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Large Momentum Behaviour of the Feynman Amplitudes in the ﬂj-Thenry

by
X.Pohlmeyer '
II.Institut fiir Theoretische Physik der Universitdt Hamburg, Germany

Abstract: The complete asymptotic expansion of the Feynman ampli=-
tudes for large values of the scale parameter is derived in the
Gj—theory for Euclidean and Minkowski metrics.



I. Introduction

The large momentum behaviour of Feynman amplitudes has attracted
attention since the early days of renormalization theory [4,27],
Weinberg's power counting theorem, proved for convergent graphs
and Euclidean metrics, found innumerable applications in Lagran-
gian field theory. In 1968, Fink [3] obtained more detailed iInfor-
mation concerning *the logarithms which accorpany the leading power
f the scale parameter /\ . In 1973, Slavnov EH] showed that every
(inverse) power of the scale parameter /\ in the asymptotic expan-
sion of the Feynman amplitude is accompanied by a pelynomial in
1nA and nothing elss. Quite recently, Bergére and Lam determined
all the coefficients of the logarithms soing along with the leading
power of/\ [5]. -
In 1970, the (leading) asymptotic form of the full vertex functions
of rencrmalizable thecories was derived from the Callian Symangzik
equations [é] . The validity of this asymptotic form is not restric-
ted to periturbation theory. Never-the-less, in this context numerous
questions remained open onte which the bhehaviour of iIndividual
Feynman amplitudes may shed some light e.g. *he way in which the
perturbation series sums up to produce this asymptotic form, the
details of the asymptotic form, the asymptotic form for exceptional
momenta, several differently scaled subsets of the momenta etc.
This alone might already motivate our interest in the large mowen-
tum behaviocur of Feynman amplitudes. Still, there is yet another

(though irn*timately related) agnect *n *heee invegtigationg., In view
n¥ *he popularity of theories invelving massless particles the
transition from massive to massless IZiellds Cdegserveg attention.
Althousgh in genersl sumpation over *the various perturbation theo-
retic contributions changes gqualitaitively the approach to the zers
mass limi%t, detailed knowledge about this approach for individual
graphs is desiratle,

The present work gives the complete large mowentunr and smal’l mass
hehaviour of Feynman amplitudes for ‘ndividual vprtex graphs and
thereby for arbitrary individual graphs ‘n the Q ~theory <o which
we restrict ourselves for the sake of transparency. It shouid be
peinted out here that no restrictinns are imposed on the momenta

carried by the external lines of the graph in qguestion neither
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linear ones {exceptionality)} nor quadratic ones (mess ghell confine-
ments). Restrictions of this or a similar kind require a special
consideration because we view the asymptotic expansion in the
context of distributions and not for every configuration of the
external moments separately. This distribution theoretic formula-
tinn of the problem *urns out to be both adequate and helpful for
Minkowski metrics.
The apprepriate frame for the derivation % the asyuptotic expan-
sion n® *hs Feyrmzr amplitudes mppears to he *he analytic renorma-
1izatinn scheme [?'Q,q] ( and possibly the version of it which
uses complex space-time dimension [40]). Ir this scheme integra-
tions over contours in the complex plane achieving analytic conti-
nuation take the place of the cumbersome Taylor operator in the
Bagoliubov-Parasiuk-Hepp-Zimmermavn scheme (cf. e.g. ref [s]1).
Also, the concept nf labeled (singularity-) s-families (£,6) in the
analytic renormalization scheme [lcorresponding to the resolution
of the uitra violet singularities ~f the Feynman integrand [11]
Jends itself in a natural way to a generalization: the concept i
of Iabeied s ~fanilies (§,,6a) (explainad below in section IT)
corresponding to the resclution of the combined ultra vielet and
infra red singularities. In order to derive the complete asympto-
tic expansion for the scale parameter /\ tending to plus infinity
the degeneracies of *he quadratic form ~f the external momenta
entering the Feynman integrand need to he ex*tracted. In section TII
this js achieved by diagmmalization, Section IV recalls the ana-
lvtic renormalization procedure. In section V the asyvmptotic expan-
cion ig derived and s*+ated in a farm which allcows to read off *he
error committed whep truncating after z finite number of terms.

At the end of section V we indicate a way te handle mass insertions.

n
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II. Notations and Definitions

A graph G 1s a collection 'tRG) of V(G) vertices v and a
collection ZAG) of L(G) (internal) lines 1 such that for
every line leéf(G) there is assigned an initial vertex i(1)

¢ 1G) and a final vertex f£(1)e UG) : i(1) # £(1) (no tad-
poles!). The vertices i(1) and £(1) are called the endpoints
of the line 1 . |

¢ = (Wey, L) ; i, 1)

The union G of two graphs G, and G2 : G = GTUG2 defined
by V) =WeuWs,) , o) =LcHvdlle,) , 1(1) = 15(1) for
163:((}3) , (1) = fj(l) for leR'IGj) j= 1,2 1is again a graph.

A subgraph G' of a graph G is a graph '(’UfG') , L) i, )
such that 'U’(G')CI?(G) . Leyede) , it() = i), £'(1) =
f(1) for every line 1e G*) .

