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Abstract

We develop the Mueller-Regge formalism for inclusive photo— and electroproduc-

tion of pions in the photon fragmentation sector. We discuss under what assump~
tions about the analyticity of the six-point function one can derive a Sommer-

feld-Watson representation, which involves integrals over the crossed-channel

helicities.

In particular we examine the properties of the so-called helicity-pole limit
(H.P.L.}, whichis relevant in realizing the Mueller—Regge expansion in the frag-
mentation region. In the case of the four-point function there exist relations
among the s-channel helicity amplitudes at high energies, if only Regge singu-
larities of definite normality are exchanged in the t—chamnel (Stichel Relations).
One of the main points we make here is that in the case of inclusive distribu-
tions, these properties carry over to H.P.L, if we take into account only the
leading helicity pole. An important conséquence.of these relations is that the
inclusive photo-production distributions vanish as k% + 0 (kT being the

transverse momentum of the pions).



1. Introduction

In recent years much work has been done on the phenomenology of inclusive di-
stributions. However although there have been a number of attempts to under-
stand the detailed way, in which a Regge expansion arises in the case of an in-

. . . . 1,2
clusive distribution ? >3

, some aspects of this problem have not been adequate-
ly treated. In particular, when we include external helicity, it is important
to see if and how those properties which one normally associates with a Regge
pole theory of a two body procéss, carry over to the case of an inclusive di-
stribution. Photo- and electroproduction have always been a good testing ground
for the helicity dependent properties of Regge theory4 and for example, it was

5, that when definite normality is exchanged in the t-

pointed out be Stichel
channel, certain linear combinations of the helicity amplitudes vanish. This
has the important consequence that the unpolarized differential cross-section
fer photoproduction vanishes a36 t > 0. In a previous work7 we argued on heu-
ristic grounds (by using elementary exchanges) that completely analogous rela-
tions exist for inclusive photo- and electroproduction of pions in the photon
fragmentation sector. Further we showed in reference 7 that as a consequence of
these relations in a purely Regge pole model the inclusive photoproduction di-

T
the pions). Experimentally8 this and related properties are mot in evidence and

stributions of pions vanish as k. *> O (kT being the transverse momentum of

it was concluded that absorption corrections (i. e. Regge cut contributions) are
needed in order to reproduce the data’. In order that this interpretation is
really binding it is necessary to establish that the symmetry relations men-
tioned above are indeed a property of the inclusive distributions. We shall
attempt here on a more formal level to establish the Stichel relations for in-
clusive photo- and electroproduction of pions. This we do by deriving a genera-
lized Sommerfeld-Watson representation of the inclusive distribution, starting
from a model of the analyticity of the corresponding six-point function. Our
analysis differs in certain important points from feferences 1 = 3 and is most
directly related to the appreach of White developed for the five-point func-
tionlo. The latter involves a direct generalization of the usual Gribov-
Froissart continuation of the partial wave amplitudes and Sommerfeld-Watson
transformation of the partial wave summationll. This approach is the most appro-
priate if one wants to examine the helicity dependence and the symmetry relations
that arise if the process is determined by Regge poles carrying definite quantum

numbers, in particular normality.



In section 2 we review the definitions and kinematics involved in a Mueller-
Regge analysis of inclusive photo- and electroproduction of pions in the photon-
fragmentation region. In particular we shall recall why the relevant asymptotic
limit for the missing mass discontinuity is a helicity pole limit1’2’3. In sec~
tion 3 we derive the generalized Sommerfeld-Watson representation and discuss
how poles in the complex angular momentum plane determine the asymptotic beha~
viour in the helicity pole limit. We discuss the crossing and normality proper-
ties of the helicity amplitudes in section 4 and derive the Stichel relations
for the inclusive distributions in the helicity pole limit in section 5. In

appendix A we discuss the model of the analyticity on which our analysis is

based.

2. Definitions and Kinematics

The essential idea behind a Regge expanéion of the one-particle distribution

yp + X 1is to assume that the t-channel six—-line function (fig. la):

(2.1

D S

*) _
T;i',a -7 ( Y (A) + T(~R) + Y(-7X) + TH) = FCP) + P(p)

can be related by crossing to the physical region of the six—~line function in

the s—-channel (fig. 1b):

(2.2)

= 7—(3/(7,1) + PAP) + TA) == YEN) + p(p) + ""C‘JJ

(s)
Al A



The latter, through the Mueller optical theorem, determines the one-particle

distribution, i. e.

3 - . (s)
2*& d.O"' = g D 2 7_¢ ’ !
L T ;\Z;’\ ( B )4'4,/’-#,%7’

(2.3)

(where Feff is the effective flux factor for the virtual photon7).

In both (2.1) and (2.2) it is understood that we averaged over the proton heli-
cities. The configuration in fig. la will be referred to as the crossed channel
(or t-channel), while fig. 1b shall be referred to as the direct channel {or
s-channel) of the six-line function. A symmetric set of four vectors and inva—

riants for the various channels are defined in fig. lc, so that

S = (prg)”
s = (prr)
SMg = (pra-4) = (pred)
5 = (A-A+p) = (9-6)
S = (P"P"'-"?')z = (7’4‘&3)2- (2.4)
5, = (A-A)

For defining the kinematies of the crossed channel partial wave expansions we

need the cms systems™!", "2" and "3" which are defined as follows:
¥y
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1" cms of Y@HA)T(-4) [?7’+(-3)=0J (2.5)
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cms of (&) y(-9x) [ £ +(-F)=0] (2.6)
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The center-of-mass systems "1" and "2" can be reached by boosts along the z-
axis, 1. e.

