field.
faneequences ©f the abelianr invarianre are darived in the form

of Ward-Takshashi identities for *he rennrmalized proper
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I. INTRODUCTION'

The organic union of a local nonabelian gfoup symmetry
with ordinary (abelian) gauge invariance hags led to the intro-
duction of nonabelian gauge (YM) fields.2 The very existence
of the gauge field is then intimately tied to the nonabelian
group symmetry present. The assignment of the gauge field as
a carrier of the symmetry has been a rather attractive way of
incorporating dynamically a given symmetry group in quantum
field theory.

Ordinary gauge invariance originated in classical electro-
dynamics because only the field strength E;V and not the
potential A>A is directly measurable. It acquires much
greater importance in the quantum theory, where the field
A# is the quantity more directly associated with the particle
(photon) in the theory. In fact, the renormalization of
guantum électrodynamics (QED) makes specific use of the conse-

quence of gauge invariance, namely the original Ward identity:

Ly = 2,
In the nonabelian version, the renormalization is more
complicated,3_6 and again the consequence of gauge invariance,

now in the form of the generalized Ward-Takahashi (WT), or
the Slavno;?identityyplays a critical role in the execution
of the renormalization program. The nonabelian nature of the
theory necessitates the introduction of ghost fields, which
transparently manifest the lack of positivity8 peculiar to the
theory.

It is this very lack which allows a desirable state of
affairs to emerge. People have been interested in the large

momentun (ultraviolet) behavior of field theories, and have



found that a useful tool for discussing these behaviors has

been the renormalization group differential equations9

satisfied by these theories. The asymptotic behavior was found

to be determined in terms of the fixed points of the Callan-

Symanzik function ﬁ(g ) . It turns out that there is

always a fixed point at the origin,6 and it is then possible

to determine the asymptotic behavior from the informetion

furnished by low-order perturbation theory, presumably valid

at that point.'® The catch is that the ultraviolet (UV)

behavior is determined for a negative slope of i%@) at

g = 0, and the infrared (IR) behavior in the case of a positive

slope. These two cases are referred to as UV and IR free

respectively. By positivity, all known field theories have

a positive slope, all, that is, except for ¥M theories, many

of which have indeed a negative slope and are therefore UV free.
Thus YM theories occupy the privileged status that their

10

true UV asymptotic behavior is easily determined. In

particular, the renormalization constants are known

exactly,11 so that it is now possible to scrutinize the
renormalized field equations of the theosry for any new features
arising, so to speak, from rencrmalization.

We have performed Jjust that, and in this paper we report

on one aspect of the investigation. The renormalized field

ecuation is invariarmt under an additional symmetrv, namely,

that of ordinary abelian gauge franformation. Moreover, the

nonabelian gauge theory satisfies a set of abelian WT identities,
valid at all energies.
The existence of this symmetry arises from the fact that

. . 1.
the rencrmalization constants can be computed exactly  in
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these UV free theories. When a particular constant or relevant
ratio vanishes, new symmetries can arise which are not present
in the classical Lagrangian. Such new symmetries are a conse-
quence of renormaligzation, and furthermore are not present
order by order in perturbation theory. In each order, the
renormalization constants are infinite (when the cutoff tends
to infinity) and it is only the sum which may become zero. To
deduce the presence of such a symmetry, the group transformation
must be interchanged with the cutoff removal limit. This means
that suck symmetries lmave a distinct, and perhaps more specu-
lative, status than those which are present classicelly and in
each order of perturbation thecry. Since Green's functions
can only be computed asymptotically in the relevant gauge theories
the existence of the symmetry can only be directly checked in
an asymptotic 1imit, althoughk the symmetry is predicted to be
present at all energies.

The route to the emergence of such renormalization symme-
tries is indirect. First we use the known asymptotic behavior
to calculate renormalization constants. The obtained (suitably
vanishing) behaviors of these constants implies the presence of
(usually spontanecusly broken) new svmmetries and the consequences
of these symmetries are valid at all energies for the exact
theory.

In the course of 2ur gnalysis Wwe have found it expedient
to work with field equetions, commutation relations, etc. obtained
by canonical manipulation of the YM Lagrangian with ghost fields.
The Slavnov identity, a&s an example, has been derived in this
manper from the field equations. Thus we feel confidert that

the phvysical content of the YM theory should be embodied in its



local field equations, sc that the symmetries present there
should be true symmetries of the thea y.