A subgraph G'*' of a subgraph G' of a graph G 1is a subgraph
of G .,

A graph G is said to be connected if for every pair v1,v2<51ib)
there exists a sequence of different lines {11""’1k / 1, £ lj
for any i 43 1€i,j¢k, 1;€G) for all i, 1€igk} such
that v, 1s one of the endpoints of 1, the second endpoint of
1, Dbeing one of the endpoints of 12 , the second endpoint of 12
being one of the endpoints of 13 , ...., the second endpoint of
Ik being V5 .Otherwise, G is said to be disconnected.

A graph G can uniguely be decomposed into a union of connected

subgrephs G! of G 1 = 1,2, 00.,¢(G)
c(G)
C = \U G!
i=1 b
The G s 1 = 1,2,...,c{G) are called the connectivity components

(c-components) of G .

A graph G is called one-particle-irreducible (IPI) if it is
connected and if any subgraph obtained from G by the removal of

one line is connected. Otherwise, G is called one-particle-reducible
(IPR}.
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Any c-component Gi of a graph G can uniquely be decomposed
into K(Gi) IPI-components joined by (K(Gi) - 1) 1lines, the
connectivity-reducing lines (CR-lines). :

A graph G is called one-vertex—-irreducible (IVI) if G 1is con-

nected and if any subgraph obtained from G by the removal of one
vertex and the lines having this vertex as one of their endpoints
is connected. Otherwise, G 1is called one-vertex-reducible (IVR).

Any c-component Gi of a graph G can uniquely be decomposed
into M(Gi) IVI-components Jjoined by (M(Gi) - 1) vertices, the
connectivity-reducing vertices (CR-vertices).

A graph G is said to be irreducible if G 1is both IPI and IVI.
Otherwise, G is said to be reducible.

Lét G be a graph. The number of independent loops of G will be
denoted by N(G) .

The numbers V(G) , L(G) , c(G) and N(G) are related by the
equation '

N(¢) = L(G) + c(G) - T¥(G) .

A subgraph T of G 1is called a 1-tree or a tree of G if
V(T) = V(G) , L{T) = V(G) -, c{T) =1 i.e. if T connects
211 vertices of G to each other and if X(T) does not form
loops { N(T) = O }.

A subgraph T, of G 1is celled an r-*tree of G if V(Tr) = v(G) ,
L(Tr) = V(G) - r , C(Tr) =r i.e. if T_ effects a partition of
the vertices of G into v mutually disjoint sets any +wo verti-
ces of the same set being comnected in T and if ]KTr) does

not form loops ( N(Tr) =C ).

A subgraph T] of G being related to an r-tree of G as follows:
flj/(_TIL) = {v / v =1i(1) or v = f(1) for any 1él‘D(G)\zXTr)} .
Loy = LeoLir)

is called a co-r—-tree of G

Now, consider an irreducible araph G° and set QIGO) =1j’,
vy =v, L@ =L, e =1, 8" =x.
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Among the various subsets of TT we distinguish the set 1JL of
all U external vertices u . For every subgraph' G of G° we

define

My = Ueryn VL

We add to G° one more vertex vee and connect this "infinite"

vertex v, to the external vertices u by U lines lu , ueu.

The graph
Tuivd . Lufr, / uwel}; 1) = 1(1) . £,(1) = £(1) for

1e L and ioo(lu) = Vo o fm(lu) = u for ue UL

will be denoted by Ggg -

Similarly for a subgraph G of G% , the pair
Ve)v ve S ;f(G)u{lu/ ueTe)y

defines a subgraph Gg of Gg, .

The graph G° as well as any subgraph G of G° are frequently
thought of as subgraphs of c%, .

A subgraph G of the graph GO is said to be irreducible in view
of infinity (I.) if either G is irreducible or if Ggo is IPT
and if with the possible exdeption of v, none of the vertices

of Gg is a CR-vertex. Otherwise, G 1is called reducible in

spite of infinity (R,). y
,

%
Example o Vg
G- : m-_— ‘{v1,v2,v3,v‘1}
v Ar
4 F A
% Vi v,
Some of the I_-subgraphs of G°:
v
5, [ ] ‘U- L]
) )




Some of the R_-subgraphs of c°

:

v,

Remarks: (a)
(b)
(c)

3 "s ;
e ’ ® & .
v, v, J, v, Yy
Y Vs T %’5
)
3 0 . .
° )
—o . i ®
U, ¥, 9; <, qa_

G° is I
Every irreducible subgraph G of G° is I,

Let G be a reducible subgraph of G° . Then G 1is
I, iff G 1is a union of one or more disconnected
tree arrangements of "stalks" and "cactuses" - a stalk
consisting of external and/or connectivity-reducing
vertices joined to each other and to the rest of the
tree arrangement by CR- 11nes, a cactus consisting of
irreducible components of c° joined by CR-vertices-
with the following properties .
i) each tree arrangement has at least two different
external vertices
ii) every "free end" of each of these tree arrange-
ments has at least one external vertex which 1s
not connectivity-reducing.
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Example of a tree arrangement of stalks and cactuses:

Jext, we define an s ;-family £, for G° as a maximal collection
of I, -subgraphs G of G° with the following properties (cf. ref(81])

(5.,-0) L) # ¢
(s.-1) If G, G'€ £, then either GcG' , G'cG or L&INLen)
=g
(54-2) If GpooeeyGye £, and Dﬁ(Gi)r\;f(Gj) =@ forany i#3 ,
then 1\J=1 G, 1is R,

Moreover, we define a labeled s -family for G° to be a pair
(£ 60) where £, is an S,—family for ¢° and 6, a mapping
Coo: Em—)‘f satisfying

(Sp=3) 0w (c) e L)
(S,4) If G'é&‘ is a proper subset of GeE.,,, then G‘Q(G)éf((}‘).
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Finally, if (Em, G, 1is a labeled s, ~family for G° we define
ﬁazg(ﬁw,ﬁ’a) to be the subset of a-space given by

9(»:{5 = (“1)1e;c/ a; 20 for all 1ed , o< 25 (G)
for a11 1€He) , cef )

Let gm be an s-family for ¢° , G an element of &, . The
collection of all elements of E which are (proper) subgraphs
of G will be denoted by §+(C—) (£,.(G)) , the collection of all
elements of £, which contain G as a (proper) subgraph will be
denoted by £, (G) (o (6)).