F = B (Ve 0, 00) = (Vi coskhe, 0, 07,V siah )

Q= B(u)(VR, 0,0,0) = (i sk, 0, &, VE 5w

(2.8)



The boost parameters X., and XL are related to t,, ty and t; respec-

tively by 1

sumh Xy = (l TR AR YT )%' , smhX, = - (JL (+,,+,,,é3)/43+2
so that from (2.8) :
& + Q@ = (\['E;CGSAX,+V-?,,cosLXz) o, 0’) (2.10)
We define |

Ci = cosh X , Sp = sonbs X; (2.11)

Then the four vectors s k, k', q', p and p' are represented by:
q P

i

9 (C, £ + S,!%'lcas(—)” I%Isu;, &, cos ¢, Ié’is:;. b smfy , 6+ Clﬁ'c‘asé,)
4 = (—-C,E‘_ + S,l%'/cosé,) I%l&»}@, cos ¢, I?Ism't?, smiy =55 +C,J§Icosa)
§' = (=G by +SHicoct, , 9lsm8, cost, Iphurdy iy ) =S By +Clgheost)

.- ( G, Eo + Siglcost,, [Flsmb. cosp lglsud, sucg, S & +_q1?'/cos@)

(2.12)

F = ("‘EF’ 5 If-;tSb:n 6, cos s lf;lsb;u@s Sm%h /7°/C0393>

’Pl= (EP , [ﬂs,;ves cgsc,os P ’5’5“"63 S'm‘;% , !FICOSQQ

For defining the t-channel partial wave expansion we use the eight variables
t1s tgs Eq 91, Cf’l, 92, ‘fz and 93 {(2.13)
and for the crossing to the direct channel the set of nine symmetric invariants

s, s', Sgr Sps Sy S3h Ty Ty and tg (2.14)

defined in (2.4). Only eight of the above invariants are independent, there
being one nonlinear constraint (arising from the dimensionality of space-time).

We can avoid this constraint by restricting ourselves to a sub-manifold, in



which the four 4-vectors, whose associated channel invariants are all t-variab-
les, are linearly dependent (see section 3 and appendix A). The nine invariants
(2.4) are related to the eight variables Eys tys g, 91, Cf’l, 92, CPZ and
93 (by setting ?3 = 0):

S=mmqt = 207 = =26 (G + SHeosd,) ~ 2 fUfl suby s cost
~ 21pl cosbs (S, Eg + C, 14l coséf)‘

S'em™-9* = 2p4 = _ 2k, (CE - S c‘,sg,,) — BT s, S, cosqp

+,z¢/¢0593 (S;E?’ - Cz /;’/COSQL)

m*rt, — 25 Ve, ¢ o+ 2,!/3/ Ve, S, 005‘63

R4
P
I

.51 = t, +9* ~ z2V% (C,Ei + 5 4 COSQ-)
(2.15)

S, = ty +9° - 2V (CL Ey =S, 19! 605‘2")

2+ 2(C E= S 171cos,) (G B +5;/§"/c059,,)

+ 21§ smby smb, cos(%-%) - z(S,E‘,—-C,l?I cos 94)
(S; Egr + G 171 CO36§,)_

Double and Triple Regge Limits

We are interested in the Double-(D.R.L.) and the Triple-(T.R.L.) Regge limits

of the forward direct channel amplitudes defined above. These are given by:
D.R\.L.: s + g' » », all other variables fixed and
= M4 = = = = - -
SO‘MX’ tl—tz—t, t3-0, sl—sz~—q . s3-0.

T
T.R.L.: — » —-S—2~ + @, all other variables fixed as in D.R.L,

My M



Clearly the T.R.L. is a further asymptotic limit to the D.R.L., so that one
should consider the latter first., These limits are however problematic. In par-
ticular there exists more than one route that the D.R.L. can be reached kinema-
tically. For example, if we divide the limit into two steps: L1 is going to
the forward directicn [ Ej>t), = t, ty—> 0] and L, ig the direct asymptotic
limit s,5'-»% , other variables fixed . When realizing L1 and L2 in terms
of the Regge variables (2.13) one sees that L]]‘_.2 and L2L1 are not necessari-
ly equivalent. In fact by requiring these limits to commute one obtains additio—
nal constraints. Let us beginn by analysing the limit L,. Here the relevant

quantities in the relationship between the Regge variables (2.13) and the in-

variants (2.14) are the boost parameters X}(i = 1,2) defined in (2.9), i. e.
- (4 - +va) ) (& - (P .1
Smh Xy = {4-&"#3 - r 2’) 3 ! '

From (2.17) one readily sees that the limit Ly o> t, ty—> 0 depends cru-

cially on the path taken. For example:

(a} &‘" /&a:n Sh;‘& X,', = v
t3*e > #L

w A SmbX;, =0
®) fs:o ty= (V)"

) Lne Mun Smh X, = oo
'b'-’ff, 'ts')o
The correct limit presumably depends on the dynamics. We shall later use possi-

bility (a}, which is comsistent with k = Ak'. 1In this case

.