In Sec. II we discuss in general terms how statements
invalid in the unrenormalized theory can e valilid as a conseguence
of renormalization, and cite previous use of the technigue.
Sec. III contains a resumé of nonabelian gauge field theory
in terms of field equations as well as functionals. Sec. IV
introduces renormalization constants, and the Lagrangian and
field equations are rewritten in terms of renormalized fields.
I+ is shown how these constants are computed via the renormali-
zation group equations, with gauge-independent results. In
Sec. V we show that the renormalized field equations and
Lagrangian are jnvariant under an abelian gauge traunsform-
ation on the renormalized field. We deduce the WT identities
associated with the abelian gauge symmetry both via equal-time
commutators and by the use of functional methods. We discuss
their congistency with the nonabelian WT (Slavnov) identities

usually obtained. Sec. VI concludes the paper.
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II. SYMMETRY AS A CONSEQUENCE OF RENORMALIZATION
Before becoming entangled in the complexities of nonabelian
gauge theories, we will illustrate our ideas in a simpler context.

Consider a typical term

HAY = Z Ax) AKK) (2.1)

in a formal renormalized Lagrangian or field equation. Here
A(x) 1is a renormalized quantum field and Z is a combination

of renormalization constants. In the cutoff theory, both Z

and A% nave expansions in powers of the renormalized coupling
g:
L4
Z = 2KK) = 2 9" Z (K), (2.2)
n=o
- L
A) = 2 g” G (x; K, (2.3)
w=o

where K is the cutoff parameter. In each order of perturbation
theory, the renormalization constant Zn(K) and the ordinary

field product are divergent when the cutoff is removed:

Z- (K) —_— oy (2.4)

" K> o

C (e K) —> 9. (2.5)
K= m

Typically, in a renormalizable theory, the divergences become

logarithmically worse in higher orders; e.g.,

Z(K) ~ a (0n K", (2.6)



These infinities combine with others to produce finite (for
K -» ® ) expressions for the renormalized Green's functicns

in each order of g. That is,

Qo <ol T Alw) - Al )lo7

K2 m

exists.
In each order, the expression {2.7) has no interecting

1t

symmetry property. For exanmnple, under the "R transformetinn

R: AG) —» ALY + ¥, x = consl, (7.7
one has
2
F(A) __PHQA.\-Y\/: FAYF 2 E A 4 ox ZJ (2.8)
so that
FAre) - FOA) > (2.7
K m
since 1 an A(») are finite. Sz {2.°) iz ==+ ipverisnt
under (2.7). Now suppcse that the exant O 7(K) cirev her the
sum (2.2) vanishes when the cutof® ‘g remnved:
Z (1K) > O e

b
a3

Then
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and so (2.1) becomes R symmetric in the exact theory.

Tn the above circumstance, a new symmetry can arise as a
consequence of renormalization. The R symmetry is a typical
(spontaneously broken perhaps) symmetry which can arise in this
way. Such symmetries imply interesting WT identities and low
energy theorems. Consider, for example, a formal field equation

of the form
DA = Z A -g(/’h---)j (2.12)

with ~ﬁ?(A,-.-) R invariant. If Z = 0 as in (2.10),
(2.12) is R invariant in the exactl theory even though it is not
invariant in any finite order of perturbation theory.

A more precise formulation of such possibilities can be
given in terms of finite local field equations.m’13 Eq. (2.12},

for example, can be given a mathematical status in the form
OAK) = J&), (2.13)
with

Tx) = B D(g) A+ E)AM) + ?U{g(,q)__.)]. (2.14)

£2o

Here, in each order of perturbation, z(g } is a well-defined
function with singularities at g =0 corresponding to
(2.4): }[(07 = Z(rc) - % . Thus, under (2.7),

T — T + =, and the field equation (2.13) is not

R invariant. If (2.10) obtains for the exact theory, then
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2(0) = O (2.15)