The following statements can be proved along the lines of ref([8]
(cf. Lemmas 3.2 and 3.3)

i) For every GE 3.,, there exists a line 1ei’(c) not contained
in X(G') for some G'€L. (G)

1) Hes@] = new) -1 . #FLEN - N

i1i) Every s, -family £ for G° may be labeled, i.e. there
exists a mapping Opo © g—-—)gﬁ such that (§0,) is a labeled
S,-family for G° .

iv) it (&, 5‘,,) is a labeled s -family for G° , then Ty =
= Ty(&o Cp) (U, I\G’m(sﬁn}) is a U-tree of G° each of
the U c-components of tree structure containing exactly one
external vertex ue'U[ (One or more c-components of TU may
consist of just one external vertex).

v) v f- Uﬂ&“,c‘w}_{ / a%0 forall 1eX}

where the union extends over all labeled s, —families for G° .

vi) If (- o’m) and (;S, 6") are two different 1abeled S~ fami-
) !
lies for G° , then %o/\ﬂ a@fé“,c;,) ﬂ&d ’,) has Lebesgue

measure zero.

Comparison of the number of elements in an s—famllv é for G°
(cf. ref {8]) andlin an sg-family &, for G° yields

# (8- #lEle v - o
since 7[&]l = N = L+ 1 -V and #[8 1= ned

L+U+1 =(V«+1)
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Consider the subset ﬁ; of £” consisting of all elements F of
. with N(F) = N(F;) + 1 where F, is the following subgraph

of G° : 'UEF1) = {v'/ v 1is an endpoint of at least one line of
;f,(F)\cr“(F)} . I(F‘1) =x(F)\oa(F) . For any Géé“ define

i) = {r/ Fef,, Fco}

- G’

go6) = {r/ Fef, Fgol .

We claim that T = T(&,,64) : (U, R"\G"m(f)) is a tree of G°.

For the proof we note that V(T) =7V , 7 [G;o(g:)]= N,
L(T) =L ~N=V -1, N(T) =0 . Hence ¢c(T) = 1

I

]

Next, consider the complementary subset %f éw\g: of ﬁm . For.
any G €£¢ we denote the subset of 'ch consisting of all elements
H of 'Xm which are (proper) subgraphs of G by ‘Z;(G) ('JC;(G))
and ‘the subset of ‘Zm consisting of all elements of f}"ﬂ.. which
contain G as a (proper) subgraph by %:(G) ('JET(G)). Furthermore,
we denote the number of elements in Se:(G) by h(G) .

futa) + (U, FCAC AN C K Q)

with at least one external vertex

We claim that Th(G)+1 = Th(G)
is an (h(G) + 1) - tree of G
in every c-component.

51"

In order to prove this claim we note that V(ThEG)+1) =V,
L(Th(G)+1) =L -N-h(G) =V - (7 + h(G)) , N Th(G)+T) =0

Hence C(Th(G)+1) =1 + h(G) .

The rest of the claim follows from the observation that the removal
of lines from ‘jt&G) reduces line by line the connectivity of the

external vertices.

For any line léQf we define G(1) to be the minimal element of
ﬁm containing the line 1

With this notation the subset ,900 of the a-space can be parame-
trized as follows:

| t
ay = G':4,9G' DG
B

o if 1 = Uoo(G) for some Ge£b

. tay if 1#£ o0 (G) for any GE€
lgrigaG'a6(1) ¢ o Ao

where 0§t;0< o0, O0Sty§! for any GE€ EHC) , 0<B8y <1 15£0,(G)
for any Geg,or writing the symbol t for (tC—)Gt—:‘g’(G)'!
and the symbol B8 for (131)1?(0 (G) for any Gef,’ =
co .
0& tgo< 00, (t,8)e I°7 with I = [0, 1].
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III. Diagonalization of the Relevant Quadratic Forms

To every external vertex ue'U'L we associate a real four vector
variable, the external momentum puem4 and set p = (pu)ue'UL'

We assume that a real scalar product is given on R4 . In the
spplications we have in pind the quadratic form associated with
this scalar product is not positive gsemidefinite. Hence we suppose

that there exists a vector poe’r’ﬂo’ such that pg = Dy'Pp = ~ 1

The removal of any line 1 from i(T(ﬁa, o)) results in a 2-tree
of G° with the two c-components @1 =®1(§._,6’,.) and @1 =
6 (£,,0.) vhere 1(1) e W@,) and £(1)e @) . By k; we denote

the partial sum of external momenta "that flow into the line 1
in the tree T(§_,&,) ":

1
ue 1) uelt
kl = Py
uem(é)

H

By kH and k° , Hé';ew we denbte the partial sums of external
momenta '
v e
ue )
and OW(H)

Wo=>

Py,
ue (=)

respectively. We set

k = (kH)He&, Ky => u;pu
u€

q HeEFCm are U linearly independent partial sums of

the external momenta. Thus every linear combination of the exter-

kd and k

nal momenta can uniquely be written as a linear combination of

k;a’ and kH . HG?COC, . The change of basis in the U-dimensional
U .

real space R° from (Pu)ueU(. to (kﬁ ’(kH)Hexz is achieved by

a non-singular (a-independent) transformation R = R(é.,'ﬁ:x)

o
(edirerat ) - ((p“)”em)
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Let x be an arbitrary subset of V(. Denote the complementary
subset UL\Z by XI .