C=G =0 ,S=8 =~ , peim

so that one reads from (2.15)

Somiogt = = 2imiFl Suby b o+ an(s+' ) cosd

Sl_mz_?z = — 20m/F] smb; Smab, CosL — % C +?z—m,,z-) cos B3

S =5 =3* - _ (2.18)

M,'-= m* 4+t —-2'MC0893

S, = 2 ( "+ ?") (Cos'G, 058, + s, swmb, cos(f-4) + E‘Ea

Now L, corresponds to taking

Sun By QoS ¥ ) suiez_coscgg — oo (2.19)



with the constraint
cos @y c0sB + smb s, COS(Ce-C,%) = 1 (2.20)

The degree of ambiguity in (2.20) is clear. In particular, if we take
SuiO,,S‘uiG,,-)m, ¥, =4 fixed, we have a Regge pole limit, while on the other hand,
if we take CosS¢,, COSY, Do, cosé,, cos, fixed, we have the helicity pole
limit. To see that the triple Regge limit, from the kinematical point of view,
cofresponds to the latter, one need only consider the second ordering LILZ
(1. e. L2 first), where L2 is the limit S, S’-)"") *1,'5':-,*3 fixed and
0. Assuming either ¢os®@; and/or cos  »o (i = 1,2) we have

S =~2E, S, cosby — 2FIFI smby subycost, — 2 I C, costy cos

s = 2 E, S},_f‘-?"l cos B, — Z./P"I/%/ Swmbs S, cosg — 2[BIF] C, cos8; cosb,

S, = —2 Vi S, 13 ey (2.21)
S, = 2VE S 19 cosby

Sy == 2@ (%S, =~ (C) o058 cosb + /3T swiby smb, cos(~A)
Hence we see that if the D.R.L. is reached through 60591, cos@ ~>°° | then

S, 5, and Sy=>oe . However in the forward direction we know S, =5, = 72‘

and 53 =@ . This means on the grounds of smoothness we must opt for the heli-
city pole 1limit, since cos ¥, ,Co5f »20 is mnot problematic with respect to the

interchange of limits.

Since we shall be imposing the constraint k =Ak', it is convenient to use the

ordering of the limits LZLI’ by going first to the forward direction t>t,

then ty> 0. This leads to constraints on ©1 and @, which follow from

- -~
(2.12) . The derivation goes as follows. From ty=» t, we have |q| = |q'],

2

Eq = Eq, and Ek = E v+ Then we take k = k', which according to (2.12) 1is

equivalent to
() =G Eg + S, (3 cosb = C, Es + S, (Fcosb,
(2) Smby coufy, =  Smbconty
(3) Smbycos f B Smb smp,

(4) ~ S Ey + G cosb, = S, Ex + G (31 cosh,

(2.22)

From (2) and (3) we see that 9; = 6‘2;9 s =% =% . When t; = t,,
51 = "SL=S\ and C -‘-Cz_ =C » 8o that (4) is automatically fulfilled. From

(1) we have
(5 aZS[‘?{COSG ::«1--365,5

and since for ty =0, S=smhX,=¢ and (= cost, =¢, we see from (5)
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that c0$@ =0 or 8 =73 . Hence the limit, which determines the inclusive

distribution, is

604 = LP_:.. = LP) COSCF+°° and e‘t = GL = E/L (2-'23)

t-Channel Partial Wave Expansion

Referring to (2.1) and fig. la, the t-channel amplitude is denoted by

t) ~ Ay A
Ei/@.z;a KBspupe T (52 0)., 4,20 > (2.24)
LA

where € )Tdenotes the time reversed system. We introduce 0(3) states in the

JT-channels t, and t, to obtain the partial wave expansion

7_#) Al A ‘Z' </°)/“:/‘1/7_/7M J\ :7M?\><7M NI(GA 0l
P TV Y ¥y, MM <7,M,)\[ g, 20> (2.25)

The expansion coefficients are given by (using the Jacob and Wick conventionlz).

<7,M,9\/$,>\.a> = Ny _‘D57 (cp @,“P) ) A/;: (271 far
<7 M )\' ( )\ 0)7_> N&" C—Dy—M ,D . N (CED ) {(2.26)

where we use

L d i /
<To,T¥D> = <By>Y wd T/ I m N> =) “/v,’—M,w

Hence
7 ¢t>
el 7’;7,""1” t2.27)
where ol m! , /
@ — (- 5 s 7 MmN T M A
Al in = 0T < Bopp [T TTHN; 02>
We shall use later the truncated amplitudes
~ &) <(2G - A'4) T‘(*)
7 , = e N (2.29)
/“"I/“‘j}\fxl /“‘I/"",'

3. Sommerfeld-Watson Representation and.Helicity Poles

In this section we discuss the Sommerfeld-Watson (S-W) transformation of the t—
channel partial wave expansions defined in section 2. The procblem of defining
signatured amplitudes or partial wave amplitudes that satisfy the conditions of
Carlson's theorem, is closely related to the underlying analytic structure of
the six-point function. This is in general expected to be rather complicated.

However some simplified models do exist, which may be good approximations in




B!

. . 13,14 . .
certaln clrcumstances . The most appropriate for our purposes is a gene-

ralized fixed t-dispersion representation proposed by Dahmen, Steiner and Ko-
netschnyla, which includes all the discontinuities appropriate to the double
Regge expansion and explicitly satisfies the Steinmann constraints15 for the
basic cuts]6. This representation is written for the retarded function and is
described in appendix A. It fulfills the causal requirements of the retarded
six-point function and has the crossing properties one would expect from, for
example, the Dual six-point functionz. The corresponding representation for the
missing mass discontinuity in which we are interested is given by (see appen-

dix A):

=L do' 9:4 (ﬂ) M {t-}) (3.1
T i, =1 ‘y,, f (o‘ -S; +oa)( zs)