[%his zero cancels an infinity in the field product

A(‘m‘g) P\(x) for gu—y O] and so

Ty — L [3(;) Ay+g) AG) + ﬁi(A' )

t—=cC

Gy Alrs) o 4 alEYvAO) 4 aE) v]
SRR AR A
= T k),

and the field equation becomes R invariant.
The finite field equation approach to ordinary gauge inva-
riance in QED proceeds in precisely the same way.12 There
the Maxwell equations read
v -
PE,) = T ) = Ren T.0058)
~ a -0 ”
E C(2.17)
= Qim [’76(\;) F o), 00+ - :J .
£E—20 I

Under a local gauge transformation,
Tosgy — Qb %\+Rr(~us), (2.18)

with

H
O

fim KL ) (2.19)
¢20

Eg. (2.12) is thus gauge invariant and this, together with the

analogous gauge covariance of the Dirac equation, is equivalent
to the gauge invariance of QED. Note that here the gauge inva-
riance is true order by order, whereas (2.17) was only symmetric

for the exact theory.
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In the foilowing sections we will apply similar considerations
“o nonabelian gauge theories. We will argue on the basis of
formal field equations of the form (2.11). We are confident
that our conclusion would also follow from using the more mean-
ingful finite local field equations of the form (2.17), although,
because of the complexity of such equations in YM theories,
we have not shown this in detail. It is our basic assumption
that such employmént of the field equations to determine the
symmetries of the theory is legitimate even for the exact theory
in which results of the form (2.10) are valid.

In a nonperturbative context, we have previously used local

14 There we studied the problem of

field eguations in this way.
consistently incorporating scale invariance in operator product
expansions implied by canonical commutations. In a 3 ({’?

theory for example, 1t was shown that there must then exist two dis-
tinct operators j(x) and k(x) of scale dimension two, which

form a two-dimensional reducible representation of the scale

group. They appear in the short-distance expansion of

@iy 9ro) :

Y gro) - H,ﬂmﬁktk;)g(o)* rokIM0) 3 (2.20)

¥ -3 0

and they transform under a scale change as

r'()ﬂ.—] _ Lr‘(x‘}
KRRV A L

]
. -
Lh(x)] Lﬁw? Fepx) 4 &(ex)J

U
¢

(2.21)
The transformation law (2.21) enables the presence of logar-
ithms in (2.20) to be compatible with reducible scale invar-

jance. From (2.20), 3j and X have explicit representations
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in terms of c_P :

£ = b P pletE )@ 7 (2.22)
E-BO }\1‘?/‘*214' :'\:L.

B = D H‘T[;cp(wgﬁtp{x):—(r\l Q.\x‘-}lﬂt}'(x)j).(&ﬂ)

yo0

The two expressions highlight the very distinct manners the two
operaters § and ¥ behave under sn R transformation

q’ —» @+ . because of the presence of the singular
function in the denominator in {(2.22), i(x) 1is R invariant,
while k(x) is not. ©Now from reducible scale invariance only,
g{(x)3(0} has the expansion

3‘[!) 3'(0) :—’7 ‘;:—1 (—b, x>+ a, ) 3-(0)

=0

-+ L)l-; b, g o) 5 (2.24}
which is not a canonical structure because of the presence of
logarithms. If, however, we have taken measures to implement
R invariance in the system, then R invariance can be applied
to the expansion (2.24). The result is of course that the R
noninvariant k cannot appear, so that b, = ¢ , and the

expansion then assumes a purely canonical structure:

j(x)jaﬂ — N IO (2.25)
Y0 2

In this model, R invariance combined with reducible scale

invariance assures a canonical structure for the operator

product expansicn of composite operstors. It provides a

mechanism te reconciie canonical Bjiovker scaling with greater

than free-field singularities in field products.
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III. NONABELIAN GAUGE THEORIES

The classical theory of nonabejian gauge fields is specified

eh's
\ e} Iy
= - — (c (x (‘ (Y\j
;lifx3 " {MV ) G . ) (3.1)
where
) | Obc b e

G ) = 3 AS6) -9, A +g £ A o)A SOx ),

py rew r s (3.2)
with £8PC  ipe ctructure constants of the gauge group, and

g the hare coupling constant. Sometimes we write

-3

£ M0 = (Dam) ", (3.3)

~.