. f . o
How is (%pu) linearly expressed in terms of ky and (kH)He'J(,,‘

In order to answer this question, we define the subgraph @x
= @x(ﬁo.,ffw) 0f T(fw6w) as follows:

U(@x) X,U{V / vel, v is an endpoint of a line 1 Ef(gx)}
L ©,)

{1 / 1 belongs to a sequence of different lines from
i(‘I‘(go,,G'w)) that connects two external vertices u,
and u, from % to each other without at the same
time connecting the vertices u, and U, te an
external vertex u' from %' }

U {1 / 1 belongs to a seguence of different lines from
I\ om(‘go) that connects an external vertex u from
X to an internal vertex v e rlj'\UL}

We denote the c-components of 8).’ jby @% = (l-%g(és,s"“) J=1,..
- = h!

..,J—Jx(é.,ﬁ'o,,) . We set Zj = UL(@z, . Let ‘Xx ; and s be

the sets of all elements Hé'}f‘, with cm(H)é ‘;é(@x) , i(o(H)) &

QT(@%) and f(cm(H))évfG)F%) ,respectively. We se‘t}}/ _
_ gq‘ax;é H %z;i." %Z;:C H %Zia‘
Then, for HeJ i

ke TR ¢ (5 ) (k)

WeR s H'e dF. HeH
Zpp) = g (- TR « T k-2 ok

wex He s
Summation over j leads to xf

EP%) ) (]’ - #[%x;;D&,g v 2k, "E:%)LH..

MmEY H'é%zi_; H'e ;ezd:

This is the explicit linear expression of (} :pu) in terms of
Uey

kGf and kH ' He'}fm we were asking for.

Now, consider d(a)
dy=2 . | |« = 2. o
) T L e £LECm) L ! ped (T L
where the sum ¥ extends over all trees of G° and the sum Z’f_.;.

over all co-trees of ¢°




Take an arbitrary co-tree T' from the sum 2 o 1 .1 o0 .
Tt 1edlT")

We argue with Speer and Westwater [Ma] that the intersection of
L(T') with L(F) for every FeSE’, contains at least N(F)
1ines 1p,e L(F') , F'e i, , F'cF . Hence for g ¢ &,

NG A
d) - TTE T p)
. Geg,,
where the function d4{z.8) is a polynomial in t and 8 . On the

cther hand, for a € «9‘;,

' N(G)
d(x) > _da, =T L =TTt
- .’“G\i o ENTL peg®) £ aeg & -
Hence the polynomial d(t,8) 1is larger or equal to one for

(t;8)e I¥ .

Analogously, examine d2(2’_[1’t)(2)

d o' y@) = 21 [«, =2 T T«
' T, Led~L(T) T LeX(T)
where the sum I_— extends over all 2-trees of G° such that for
U; o Uy e thefe exist a sequence of different lines in ZC(TZ)
connecting u. and u, iff u, and u, are contained either

both in ¥ or both in x’ = U‘L\X , and where the sum I extends

T
over the co-2-trees Té of ¢° constructed from all sucg 2-trees
T, of G°.
Tzke an arbitrary co-2-tree T} from the sum — T4 1.« .
2 % 1el(T5) 1

Again we argue with Speer and Westwater Eilj that the intersection
o Lemy) wite f(FY for every Fe & contains at lesst N(F)
e fr) , rred , F'cF and that in

(TH) LRI YLD Hys /) H

7 vertex u from ¥ ie connected to a vertex u' Irom % by

lines 1

= seguence of different lines. Hence
N uil
Z(TH :ﬁ(bepte_!g(jz{dp} 1,

I
where 1E,xé EB(Hx} . Thus, for ge;g; dg(x |x)(9_) can be written
as

L = Tt - T Je™ Aonep

Ge £2(Hy) @
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where the function d,(¥[Y)(t,8) is a polynomial in t and 8 .

Next, we study the quadratic form Aa(g,p_)

-4 st(x) d, (lx') (&)
p)= —A&S /ZZ e
A p) 0 pany

_ _ 4 oL(x\x J(£,p)
v S(X)\ {_ .
?CZC;EL Geg‘\’:(H)G‘ (L\P) /ZP 0

for o€ o, with s(Y) = ()::pu)2

When expressing (pn)ue.m by kd , (% )He'x .)Aa(g p) goes over
into tGO D't B(k k) = tGo'Dt B(k’k)

INCEE -Jcc.vz RCESEPT I DINCEY
$ H'|H“€'K.. *lP '

B \'H & ( Gg““‘ﬂﬂu) A ) d- ‘““( é) )Q k“
where the coefficients H' H“ % *and H' i (t,8) are quotlents
of two polynomials in t and B the dl‘VlS’OI‘ polynomials belng
larger or equal to one for (t,B)e¢ - in both cases.