O

where 5_‘, = 5 = (F"“‘?)L } S = % = (F_.g,)a
51’ = SI= (P:*?,)z_ ) S,," - Z&' - (Pf_ﬁ,)z

and {t} denotes in general five t-variables; however we shall restrict our-
selves to the sub-manifold k = xk', which is sufficient for our purposes. In
general when we include spin, the full amplitude infact is expressible in terms

of a pumber of invariant functioms, each having such a representation. However,

it is well known]] from the four point function that,when one removes the kine-
matic singularities,the helicity amplitudes also have the basic representation., For
k = AKk! {t} = {t],tz,t3} we write the helicity structure functions 7;E)~

defined in section 2 in the form (neglecting the spin of the proron)

(¢) ‘i’ M
Y Z__ s > Z (zyﬂ)(zm) z aé_m‘( ¥) 2o &)
oA o T=M Mz—oco Yem!
AIA (V,M)JJM)MX){*})
! (3.2)
and from (3.1) and (3.2) we see that we can discuss the {S-W) transformation of
the respective partial wave summations separately. To this end we write (3.1)

in the form
(= -3

i r
1 - A / .?5(5,1'4)%’1)') t fu("‘/'ﬁ?,”xlv’)
T(S)t"Mx' V) T jds O e w' — 2 +1E
where N oo , )
Py £ (s, Mo t1, t2,2
(st =z [ ey BT thnt)

similarly for ng replacing Pl} by P2j

and (3.2) in the form

(z,%, M v—) D > (2341) 2" dw\ ) Qa (7!‘7)-&-)/‘1,()0)

with the inverse M""’o "_Ha"‘fm'l W} (3.4)
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7
7
an (I M, e, 7*) = 2o fdz fdx G(’M,l(x') Z(z)r)t,)/%) 2)

i ZHH
/z]=1 -1 (3.5)
In (3.3) - (3.5) we have used v to denote the set of umnexhibited variables.

The connection between (3.3} and (3.4) comes about when we remove the half

angle kinematic singularity factor from (3.4)17 i. e,
M
A 4—*) 7 (3.6)
A 1+ X

The angular variables in (3.4) are related to the variables s and u defined

in (2.15), from which we obtain

ip
FIS-E" = a,z(4-,g~1)"".f_ﬁx-+c , 2=¢€ X = cogd
where 4 5 .
@ =i, N (T T
4
L = acosh¥, + b, (3.7)
C = 4(t+9=m)+c

-2
(ao, b0 and <, all vanish like ty as t3->0 and are of order ™M .)

Using (3.7) we can replace (3.3) by

-}

oo ‘
- 4 1 _Is 2| da = 7, (3.8)
7_ = T sz S + e 2 — % + r '
— ua(r) 4~ “ﬂch
where in the limit S, Sp* >»> 1 , 7. = O (s) and %ol =(bxve)falt-x*

(3.8) is sufficient to allow us to define the Gribov-Froissart projecticns of the
partial wave amplitudes (3.5) into both the complex M and J—planes and con-

sequently to make the (S-W) transformation of (3.4). We begin by considering the
summation over M, where we essentially repeat the analysis of Whitelo and

write (3.8) in the form

=.;‘;-[j +f + f+ + j dz———'z’fz_ (3.9)

>
+ *
where 'E> ={!zi>4) 'Ee.z><o}, Ré ={IZI<4) Re z ><0'}
and S’ can be read off from (3.8). Writing (3.4) and (3.5) in the form {(sup-—

pressing for the moment the x—dependence)

7— = Z 6"4 ZM (3.10)
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b(m) = .z;;i o 7(z) (3.11)

z M+
1zt =

and inserting (3.9) in (3.11) we see that

by, (M) M3o0
b(M) =
be (M) M<o
where
by (M) = By (M) + by (M)
with Af(M) _ J' Az z;-M—'f - 7_?.’ f Jz’("‘z*’)-"-’f (3.12)
x . Ry

+
Hence b(M} 1is separated into four sets { b>< (M)f according to whether M
is even or odd and M 20 or M <O. From (3.12) it is easy to see that

b (m < (™) Re 4> 0
P e (ml < (emim) Re M <0

z
as |M| > with &< T. Hence the {5% (M)} satisfy the conditions of Carl-
son's theorem and therefore can be projected to complex M, correspondingly

(3.10) has the $-W representation

Y Z { j ds:f;”” b (M) 4 (z”+ z’(-d”) .

P 2 g (2 emer?)

where the contours O}< <an:e shown in fig. 2. In equation (3.13)
T : T 7
b>< (M,x) = Z (zju% Q,}_)§ (T M) d’M,/\ (x) (3.14)
Y= Hasx {1, mj
., T — M x (3.15
-J,/\ % (7 M) — J_, e 0(, MA (x) ’b ( )

We now con51der the problem of continuing QA % (J'M) to complex J, restrict-

where

ing ourselves to the A = 0 case (generallzatlon to A = *1 is essentially on-
ly technical). A representation of the { b; CM)} can be read off from equa-
tion (3.8) to (3.12) and it shows that they have a complicated overlapping cut
structure in X7. Part of this however is induced by the representation itself
through the half angle kinematic factor (4 —x*’-)'%f”’. We therefore consider

Imi .
(1—- e £ Z;>< (M, X") » which from the original representation (3.3) we know
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must be analytic in the upper half x-plane. This means we can represent the

function by

s
t z o X
z“"ﬂ _ yod y
(1-x2) by (Myx) = j Foe (M%) & dx (3.16)
)
where the specific form of )C> is of no interest to us. Imnserting (3.16) in