We define the covariant derivative

ob ob % ch
£ 0 = 870 49 £ A; x), (3.4)
Vel

and the Lagrangian is then invariant under the infinitesimal

geuge transformation

ATt — A;‘(x) + ;}L B:b(X)waxq, (3.5)

g
where Ej(x) is &8 c-number function of spacetime. We also
define
F A A
X = 2 -/
pv ) alu Av (X) d\; > x ) . (3.6)

By antisymmetry,



—
v oo
2V E O =0, (3.7)
»v _
roav A -
0’ 0 C%Pu(}3 = 0 . (3.8)
By virtue of the group-theoretic structure of , we have

g K cd
b5 G ) = 0 (3.9)
ab b pu 2
—
and (3.9) is valid for arbitrary Ayﬁ(x) . The Lagrangian
(3.1) yields the classical field equatidn

v

b
s G ) = 0. (3.10)
ab P
Note that no use of (3.10) has been made in deriving (3.7)-(3.9).
Naive application of canonical-quantization to (3.1) leads

4-6 1t is neceééary to introduce a gauge-fixing

to contradiction.
term in the Lagrangian, and the associated term involving
fictitious, scalar, anticommuting ghost fields. For calculation
of Feynman amplitudes, it is most convenient to éhoose the

gauge function
}f
FIa]l = 3 A (3.11)
and one gets the modified Lagrangian
- 1. r b
) = £ () -~ - (7-Ak NP, () (3.1
o ) i’d x) " (3-AW) + 7,6, (x)},abc; x))(a 2)

where A is a constant (unrenormalized) gauge-parameter,

and c, and c, are anticommuting scalar ghost fields. Now



it is nossible to write down *the canerical enual-time comru-

fation relatinns
T reo 0\ 0.&.. a _ e L}' ¢ )
b (¥o-ye) [Ga(ﬂ} Ab(«ﬁ] = 2 bob g & (¥ #)) (3.13)

— -1 0 q . C 4 )
g {RO-y® I, A A MY = A0 6 (x- .
J)LG( ”fo Ay ob 4 (3.14)

In order to discuss the invariance of the guantized theory
ynder various symmetry ogerations, we need the equaticns of
matinn of the system. Variation of *he effective Lagrangian

—»

&f(x ) (3.12) gives the A fierld equation
M

A ber '
.‘aifx)cﬂj’(ﬂ r oAk fay d»Aa(X) t3 {a C@yclb(x)]cf(x):o](a.tr_:.)
[2)

and the shost field eauations

D 0 ¢ ) = 0 (3.16)
M C,b(*) = 0 . (3.17)
¥ 6%

™ YM field can of crurse be ¢gonpled te other fieldes in

n zeuge invariant manner. For examnle, fermiorns can he

incornnratesd by aﬁdingq'
- r
o= ¢ Y/, D'y, (3.18)

where:

.D/“_: ! Bf’ ) LC?A/: T’ ) (3.19)
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and T2 are the fermion representation matrices. The field

equation would now be

~ b N
O = 5 )G &)+ o a3k (¥
ob A A &
g{ & 2 3 % Y N 4 .
I+ is a2lso custemary to discuss gauge theories in terms of

sl yacuum functional kd [], il civen by the functional
/.z‘

integral

wiTre, k] = (anbelBe]
X exp LJ(&G;[D(’ (x) —j;(g):}iﬁ‘(x)-k’!.aﬁ—ﬁz._gil 7(3_21)

with Qf(x) given by (3.12). Here q;(x) . K1(x), and
K?(x} are classical external sources coupled to the respective

fields. The connected pérts of the Green's functions are then

generated by

ZLJ ] = & WD,"':] (3.22)

K‘:Kl': O
Tn crder to discuss proper vertices, the functiona h is
Tn crder to di +3 the functional | %} i

introduced via the Legendre transformation

r - = .3
PU%] ZAZ[JJ‘—jdﬂ:aR)“&fH)) (3.23)
and we have

—éﬁ(xj = _g_.}“_[ll

6 J ()
r

(%.24)



Ty = - — : (3.2%)

The nonabelian gauge invariance of the Lagrangian leads
to the generalized WT identities connecting unrenormalized
nreen's functions or proper vertices. To derive these identities,
we perform the gauge transformation (3.5) on the integration
veriables A  in (3.27). The only change in the integrand

anmeg from the gauge fixing term and the source terms:
VT K, Ka 4 CJ [ac.]
X exp iSd'*x {of[ﬂ 4 [— 2" 9-A) 4 +
ahe ‘5 ¢ a M -1
-{‘3{ Pp N h)] G ®) - j/"“)] Eab g wﬁ(’\)} '