The quadratic form D" B(k k)

Dﬁ £ (k&) ’”téDelﬁ ( (&/ T &) et ‘QEB

Ewy @ He'&(_,

| {;) e d) ok,

T T GefT(MMaRYINE (vl L1
is a finite-valued, non-—degerer‘ate guadratic form for (t,B8)e I .

——

The non-degeneracy is seen as follows. Set kH = XDy » Xpé€ R1

for a11 HeH,, pZ = - 1 . Then

DJC 8 (e, a0 »?7%\&)

) Laeltprnon,

w M ¥, GeET (Wan")n £ oo
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. LD (8

is a sum of non-negative terms 3 S.'E(x) w8 where
%t () = [Z(\ \ _E'/:.> Xu — Z ( ‘ \-‘E‘&)XH
TF G - G G

;s

the products extending over ﬂHx)f\é‘(H’S

In particular, if ¥ = 'U('(@O (H)) for some HGTE then St(x)
o0
is equal to xﬁ . In this case, for (t,B)¢€ a !

d, (@) | | %

Qe T FETAE, g 6, (1))
‘ l I [ N
Lee, (Eromy © GeETw @ Gef, G-
Hence 32(;{ x')(* 8) 1is larger or equal to one and since d(t 8)
is positive and bounded from akove in (t B) € I , the quadratic

form D#,B{‘XHPO)He'&’(XHpo)HG‘?&? is larger or equal to zero, the

latter 7% and only if all Xy o He ¥, vanish.

The positive definiteness of the guadratic form Dt B((XHPO)HG';K

(x nn)Heﬂl’, implies the positivity of the dr—»termlnan‘ts
— |
(e ) : (4" we)
H“ 1&‘ WY IJ{‘\‘(H) H"“h(._\é H‘\H"é'&'(_um

for any HC—_% and any (%,B)€ 15~ . Here we have set

d e = (T T6) T
£oaep) - (TTe) feep

the products extending over ’é”(H'AH")nﬁm(H } and ,g”(H'nH") N
é;( H'WH") respectively. By removing appropriate factors from the

(d’n H® —\P”ueu{ gyuind

W' e - v T3

we obtain the following result:

~ows of
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(CL (-\Y’ﬂu 'e ¥ (MIviK} = Tr ﬁ“‘) (CLHH"( F )H ', o (Wuind

H“G"k;.cmu {HY HeIK H'e o (Ui}

and in particular

{
O\.H““ﬂ u:—\%—»w“u‘e‘éﬂﬂm T_ & (H) @'n',ﬂ" L#-\@)H"“ne‘kjm

KeFtiw %

where the second factors on the right hand sides of the last two
equations are independent of tGo and depend on t and 8 1in
the form of a quotient of two polynomials the divisor polynomial

having no zeros in -,

Starting from the quadratic form tGoD B(k k),Jacobi's diagonali-
zation procedure Bﬁl enables us to determlne a linear transformaw
tion Sy 4 = S, B(EL,Q;) and a quadratic form E B(g q) = B(g,g)

PR N AT

with the following properties:

L-1

i) s is non-singular for (t,B8)e I .

ii)

%8
(s t, B)H § is independent of tso and depends on t and 8
in the form of a guotient of two polynomials the divisor poly-

nomial having no zeros in -1,

iii) When substituting ((qH Héw = ((qH(t B))He‘?@.) = Sy 8 ((k )He%)
the form t,0-'E, 5(g,9) goes over into the form tGo.D B(k k).

The transformation

O if H3ZH
A if H=H
| = f ) if HeH
(S har™ § It 68 ety

“(OLL‘M“ &, P-ﬂa‘,u"e W W)
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and the quadratic form

E,pa,a) 62, (TT £) e,k p) a,

Hed, Qe (H)

( e Lt F’\)u H"e FEH) |L
(d-u'\u" @9—\ rl) )u"\-\"e 'IC;(H\I

match the reguirements listed above. Thus, tGo'Et,g(Qiixﬂl'Qixaﬂl)
is the diagonal form of tGo-Dt B(k k) -=

Note that e/ (t B) also is 1ndependen+ of tGO and depends on

t and 8 1n the form of a quotient of two polynomials both

positive in sl L 2

with

e;&-—) 9—)"‘
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Iv. Analytically Renormalized Feynman Amplitudes

For the sake of simplicity and definiteness, we shall restrict our
discussion to Feynman amplitudes occurring in the perturbation
expansion of a P(;Zf)4 Lagrangian field theory describing a poly-
nomial self-interaction of one sort of neutral scalar massive (m)
particles in one time and three space dimensions. The generaliza-
tion to theories involving massive particles with spin and deriva-
tive coupling in one time and arbitrarily many space dimensions is
straight-forward.

with Speer'[ZT]we associate with every line 1 of the vertex graph
c° a complex variable Kl y A = (Ki)leaﬁ , and modify the propa-
gators according to

,,11
i 4 U [ g _Ho]
@) A-wi+a0 ()"

A
A (Xm 4(,.))4%)—'&{ (X»a) ,ccm'm‘)

= g; e:: :;:)(3‘—1 [Ik W“+AO] }(m R

A

This modification of the propagators results in the replacement of

(th v J‘_‘Ol.}(T;[A (e~ ,ca)a’"‘)

g (lrr U*L'—F

which in general is ill-defined by the snalytically regularized

the amplitude
‘ +A

amplitude
- Q& - Ll“ ‘
t ((ijuevl )m) Q.l. AL d-X -I:\- (xa.lt) X{-{t))m')
which is well-defined for }_G_O.f{ A/ MJ\1> 2 for all 16:8} .