(3.15) we obtain

e o oo e MG 7
(P(y-m't) T7(Trae1) )""-'

where

N ( 7, M, R 7 (7et141) (T~ M+1) (3.18)
and '7z@tﬂ%kﬂ are Jacobi polynomials.
Using the symmetry property (4. m) 5 (o rt)
M /]
’P;y ) = (_1) 733 (-x-) (3.19)

we can wrlte

(e,
= ' -2,/\/(7Mo) fd’“f (H,P() jd.x* cos ax (1~x ") P (x) for J even
“x (9,1 = (3.20)

61
22 N (3M,0) fd»x JC,< (M) faw s an(1-x)" B, 'Oc') for J odd
Hence if we define the 51gnatured amplitudes

? (:7M jm d,%(x)(b (Mx)+ s(-1)7 6 (M,- r))

we obtain for them the representatlon

af (7,m) = & T (LTt i fd« GO AN

T( T-M4a)
{similarly for a>z' I,M)). (3.22)
<
Using L
/{?um 7 z = 4 ...e_‘:: ) (3_23)
prp b (=) Vzr \%
we see that QI'U
ol ]C (M )
as’ (7™M f
< (37) (71> (3.24)

Hence the signaturedpartial wave coefficients separately satisfy the conditions

of Carlson's theorem and can be projected to complex J.

The (S-W) transformation of the J summation is now straight forward; we
write

(v, M) = i(4+(—4)7) Q;Zf(I?’,M) +1 (7 —(-4)7) Q:(:’}M)

{3.25)
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and

e v
q T - - AT G a’ (7,m) d. () (3.6
Ox (Myx) = - s w7y x o

where the contour CL is shown in fig. 3a (dotted curve). Since we expect no

singularities to the left of (, arising from (sinT(J—M))-1, we replace this
factor by 1'(J - M) and redefine CQ;T accordingly (see equation (3.28)). We
note if in fig. 3a the contour encloses the point J= 3, j=0,1,2,

then the M-contour C; and C% in fig. 2 will be pinched at respectively
M=0,1,...,J and M= -1,-2,...,-J. If one avoids Regge singularities we can
without ambiguity simultaneously distort the contours C; and C% to re-
spectively to C (fig. 32) and the line KeM = -'% (fig. 3b). We thus obtain

(~2)"+zz "?) ( 65 + bom))

the required S-W representation

12 | #

Lesim i (3.27)
with
b7 (M) = Qi?'_ F(-v+im) Qg (3 M) AT (-x)
< ¢ TV (3.28)
A similar analysis can be carried through for A # 0 . However since the J-

summation runs from J = fﬁbvéMf, lﬁo, one should remove the discrete contri-

butions for J glkl and treat these as additional background terms.

For the primed J-M summation we return to (3.1) and (3.2) and repeat the above

analysis with the important difference that the opposite t€ enters in the dis-

persion representation, which means

s a'z! (4-&‘)4/" + bx'+c’ (3.29)
Myt

We are now in a position to write the full double S-W representation for the t-

w)
channel helicity amplitudes 7_

(ﬂ N —Z jﬁ;SmwM (C = -f-UZM) f&SmFH ((-Z'),-H"f' 'E’IZ’-MD

?eM:—z ‘R&M:—&

{ ! / ,‘-’v’.v
*{ 154 r BT + b5 + b5 } (3.30)

AN, > > A, >, < A2, <, > A, <,<
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T
6)"\ 2.2 =) a3y’ T(-7%imY) ‘(7 T(-74im1) (1 +5'¢-0)7")(1+ 5¢1))
: 1 } P 271’1,
3,3 S C
ra/z'rss (7/‘1 Y/W-ttt)af (x-)a( (—x)
A, %)% A A MA

(3.31)

We end this section by considering the contribution of a Regge-pole dominated
mechanism in the H.P.L. (see section 2), fer which, if we neglect for the

moment normality

Laax,x = I (776) P2 (%) (:7’—«1&;))(7-««&«)) 4% o
(3.32
where F“;.Olr (M,M' ,M;',t],tz,tB) is the Regge-particle discontinuity function,

which depends on the helicity variables M and M'. We perform the J-plane
integrals by extracting the Regge pole residues. Through the gamma-functions,
this introduces helicity poles at sense values M =&, &-7,.... (similarly for
M'). Remembering in the forward H.P.L. Z = Z,-f ~ 7’?;-‘:_-*‘” we need only

retain the contribution from the leading helicity pole, which yields

- oo £2) o F¥itr)
7 /f+‘c‘ g )
ﬂz (‘hi‘) f’;; (75¢) s 70 0G (F) ( Sw.r-o(,éé) ) (3.33)
%e) + oy le) F“‘“’ Coult), oalt), Mx*, t,¢,0)

We notice that the fladlng behaviour is determined by the maximal helicity £flip

in the Regge-particle forward discontinuity. It is apparent from the above
analysis that this is a direct consequence of the g prescription involved in
a Mueller discontinuity and has little to do with the dynamics of Regge-particle

amplitudes.



4. Crossing and the Normality Properties

In this section we discuss the crossing relations and the construction of heli-
city structure functions of definite normality. We then consider the Stichel
theorem for the Regge limit cosdy, ) CosFy => o0 | leaving the derivation of the

corresponding relations in the H.P.L. to section 5.