The transformation of the integration variable does not affect

(3.26)

the value of the integral, and so we may put the coefficient
2f *he arbitrary function a%(x7 equal to zero. In this way

we obtain

0 = v % R

L
— o d
Lo ) For e 0
}
Fo- = (%.27)
- [ o ") - -
+ g |0 -!X = " \,f\, L 7 K l< ]
: LM [x} ¢ l?ZfXW J\
which Tnen yislds > the Slawmev identity.’ TFor the three-pnint
vertex, [T,07) sives
v Py SIS N
k4 { PP P NTD e )
L S pr /7w Avo Pk
e L/t o N~ ok (3.28)
= o0 Gl gt oA g )
z v 3 T ’
. . . - . ~ : - .
vhere | is the proper vertesy for three YM particles, D
‘g the ¥if propazator, G ig the ghost propags®or., and Y is

gV
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the proper vertex for

aqh
g { ol T Ai(ﬂ clh(x? C,b(:j) Alz) lo7,

related to the proper vertex ‘{w for the coupling of a TM

particle with two ghosts by

p \(W(?,k,g) = ¥, (pk,g). (3.29)

The above identity (3.27) can also be derived using the
equation of motion approach. Combining (3.370), which is a
—

consequence of the gauge covariance of C} v , with the

equation of motion (3.15), we have
2 B9 A + 2 GE’[_%‘_E;&)J)& )y = 0, (3.30)

Using (3.30), and the equal-time commutation relation (3.13)
and (3.14), it is easy to deduce the WT identity by pulling

derivatives through time-ordered products:17

« <ol T o, T o-AM A%ty) AB(2) 10>
- 3 ’
= 1 [«’o-l T8 §0-g) Al)eY + Gl Ti)(3 F40x-2) Ad(tj) !072

ﬂ — i o 3 (3.3%)
- 3 <o Tf)"{? c,(m]xczfx) ATy AT(R) 10 ,
M ,A 3
which is identical with the result of tzking functional
derivatives twice on (3.27).

Thus the use of functional integrals and of eguaticns of

motion are equivalent for decducing *the conseguences of nonetelinn
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gauge invariance. A symmeiry that exists on the level of
equations of motion should be expleitable aiso in the functional

integral frameworx.

Iv. RENORMALIZATION AND ASYMPTOTIC FREZDOM

The nonabelian gauge field theories have been shown to
be renormalizable. We can express the Lagrengian in terms of
renormalized fields and coupling constants through the intro-

duction of renormalization constantis:

:KP

"
")

" (4.12)
g -

A .
%‘ = Zz ‘+R ’ (4.1b)

p) (d.‘?C)

23/2_
3
- 0{ ("" le
¥ Z, %o, )
. \
and we also haveT' 6 3
Z, _EJ_
Z
25 Zs
as a consequence of nonabelian gauge invariance. The renor-

malized field equation for zauge fields interacting with

. B e ?3
fermions would be:’



o v 21 QCb v
= [S "} + —_g—— gﬁ{ AcR(x):?[JHAfR(x) -av Af’; ()
3
._‘ %R{:Bca f"(R(X) Aj.;g“)] + ZS—'dR_I gPaA; (x)

; C 2. r
JrE}L}Rf ¥ f")c - 3&*2’\\{ T, 4! D’u.s}

ob 2’ Ggeb pv L
.-'J’g BF+ haf{ ‘F A (") ¢ C:’Z (x) = O 5 (.49

) [ s gt ] ey <o,
rrta“— x 5—3 9o A%@-TJ%R(;«) = 0. (4.6

In terms of renormalized fields, *re lagrangian is
L) = & ,_3ra Al x) =0 SO0+ —3 abcf\;ﬂ(x‘,ﬁﬁjﬂli)]z

| ‘-0 2 ~ o c\(; M
-1 (A + 2, 3 c,Rm[x PR

2’ ach * b

Sl £ A )] e )

25 Ie “® ] =" (¢.7)

P 3 ) ‘ 2‘
t Zz“{’?\“)[ar“t_gs_az (x);JY G (0D,
Similarly, for the functional integral approach, if we

make the scale change

= = T
j &...3 UR b (d.8)
A o~ ok Tk
\J:t - 231 J’JC& 5 (4_9)
then the

in the definition of the generating functionzls,

functional derivatives with respect fo these rencrmalized
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quantities would give the renormalized Green's functions and
proper vertices.