In J:Lz the Fourier transform of PCA can be expressed with the
help of the parameters t and 8 as follows (cf. ref.[8] )

~

T, (p3m) 2GR
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where
Nﬁw _
B = S(Z 0 Li\mw# 6] -
T‘"T [ m Jg(awl M(y) (M 3
L X e ul’“[ oo 19 gep
| +m1§( ™ "“O]
V(G) =%§k1—1) + n(G) , n(G) = L(6) - 2°N(G) , V= W),

n = n(G°) =and where the sum extends over all labeled s -families

(Eper62)  for ¢ .

Using the fact that [Et B(o(+ 8), q(£.B)) + gle/ﬂ (GOQ - 1@]
is an infinitely d1‘ferent1ab1e d1q+r1but&on—valued function of %
and 8 as long as m is larger than zero, we may convince ourselves

that

e -1 ~ a‘
) Toe) - T (pym)
ijs an entire distribution-valued function of A for every labeled

s -farily. Hence the distribution-valued function of A

_ 4 ~

[ T T (Zcnm@) - T, (p5m)
e« entire. Here, the produet \ | extenzZe over all I -subgraphs

of G° . “

Speer's generalized evaluator "f//{’ﬂ/ /L =1,2 ,...} ie appli-
cable, to *he ampliiucdes Qj (pem) . Th=> result of the application

’ﬁ/IQ:;(R m) is the ana1y+1callv *enormallved Feynman amplitude of
+he vertex graph G° contributing in V order perturbation theory
+n the vertex function of the momenta carried by the external lines

of GO
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V.Asymptotic Expansion of Analytically Renormalized Feynman Amplitudes

It is our long range goal to understand the way in which the pertur-
bation series sums up to produce the asymptotic form of the vertex
functions as obtained from the Callan Symanzik equations.

As a first step in this direction, we shall determine the complete
asymptotic expansion of the {\-) parameter dependent distribution

3 (pym) - U C, (Npym)

for /\ tending to plus infinity. By contrast to other authors having
contributed to thig subject, we do not discuss the asymptotic beha-
viour in /\ of (p;m) pointwise, i.e. for a fixed configuration
of the external momenta (pu)ueUL . Instead, we rather establish the
asymptotic behaviour of the complex-valued function of /\

<:?é7\ )(?‘>' = jﬁdf?a CF(jg)ég?\(ilaan

~
for any lf)é Dp(HA'U) . At the first sight, this seems to complicate
matters unnecessarily. For Minkowski.metrics. however, the latter
formulation of the problem turns out to be both adequate and helpful.

In order to establish the asymptotic expansion of the parameter depen-
dent distribution %}Sg;m) for /\ tending to plus infinity, it
suffices to determine the asymptotic behaviour of

AT 3% = INT™ A S
A)

- Er(py ) - 80 Pu3%{W]_¢§Q_ o)
T ) T e 8

lelngff) © Gegle) 0 KQ&\@T

(et qus) + Rewpr-i0] |

for every labeled s,-family where we have set
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elt p)= e(&"g’)(ﬁ‘[i) "'; (%cw)) > 1
L -%C(}L,_—ﬂ |
o, - A

Without loss of generality we may assume that U 1is larger or

and

equal to two.

The limit /\——+00 corresponds formally to the transition from
the Feynman amplitude with massive lines to the Feynman amplitude
(for the same vertex graph Go) with massless lines. In the zero
mass case, however, we are dealing with a complex poﬂx;r’er of a homo-
geneous quadratic form: [EE’E(M’M) - iO] which fails
to be an infinitely differentiable function of t whenever and
wherever the quadratic form EE'E(g,g_) degenerates. It is this
lack of infinite differentiability which prevents us from finding e
the answer to our problem right-away and, moreover, forces us to |
introduce the subsets of a-space 08;,-'-‘(3/(&0.,5'00) instead of 3(&,6’)

{cf. rec[871 ).

In order to contrdél the formation of the singularity under cgnsi-
in

deration, we convert the additive occurrence of -dy an% I/-‘-é-
! 2 z ek '
[T T 4 e g)qn) 2 ele,p)-i0] |
HeFon G\Eﬁin)ng:(ﬁo\a H ‘é qH AN \[}-
inte a multiplicative occurrence - with *he help of Mellin trans-

forms. The result is

B s 1 T DN VY & ma
ror A ) | 2 (s [eea
’YY'L&L‘E_. é‘) 9 H H Y

. ) He . ﬁ"‘:xﬂ—ioﬂ e,(.t,@_)’hﬂ. G€ _&H)nfz;(?

. (__ (;\t —A O\‘SH r(_v +H§DSH)

where the YH's , He'}{, are real numbers between zerc and two.

For A contained in a compact subset of “O"Z'(U—ﬂ = Z]}; /&ﬁ\l)
J T-1

2(U-1) for all 1€} and for (,8) contained in I ', the

integrations over converge uniformly.