The crossing matrix can be constructed by using the well known properties of the
helicity states under boosts and rotationslz. The general crossing relations
between the s-channel amplitudes 7;;;) defined in (2.2) and the t—channel
amplitudes 7;;;, (2.1} is given by

) L * % 1 ¥ 1
7:5;;.1,#1 =Z 7:"-;:/‘1'.11:1) Dups o) D Ro) Dy (R) D5, (%)

ﬂ/pJ/“q‘:/‘z (4.1)
-7
We obtain for the helicity averaged amplitudes in the forward direction Rp"k,o
namely
(S) (S)
T =2 2 T (4.2)
Al 4 A A‘/“'"ik'/“”
&) . 7-(“")
P I
Tm # % s pan; X, A

the crossing relation

¢s) 7—(+) _‘D"f *(?,) __'Df (723,) (4.3)

T)L‘?L = z y;p Al 4 A

I ﬂ;‘)
In the Regge limit, where CO0§€1 ang cos8, are the relevant dynamical variables
it is simple to see that the s-chapnel amplitudes obtained by setting the azi-

!

muthal angles ¢ and ¢ equal to zero, are related by crossing to the trun-
cated amplitudes

~. ) —e(x¢ - 'g) @
TA,A = ¢ ' 7;33, (4.4)

In the forward direction & = 94, the crossing relation reducing corresponding-

- - &) f p .
7‘,@ =2 T;} Ay (%) i, (X) s

e

ly to

where

Co%% = Eq,/!";vl .

Because of (4.4) the vrelevant dvnamical wvariables in (4.5)

are Ces 64 and Cos ©4 . In the H.P.L. we saw 1in section 2

that B4= ex=1c/z‘and @Q.= SO:L:?D vith COS?%'O . In this case the t-chan-
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nel vectors ¢q and g' have a different orientation than that they have in the
Regge situation so that the crossing relations have to be correspondingly mo-—

dified. We shall discuss this in section 5 and restrict ourselves here ex-—
clusively to the Regge configuration, in which the azimuthal dependence is

completely factored out.

From (4.5) it is a simple matter to show that the combinations

™~ &) () 2~ () : 4“6
Ty = 7—4,4 x 7;,-1 (4.6)
: gy — ) _ ,
together with 7%0 and /ga transform under crossing according to
> () - #)
7, 17 0 0 0 N
= ($) . . =X (¢)
T 0 cos“X VZ s X cosX Sue*X -
- = (4.7)
- (5) : . ~ (¢)
wa 0 "'\'/LZ cos X smX cosEX -J-i Sm X ecas X 1,0
(s) R . -
7 0  swtX ~2VZ suX cos X cos*X T
0 0,0

States of Definite Normality

Angular momentum states in the Y& system with definite normality M =(7) P
where P is the parity, are defined by

|7, M3 0,n> =—"VZ(!7}M,>\JO>-— %/27,M,~A)0>> (4.8)
so that
7
COPL M A 0m> = m [T M0, (4.9)

The partial wave amplitudes with definite normality are correspondingly given by

W, ot A A ol ot '
/‘As}/..q.)tl')\,(]"Mf HMP) = <Pypapl T I MR 0,m T, 40,7 0,n>
1 . ' . . (4.10)
and have the following symmetry relations
i t
nln I ! A fi ”l"' { f A
M7 . = - J M. T M
A/‘L,/ﬂ-fi"?l,lA (7’ J JH; P) n A/“:.,/Lqi 1’11( / P /?))
.ﬂ'n | -'l'n, , , ” (4.]])
! ! A - _ t i
74./‘1.;/*4} x',"'A- (7) Mi 71 MI ?0) - n /4,44-1,’,.14.1'- 1',"1 (7’/\1, 7, M" f))

With (4.8) we can express the states | 7,’1,)10:> in terms of states with definite

normality and by making use of (4.10) we can rewrite the partial-wave summation



defined in (2.27) in the form

*)
_[_
2y

4
1 —
A, A 2«3{7,\,

»
hl

5 }4,.:.‘

[lid

Ny Wy D). h)\’( Dz,x (‘@, 8,~%)

(4.12)
/ f A
/“3,/"1':2"/1 (7! M,u' 3:’ M;. 73)

By virtue of the symmetry relations (4.11) of the partial-wave coefficients

with definite normality, we have the following equations for the t-channel heli-

city amplitudes when either A =0 or A'=
(‘f) ’ - _ —/—(fj ’ for 2I= _-{-_’{,0
/“:.,/J.f’.‘l’o fAry s s A0
and (4.13)
(%) p (£) ;
= - N r )- + 1,0
/A:.,/uql. 0, /“a.,/“-'r,- oA fo !
&)
This means that only m = -1 states can contribute to pape; 2,0 and n' o= -l

state to T

to

e, fh ﬂf

Stichel Relations in the Limit

Furthermore only the term n =n' =

! —~1 can contribute

c03by, 038, > 00,

If we set “P1"-"-"@_=0

constraints, because the d7

and let

Cos8y, €058, »00 we can obtain additional

—functions satisfy in the limit cosf - =

v
the relation d N ( cas@) = (—»1)>L d”/‘l (cosé') (4.14)
7 Y
Using (4.11) and (4.14) we obtain to leading order (C‘OSQ-') (COS‘@;) the rela-
tions ‘ . le)
— (&) A1 7— t
= (-1 (4.15)
//u".'/""",' "">"I;>L ) /‘"-.«/“1;1'11 ,
and
() A+1 (£)
= (=1
7_/“2.)/(4,» A,’ -4 ) w 7'-/:"-"r/""*' /A‘:l
For A 2 A =4 (4.15) tells us that
(v) - tx)
T /«"1"“7 '- 4[ -1 - 7/-‘4;_"/1‘1!. 4’ 4
and (4.16)
(%) _ ; 7—&:’)
R Sl

which means the appropriate

linear combinations are dominated respec~

tively by positive and negative normality states in the Ty ( {(?)z;,‘(—»i))channel,
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a corresponding relation holding for the ¥, — ( ¥¢-9') "7(4')) channel.