A1l the 2's occurring can be exactly computed from
perturbation theory via the renormalization group. We
briefly recapitulate the results here. The renormalization
constant Z; as a function of 7 = K/OM , where g is
the cutoff and M is the subtraction point, satisfies the

differential equation

VS s ?
0 = [ Yl}v\ ! @QﬂR'dea MERAS PR D I ’3':?\
(4.10)

0] 2,0 50, %) -

where
. 9 —
ﬂ(ga,dgl . 3R
-MBM ”
-1&(3R, dp) _?ﬂ Z.
— - g g, o (4.11)

These parameters can be obtained by low-order perturbative

calculations
3
Gla) = - b9 (4.12a)
b = (FET\'L <‘?' ¢ - ¥ cL> : (4.12b)
e ey - 9 (f_’l-}—“\c _E.
VIR %R e e R1C, T 3 G [, 152)
¥, Qo) = — 4R 4y S (6 (4.13b)



2
Ts (gg,dﬂﬁ = dr [l—é}" - otg) ¢, - % cz_] , (4.13¢)
2

A e
T 9, %) = '_._3_&{ 2 Ty (¢.73d)
&
~ k4
T (g of ) = R (3 _ D(R >
3 R) R — —_— - c 1
. 2 S I3 (4.13e)
where
acd bLed ab
¢ -Fb S ¢ : (4.7¢2)
o g (4.74D)
(T )= 2e, 8,
(TaTa). = S,4) 6, (4.14¢)
-lJ 4}
For UV freedom, we need b > o y O
<, 0
— < - '
<y “4 (4.12)
When (4.15) holds, then the leading hehavior of Z;(E/M) as
K = v 1is obitzined from rZ (1 Gt ) s an unknown cnnc+anT]
IX gf
Z(‘] 9o %) ‘{‘—3‘ 2-(1,0, «)expjdj (4.16)

I=
We can distinguish two cases, depending on which fixed point &,

the effective gauge parameter a* approaches:

_E_ EL C2 2 3
v = 3 3 ¢ if <, < 73",” 5
¢ if T2 '3 4.1
O , . > 5 . ( 7}
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To calculate a quantity like Z1/Z3 occurring in

(4.3)-{4.7), we notice

Y
£ ab
: = (L\fp , (4.18)
2, 17

where

—_— 3 o
Y = (—-—}:- T) C\ . (4.19)

_ 13 _ 8 <
. Thus, for = 3 3 o >
vy i O
I = -3 ¢, + -3— C, o (4.20)
and, for a = o,
¥ = -3 < - ‘ (4.21)
We thus conclude that
Z,
E— = O N (4.22)
Z3

and (4.22) holds for all choices of the gauge parameter o
Other ratios of Z2's c¢an of course be computed in a

similar manner. For example,

£

—Jj_ = 0 , (4.23)

&

;__l_-‘; = O A (4.24)
2

all valid for any gauge parameter,
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V. ABELIAN GAUGE INVARIANCE
By abelian gauge transformation we mean the transformation
on the renormalized fields

- — { -
AL ) =7 Moty + o 2T A, (5.1)

with ?\a{vﬂ) a c-number function, and no compensatory change
is made in any matter field interacting with the TM vector
field. When we make the transformation (5.1) on the various-
terms in the renormalized field equation (4.3), the change in

the first twe terms are

Z ack
AS[ [aa\o a\/4_ _,Z_L 9r £ ACR()L)]
3
b 2, bed d
X [a)‘AtRbﬂ - av A‘AR (X) '{" ~2-—3—3R1C A/Né (x) AVR(x)j}

2, . ach b : b 2, bed , e 4
Tf‘ ‘ v/\c(“) if.:apkvk[x) "av A}.R(X)T E;_?- gR.F A}AR(X) AVP—(‘F)]