5y
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In order to prove the uniform convergence, we note the 1dent1ty

z - (- —&0)
=0 - oo 2
[(se) - (s+pe V] [(s40) - (S-Hj)]
for any J=0,1,... In view of this identity and the above Mellin

representation we obtain

LB Fee-al

Gefi(ay
- ds - ( i g 0
\He"Kel. [ e X ) (SH 2) ) 9«(—\[5 )Géﬁ\,cu)nﬁ_(c“' ( |

.-r -LOO

g4 2 ’
r(va—zis\ ;[;; et Lr:v)) [m eﬁﬁ}.@(%.)

where the following estimate for vy £ -1, dy¥ 2 2 . HeH,, can be used

KRN (/\".eLLJg@ o s
“—\[@H+z)~.-(s“+jﬂ) - ele 8) ‘rl—, a) (*%H—AO) 1

hek, RRACHITCY
. r(\) v, S ) ﬁ £%v@)-1< Cruat [4 +1Zm\]@"z”«'x
Heke Geflew) "
M >
HeX, [AH’V[H\ Sy
for sg = - Yy + iy -

In the pointwise discussion for Minkowskl metrics, on the ¢other hand,
evenn in the case that all qé) o, He'Ho, the correspernding s—inte-
grations would not converge unifeormly in A t and B8 provided
that ®eY is larger or egual to zero.

For leggz(u_1) we have ghown the following represen{ation to be

valid
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__r H* "m Z S 1;

BE (e ) - SR I T e T, o

~fa-i*
where

Gu,s (o) = §5 -] _T[Tot@n slhy (e

with the entire functlon of A and §

) TT aeul
(P)W’J /ﬁ“@ (P“m) Leixﬁté,,[g&ﬁ/g{]

T_T [F@C@HZ. S "’JoUc JC '%fﬁ}ﬁff&@r

aef (@)

[’V"Lz'etﬁ\éﬂ—o ‘.I;;( v ek m) [(24s4) ("%(t p)- Lﬂﬂ

and where the s-integrations converge uniformly for A contained

in any compact subset of (2 2(U-1)

We define K = K{ﬁ”,o’) +o be the minimal element of'(}E with the
property n{G)>0 for every G Gé?YK) . Specializing to *the quartic
self-interaction and to vertex graphs with more than two external
lines we notice that n{G) is Jarger or egqual to zero for all
Géé:(H) , He'dl,, . we shift some of the s-contours to the right

and obtain

[RIPARIC)] 1 CE (A w;.)

G.e

~Yukios tloa
Z § (Z bu)rl S(LSHP( )F(%s“)] Soks s )0s)
%fm?ﬂﬂ i ”'
[/\1 He?(“(ﬂ') [F(Z(A 4)+TLCG|)) } ?ﬂ S(E) }SH 0 Sor
where O<YH 1, O<Ha:( . < 5. < 1 for WeH_(K) anc n(%ﬁ(ﬁ)

- SK <-SK< 1 . The s- Jnfegratlorc converge uniformly not only when

A varies over any compact subset of btut also sfter ana-

2(U-1)
lytic continuation of the integrand when A varles over any cempact
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sutset of Q 1_6'—’33 /Rery>1 —-€ for 211 1 Gi} . Thus, f»nr the
quartic self-ipteraction and vertex sraphs with more than ftwo ex-
ternal lines - we shall regtrict the subsequent discussion *to this
case - we may continue ’Zf%/\_ﬁ;m) analytically from %(U_q ta
a neighhtourhood of ,\1 = 1, 1ed . Leair in view of the uniform

convergence of the ahnve s-integrations, the ceneralized evalustor

/l‘/L operates directly on the integrand:
A CTE(pps ) = 2 ?f’%/(

The terms t&"d}[}p m} s‘(and *‘or

?+L°° JMH)“1
AP TORNIN ndiF oy WS
VOB Ziwo g A=A -
(“’V)
Mty T ) [KT { w@,w
~) 14\
With 15§ Y <ooooos >§Y g,,) 0 frr HeH_(X)
and (‘>Qh(K)> ...... >€2\, ?1 | for H=K .

we replaced the integration variables sy and Sy by the new
* !
variables 7. , & 3¢ h{$f) , defined by

v A
2 - ,.Z,—: S,

after having erumerated the elements of ';(fm according to

lol
“ia
|

il

maximal element of A}Ew

1ol

= AN
Finally. 1, o z
) .l..! ooy h(ﬁ')

%{?&Q(P')m)/sfo for He?’{;(ﬁ')s )

maximal element of ”X;(H;'_J Jo= 2. .., 0,

(p;m) stands for

a distribution-valued meromorvhic function of =z, , 1€ 3¢ n({)
with poles at z, = -n.,-n.~-1,-n.-2, , N, = Eﬁ(/ém,b';,) =
- min{n(c) / Geg"’} T
E: ﬂ,é (H ,1) for 3 = 2, ,h(#)
,é',! B £ (Hd) for 3 =1
The order of the pole at Zj=—L ’ p_.' = nj, nj+1,nj+2,.. , for

every 3 separately, is at most eenal to



- 24 -

g ie /Gez (GNET ) for e GEGT
n (G < OS

wrere

e = 16/aeg; n@ep] .