The relatidns (4.13), (4.15) and (4.16) are valid for arbitrary proton helici-
ties M2 and s . However if we restrict ourselves to the inclusive distri-
butions averaged over the proton helicities 7;{? (see equation (4.2)), then

)
we obtain additional constraints. By virtue of parity invariance 7:\—;}\ satisfy
+) -a &) 4 .
= (- .17

and together with (4.15) it follows from (4.17) that

t) ) ) m=m'= 1
(a) 7:_ = 7-;14 + 7:’_1 ={—’ 0 for
'
@) —¢) ) M =n =/
while 7: = /.,”, - 4,-1 # for

!
while for A = 1, A =0 (4.15) and (4.17) lead to the relation

—_ ) —_— (t) !
(b) /40 = = /_”o +0 for 41=,"/=-4

+)
Together with result for 70:0 derived above we have in summary the asymptotic

relations
&) — (¢) 7— )
(1N 7:_ = /1‘1 + 1-1

is dominated by positive normality states in the y= channels,

&) €) —_ &) ) &)
(2) 7__. = 7-44 - As )7:;0 and 7;:0

i

are dominated by negative normality states in the Y% channels.

(1) and (2), derived here in the Regge limit COSG;)GOGL = ¢ ig our main re-
sult. It is important to note that the helicity étveraged amplitudes (4.2) cannot
have asymptotically interference terms involving opposite normalities in the
respective yT'-t-—channels. Such terms would only appear if polarized targets
were used. It follows from the crossing relation (4.7) that in the limit 6=
the relations (1) and (2) carry over to the s-channel helicity structure func-—

tions, which are directly related to observable quantities7.

Now we analyze the normality content of the t3—channel in the limit €65 Gy-»c0.
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For this purpose we expand the state /ﬂz,/ﬁ,ﬁ} into partial waves in the pp

center-of-mass system. The expansion is:

L Pifuy it | T LI M N s 700, 0, 0>

(4.18)
! .
=2 W d’N’-H,/q-/“f (65) < Jopo, pal TT O M ! 7 0,2, m>
J
As for the other two channels we define states of definite normality 2° :
/ 11 m)/“"a/k",?> ='jv2——/- {Iﬂnmu/ut‘./‘t7> + 7 3;”",'/‘4:.,'/‘<4>j (4.19)
so that .
C“")J'P I ?u”“,/‘z,/*e,f> = 3’/3:’”‘)/“‘:/"‘)7> (4.20)
and
/j! """';'/“2,‘/4—1, T> = z / & ™ /‘t:.,/»t.f)’6'> (4.21)
With the states (4.18) we express (4.17) in the form.
A I t !
<P’/"‘7/‘“)T" 7:"’:":“[ 7, M D> (4.22)

A J . f
=V?.Z A{J OLM,—M)f‘z‘,‘-‘-’ (6‘5) < Z,/c;,/u,'?y/ 7l V,M:A: n’/ nyfAI'"’>
5T

According to (4.19) the partial wave amplitudes with definite normality in the

ty-channel obey the relation

Sqrmi ey TATL T A 7020 a2

= T < g,y pa, o, T T T, M0 e MR >

With this and the asymptotic relation (for 60555 > ) for the dj-functions:
J' 9 — /“z-/&l-.' J 9 i

-— - g
Aptmy = Gumpee) (88) = €7) LAPRC)) (4.24)

we obtain

) ! !
Fr=pa = ATL T M A 2 T4, 2, m > (4.25)

= T L F//“*;/“‘f [T/ \7,’”’,2"; "",,‘ 7, M A)m>

The result (4.22) tells us that the combinations

a ' /4'/(4 [
<Py po, pa 1T 7, 10 Mo F M A D> £ )7 TE pa e TIY MOA Y M N
(4.26)
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with the (+) sign have only positive (negative)normality exchanges in the ty=
channel. In particular, for the helicity averaged amplitudes, defined in (4.15)
only states with positive normality can contribute asymptotically. States with
negative normality contribute only if the helicity of the target protonm is fixed
(inclusive polarization experiments). It is clear that the relation (4.22) is
useful to select the observables in which different normalities in the t,~chan-

nel can be detected.l8

5. The Stichel Relatioms in the Helicity Pole Limit

In the H.P.L., the crossing relatiom has to be modified, because, compared to
the Regge configuration discussed in the last section, the vectors q and q'
are orientated differently in the t-channel. However it is sufficient to com—
pute the crossing relation between the two respective t—channel situations,
characterized by q = qg (Regge) and gq = d¢ (H.P.L.), where, referring to

section 2
9 = ( Hieost [Glsmd, 0, < &)
Y= (o e, fisme, 5)

and q are related by a complex boost along the ¥ axis i.e.
cP

% = By (%) 9o ' (5.2)

where in addition we have ¢Co78 = Sm¢ . Because of the difficulty of defining

(5.1

g

the rest frame of the photon, we shall use as the standard frame in the t-chan-

nel that defined by
7= (E?;O)O)ﬁ") _ (5.3)

This frame is reached by the complex boost -Bz, (1""'-/&) along the z axis. The

Wigner rotation corresponding to (5.2) is given by
Ry = B.(%) B (%) B, (") = Re(F) (5.6

. . _ 12
Thus according to the general transformation law of the helicity states = we

have

%(ﬁv(‘%)) 96,2 = % [G9¢, 2> D;',A (R) (5.5)

where, if we restrict ourselves to the forward direction in the H.P.L., for
which @ = ’7;,, then E is given by

7% = ?y (-77/,:,) ?“. (1"72,) ’Ry(ﬂr/&) ’Rz(-w/b) = ?z (%"‘P) (5.6)
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Hence the crossing relations involve simply a phase
. (R — A
?/C (By(”r/z.)) /79)1> = g (% qo) /?sp) '}L> (5.7)

From (5.7) we see that the<f-phase factors out in such a way that the s~channel

amplitudes are related through crossing to the reduced t-channel helicity am-

plitudes defined ﬁ (2.29) . However we are left with the additionalA -~ —dependent
KA/

phase factor ¢ in the H.P.L. Therefore instead of (4.12) we have now the

following partial-wave expansion in terms of amplitudes with definite normality:

T{t) , _ 4 Z Ny’”y m! M 1:3,:*)» d-:'/\' (%) d:'a (J’?Z.)