“3
b Pyoby, B etk Vo] 2 Lbed
LE o 4 2. %R‘F Acr )j Z |
x [3 A A% 6+ A, B, A 049 AS)g A% ]
¥ R pk v * v (5.2)
| -9 \
A 3P 3Ry = —— Mg A, (s
?zgae Oy 2,9, % o AL °3)

The other terms in (4.3) are of course unchanged. Similar
considerations apply in the transformation property of the
other field equations (4.4)-(4.6). As we already discussed
in Sec. II, the product (ZJ?;j Ar(x) AV(X) is a finite

local operator, and so if 21/23 - 0 , we must have
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o
(;’j A’u(ﬂ A, > O . (5.4)
Thus the right-hand side of (5.2) vanishes as a conseguence
of renormalization. The only term in the renormalized fielad
equation (4.3) that changes under the abelian gauge trans-
formation (5.1) is then the gauge-fixing term, as given by
(5.3). Similarly, the field equations (4£.4)-(4.6) are also
invariant. Thus we have precisely the same situation as in
an abelian gauge theory like GED.19
gimilar considerations apply in performing the abelian
gauge transformation on the Lagrangian (4.7). The rule to
be observed here is that any term that gives zero contribu-

tion upon variation to the equation of motion is dropped.

For example, the ghost term gives

2,2 . = 2
5§55 o (50500 x Gt ] - A 09

= (2.5)
— ~ - - - - ;
- ﬁ j Or /\ (;g-) .[9)' C‘R(}'-) X CIR()&) ] )

z, R
and this term gives a vanishing contribution to the ghost
)2

-
equations of motion since 21/23 =0 . The (G and

PU

the fermion terms are likewise abelian invariant. The only

change in (f (%) +thus comes from the gauge fixing term

A[;Ux)] :—-xR" 2 A-Oh . (£.6)

1G

Again, (5.%) is identical to what prevails in QED.

The origin of the abelian invariance is more transparent
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if we consider the nonabelian transformation (3.5) and express

it in terms of renormalized quantities:

-— - — N ! —o
B o) = B O6) % 2300 A 4 B w0
(£.7)
—
Tf we now rchoose  WIK) such that
— fa
3 —
A = 2 LG (=.8)
Zi
is 2 finite c-number fimction, and use Z,/Z2. =0, (7.7)
A
becnmes the abelian gaure transformation (T.71) Given thet

(£.7) is a symmeiry transformation for all G?(x) , this shows
that (2.1) is a symmetry transformation for 211 finite. and

-—
smonth functions AR) . In view of the unrenormalized fermion

transformation law

$x) - [[-— 2iT x @) Q) (5.9)
and its renormalized counterpart
f ) —> [1- 24 Tx 5] % ), (5.10)

we see that in the presence of fermions the appropriate

abelian transformations are (5.1} and

d_;gffk) —ﬁd{’g(?‘)_ (5.11)

I+ might be instructive to compare the situatiorn with

what prevails in QED. There the gauge transformation



expressa2c¢ in terms of renormzlired quantities would be

W& N “
Awetx) —> Aer«)Jr?g 2w () (5.12)

-
% .
U{R(x) —> L{,R(%) exp i ?3 e‘qbo(io (£.13)

and the choice

A = 2, = wilx) (5.12)

makes the gauge transformatiorn form invariant under renormali-
gation., The point is that in QED the Ward identity mandates
the same renormslization constant 23 for beth couprling
coenstant and photon wave functior renmrmalizations.

There are of rcourse further implicatiors of invariance
under (5.7). These correspond *o nther choices for Zj[x).
For epxsmpie, if Is(x) is chosen so that (5.8) is & finite
onerator =u~t that
—
o

/l.f”.{x

i
T
ps

>

is a finite gnarator, the *trancformation (5,7) remains non-

abelian zrd cives the ysgua’l nrernzhelian WT identities.
Thews in vet znother way o arriving at the existence
of the abhs’ian srmmetry, and the2t is via the use of egusl-

time commutetora,  We consider *he conserved (by (2.8))

currsn*
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— —
. B rv‘
a/* = 9‘) G

- -—9;4)(2#“- a(ﬁixra_;s(, %Jfax-a?(%m)

and write down the divergence cordition for its time-ordered

products with n vecter fields:

a (o | 3,/\(1(\ A ‘(ldl)
r I <

=

oA,
Abm(‘én I'D7

--5 <ol g”

Qs
D{_i [ar a,A&(K)’ A:T(‘d;)j + ﬁlgarz‘ ?(_E’-)o\ (F), Ab: (\j")]g
A
o A‘ dﬁ'\
X A{)'(j,) Ab“{‘d;} A:bﬂr'jn) 10>} (5.16)
where the hat over A’ (4.) indicetes that it is omitted.