Ty

e move the ?1-contou** to 'the left and obtain

%f‘.,"’#(/\ ) Zm 4;‘*% N 3’" (Jo5m)
gi% [NT T )

. g-Aeo
for HE‘I‘L&K) , any integer M 2 po(}{-) . -’_M+1)<?<-—M . €70

lﬂn.

sufficiently small. ",
Here, for every He’ﬁ;(K) , &”q'('v :m) is a distribution-valued

meromorphic fimction of 7, with r;nlp'z at Z, = - P, B = —p (%),

‘UO(‘H')-‘! .-un(‘}’l—)-z, ‘e
e (3) ‘/uo(ﬁm Gy ) = m smﬂ{% +2(4- 4)}

..._

A¥f arier mu(%) /L»G"’)

WYL/M(M= m, (éhﬂ\o;‘)%) #[Uéo,:,«gmg AJJr%{G‘/

It

! - me) ,
G Qéo@ CG é (H‘) K;O'r pome G € 3= é’&)/‘ 2jA) ! (G‘)SO}

1 if p3 2-(h(¥) - 1) for #e?{bom

+ 1 if pY 2'h(k} for H=K
0 okherwise
For —uYy Rez, > -(p+1) . f‘éﬁ*(n ;m)  is given by CS‘ (%P“)-
Au(#) -8(2) w=0() -~ [/k,_+ g ] Fruf e
A SR e £ Vs
— 2-‘—-'1 T4yq

=1 /UL,_=1 /""‘"r =4 ?,—;4



Srpat oo

g Vg [ (D] -2, O (o Lssn)
Snoy -

4001

l_ﬁ'fl [l—‘(b%{}’% M)Iﬁ( ’H-/l—% )] F(Qa +E 4..(»))]—'( );' raue) i’;ﬁ,&’

with 2;}-;:--4]“;&

: L if 3 £ n(k)
@(/X} - 0 ;therwise
and |

0< QG+ g,,, <ArprRez,
0<Bteen) +Q,, ¢ - - <OGOGI+g, <+ 1.

This formula may be proved by induction on g .

As to the possible values of u.o(‘H*) - we note the inequality

c(G) ¢ 5 for G ef,:

and take into account the following relation valid for the ﬂj -

theory c(G
n(G) = - § : +# external lines of G! - &
2 { i

i=1
where the Gi 5. denote the c-components of G .
From this we infer for the Qﬁ ~ theory

n, =n, n_i>/n+2-j 3= 2,3%3,..,h(¥)

Actually, these relations are true for all monomial interactions
apart from the cubic one. ‘

Hence p.o(‘ﬂ') = uo(gm.s;,;%) is equal to n for all H»G“J{:(K}
and all labeled Se-families (f,0w) for G° .

Moreover, the order of the pcles at 2z, = -p = -n,-n-1,-n-2,... of

i) is equal to m (Ewy6) = Max m ( cor U0 33%)
;Mk;t ) " heea ¥
-2_ Z rt&" 14 _P, ’YVL) = t (p_ m\ is equal to m, =
(o 520 ) XK il = Max m (ﬁ o‘m

G "
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Now, we have all the necessary information at hand to write down

the asymptoticg, expansion for the analytlcallv renormalized Feynman
amplitude 4(??(A ;m) of the vertex graph G°

FNT AT T ) + R

- M
w1f€. e
(W) w NS
/z‘j/“v‘fc (& l'm) B ic% zf— '(,5 dz, (2p) ’Zf (pim)
and grieo ) . gz €
_ A 1E e,
’p'm = el gol%‘,[/\] (\Cf" (E_)m)
g-as

where -(M+1)<g’< -M .

If the number of external lines is equal to two (and U = 2) we
adopt the same prncedure as before with the only difference that
in the beginning we push the s-contour further to the right.In this

way we obtain

Wté (/—\—P- 3"%3 = [’./\LTl g(p,,+p,_ fS)i W (s+4)

RO s
{[/\] ﬂﬁhs pm)-"lfgm(h-,mﬁ —-[/\1] g(P4+Pz )
é)ctsT R(s+4). L/\}’)wc}& Lk }m) Wﬂ«a o(p,/m)}

2KA
o IS1=€
Z § Cpar ) A’é) ds Tes)T( S)[/\] 4‘[% ()
Falad Q00 \S*TA\ =€
e ) A= \d g sTes) TE) AT WG Loy
for any positive intege;ﬂp; , =(M+1}<Q«~-M and € >0 sufficiently
small.
The order of the pole of the integrand at s = -u , p = ~-1,0,",2,..

is egual to
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A= Su +*{G/Ge,£m‘ULCUCG) ,'n(G)é/*}
+#1G/Ge L VEVG) (a0,

Now, the asymptotic expansion in powers of /\"2 and 1n/\? of the
Feynman amplitude corresponding to G° which contributes in Vth
order perturbation theory to the two point vertex function can be

read off easily.

An arbitrary number J of mass insertions can be incorporated
into the above scheme by partitioning j 1in all possible ways
into a sum of L non-negative integers j1,..;,jL, replacing the
propagator of the Jine 1 in the amplitude pC;Qgg;m)

by ‘ ég ot E}L
’ ATC "I—" - J
(ML")M fp’ ! _J:L r(}\'t")) [Ihz—-mz—\- iO_J =

‘ [L u“)?,]je-fd

multiplying subsequently by the combinatorial factor

a!

Jateeodi !
summing over all different partition3 and applying finaily anL

*

appropriate generalized evaluator

L+

The asuthor profited from various discussions with Dr. H. Trute.
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