LA A
/'"'.n/“"l, ! »7 H;“'f (5.8)

Z A,,ﬁ,AA(J'M 7”)
e

where Z = @ “and z’;e <’
Using the symmetry relation for M = J

0(7; (%) = d;_A (%) (5.9)

and (4.11) for the partial-wave amplitudes with definite normality we recover

for the leading helicity pole in the H.P.L. from (5.8) the relations

2 A1 ; 7— (47
papr -2 = 1) L Al
and (5.10)
) Aet &)
7_/“’3:/“"' 2,-A = 1) e 7/_“11/";' Al

which are identical to the relations (4.15), derived in the Regge limit in the
last section. It is clear then that all the further consequences derived from
(4.15), at the end of section 2 are also true in the helicity pole limit.

This completes our analysis, in which we have seen that, inspite of the kinema-
tic and analytic peculiarities involved in the Reggeization of an inclusive di-
stribution, one recovers the usual properties one has come to associate with a

Regge theory, through the study of the four point function.
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Appendix: The Generalized Fixed t-Dispersion Relation

We record here the generalized fixed t-dispersion representation of the six-—
point function mentioned in section 3 and on which our analysis was based. The
idea14 is to write a causal multiple Cauchy representation of the retarded |
function in the physical region, in which we are interested. This is done by
singling out the positive energy vector P, with which one defines the s and
u variables. All channel invariants not involving p or its related vector p'

define generalized t-variables, which can be held below their respective thres-

holds. We define p; = (1,4) where refering to section 2, P; = {-k,q,k',-q"'}.

The s-variables are defined by:

s T @ -pp?
.- = - - 2
Sijk = (@ -y by - p?
while the t-variables are given by

{i,j,ks are permutations of {1,2,3,4} .
(A.1) defines nine variables, which are related through one Gram-determinant
constraint 1. e.
Gram—det. {p,pl,pz,p3,p4} = 0, {(A.2)

which relates in general the s and t variables. However, if we choose
3 % .
Py = E__l i Py Ay = Pidegsdiiyy (a.3)

then we satisfy (A.Z) by forcing a relation only among the t variables. In this
case we can write a multiple Cauchy representation, involving at most triple
discontinuities. Such a representation has only the allowed normal threshold
(see the Dual diagram in fig. 4), i. e. explicitly satisfies the Steinmann
constraintsls. Concentrating on only the triple discontinuity, the representa-

tion is given by

T (b peyputnn) = 2 Jooi— f“"’i 1 J‘”
é PJ p } ) ‘f') 73 5:;:1 - o - (F*"PJL A %‘(PJ-"PJ'PJ) 503'(/"“‘!’«"&"&)‘

1

x R(07, 0%, 0%, {+:3) (A.4)
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where P7 = (P + i€, P) and for scalar particles ‘?‘(...) is given by:
?‘(Sg‘, sz:J‘) SP‘J.‘) {'&&J ;) 9(/90) Q(P.—p‘;,)@(po-/?;‘o —PJ‘OJ 9([’0‘[3;'&'}7‘;"‘})&‘)

3 —i( P
1 X<P L dexay 4 Cxay Jexz) JCod 'S

ret
6

‘ —-M o o0
Discy, T (s oy prny i) = 5 5. [ oo [y 9, (0, )5, )

perm €, o

L]

If we consider the total discontinuity of T with respect to P° {i. e.

(A.6)
4

x Dise,,
’ {(03 ~Cp-Po)?) (= (p-pe-pi ) (% - (P o -pJ-—pn)*f

Then denoting :D,: T . (o-b - (FI'_P‘;)")-1 we have

Discp, 20,2 = 701D - HTR7Y = 2°27(2-07) B (pr-0)

- @ -2y (4.7
i. e. we can decompose this discontinuity into the three basic discontinuities
shown in fig. 5. The middle term fig. 4c is of the Mueller type and we must
extract from the representation all such terms, i. e. by setting 5‘.:,'=(P—P£-PJ‘)1=M;'
It is simple to see that there are four such terms and collecting these together

we obtain the representation for the Mueller discontinuity given in section 3.
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Figure Captions

Fig. 1 (a) and (b) show configurations of the six-point function
YT >y p'm', (a) depicting the t- or crossed~chanmel and

(b) the s— or direct-channel missing mass discontinuity.
Fig. 2 Configuration of‘the_contours in the mplane.

Fig. 3 (a) Configurafion of the distorted contour in the J-plane.
The dotted curve reproduces the partial-wave summation.
(b) The distorted curve in the M-plane.
The deformation from the line Re M= - |/2 corresponding
to the distortion of the J-contour in (a) around the Regge

pole.

Fig. &4 Dual diagram for a given term in the dispersion relation.

Fig. 5 Discontinuity with respect to p° of the retarded function.
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