We can evaluate as usual the equal-time commutators involving
17

the unrenormalized fields to give
a— L4 d
). <ol ANCORLNRED)
" . &
i T <o TOY ST AN

of
Ay (y)lo?

e
e .
y o (5.17)
L e - ” 0
A 4) As,(‘ﬂ"‘” 7.
¥e now write (©.1'7) in terms of renormalized operators, with
= % A -
roo_ z ‘2 myry - ?'/ x A0
3‘2 = —"?2 .23 A \_3 A B A gRZ;‘ AR- e ._l)
- > - -
- 1 Br‘a‘AR(xj + 21 ? ar Clg(x)*‘czﬂ )J(m 18)
2, & 2. ‘K '
3 R- 3

and we get the renormalized version of (5.17)
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" 2, o 2. -
X (x-g/ﬂ/%m(?;,}-- Ab Q(g,—) Ab\l? {g,ﬁlo?,(,.m)

2 from (4.23), the coupling

Becauge of the vanishing of Z,]/Z3
constant dependent term disappears, so that (5.18) is in

effect an abelian WT identity. In particular,
[Qf AY 1y) ) 0
= =

where

fd’x ézk (») . (5.20)

J

"

R

o

Thus again the theory shows abelian features beyond ordinary
nevrturbation theory.

Finaily we shall now derive the WT identities correspcnd-
ing to the abelian gauge invariance using functional methods.

We recsll the generating functionsl
W] - (e sfoee ) J - K] o

with .f(x) given by (4.7). As we saw earlier, the transfor-

metion (5.1) on (5.21} gives
CCe R
WE3T 7 [wapabaer = [ [£o) -7 00 A70)

_ ;LQ“' a.;g(ﬂ.rj-/_\h(x\ —-3-)'?&3-3"‘ K("‘)j ) (5.22)
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The transformation of the integration variables leaves the

value of the functional integral invariant, so that we must

have

(o d ,

[ -l O BN — 3‘ m W[:‘j] . (5.23)
XI (*ﬂ

The result is more conveniently stated in terms of proper

vertices. The Legendre transformations {3.2%)-(3.27) give

o a ol .
inS mo, & O+ Sl o ol (s
r e YA
e

Eqs. (5.23) and (5.24) are just the WT identities for abelian
gauge invariance.19 For example, for the renormalized n

point proper vertex, we have

etc.

Finally, let us note that the consistency of (5.23) with

the nonebelian WT identity (3.27) wouié requirs & rew relation

C ? § ' E =2
= = —= 0 X T 0 == J b'\) ‘(
v 4( R 9e ,;J',MR(,D [O‘R BRI AICY 7
2, 7 &
+ (4 S —— ] i
23}/1 e [B" N 23 de ija (x) T4
- - {(=.258)

X

LJ K K,
° Km(,x) ¥ FKZRL7S W Ml

The abelian identity (5.25) gives zerc for both sides of the

Slavnov identity (3.28), so that (3%.28) is satisfied trivially.
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VI. DISCUSSION

The UV freedom of ¥M thecries is seen to give us precise
informastion on the singularity structures of the theory, and
that enables us to draw conclusions valid at 211 energies.
The very feature that‘allows this to be done, namely the non-
abelian nature of the gauge group, itself disappears from the
WT identities, usually reliable indicators.of the presence of
a group structure. This is of course connected with the
intrinsic link between the nonabelian group structure and the
. interaction: théy occur as the product g fabc . The UV
freedom means that g can be neglected somehow,zo and in those
cases the theory also behaves as an abelian one.

We should reiterate the warning that our approach is not
rigorous. The field eguation we used with explicit 2's is
a crude instrument indeed; limits are freely exchanged whenever
necessar‘y;21 the use of functional mwethods is formal at best.
We feel that the derivations are plausibie.

The abelian nature of nonabelian theories would have

other consequences; these are being studied and will be

repcried elsewhere.
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