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ABSTRACT

For elastic scattering, relations between spin-effects (for example,
the well-known asymmetry-polarisation equality) follow from time-reversal
invariance. We show that if certain amplitude-combinations vanish, there
are strikingly similar relations between spin-effects for elastic and
also inelastic reactions., This vanishing of amplitude—combinations
(denoted Mﬂpﬁrity) corresponds asymptotically to purely natural or
purely unnatural parity in the crossed channel, The M-purity relatioms
hold for spin-configurations much more general than do the corresponding
time-reversal-invariance relations,

The experimental evidence for pprely natural parity exchanges in
high energy vector meson photoproduction from nucleons is shown to be
good for all amplitudes involving nonzero meson helicity, but less
conclusive for the zero helicity ones. Using time-reversal-invariance
and a vector meson—dominénce argument, this implies no unnatural parity
contributions in high energy Compton scattering from nucleons,

Because of this empirical evidence for M-purity in these two
processes, a detailed application to spin-effects in Compton scattering
and in vector meson photoproduction is made. Some time-reversal-
invariance relations in Compton scattering resemble the corresponding
M-purity relations though tﬁe applicability of the two is different,
and there are examples where only one of the two exists. OQut of our
illustrations, the only M-purity relatiomns which change in form due to
the extra amplitudes present in the inelastic reaction are the,ﬁrpurity
analogue and extensions of the asymmetry-polarisation equality (of
Compton scattering) referting to the photon; the change is the appear-
ance of the elements p°° of the vector meson density-matrix p. Our
other examples 'of M-purity relations do not change in form in going
over from the elastic reaction (Compton scattering) to the inelastic

reaction (vector meson photoproduction).



1, INTRODUCTION

For elastic processes, time-reversal-invariance (denoted hereafter
as T- invariance) leads to the equality [1] between the recoil polarisa-
tion with an unpolarised target and the cross—section asymmetry with a
polarised target. In general, there is no such result for an inelastic
reaction. We show that if certain combinations of amplitudes vanish,
there are such relations for even an inelastic reaction, We denote the
vanishing of these amplitude-combinations by M-purity which corresponds,
asymptotically, to having pure normality (natural or.unnatural parity,
but not a mixture) in the crossed chamnnel. Spin effects in Compton
scattering (yN-yN) and in vector-meson-photoproduction (yN->WN) from
nucleons are considered in detail in order to bring out the comparison
between the relations following from T-invariance and from M-purity
and in order to illustrate the changes in going from an elastic to an
inelastic process. Though our emphasis is on the application to these
two processes, M-purity relations can be seen (e.g. sec. 2) to be
quite general,

It is worth emphasizing that T-invariance is a general principle,
while M-purity is a model that becomes empirically interesting in
certain cases. We are pointing out the similarity of some M-purity
relations to scme T-invariance relations, but clearly, there are
many nonoverlapping implications of M-purity and of T-invariance.

Even when M-purity relations resemble the corresponding T-invariance
relations, the regions of applicability of the two are not always the

same, as will be discussed in detail,
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(1.1) Definition of M-purity; Comparison with Restrictions on Helicity

Amplitudes following from T-Invariance.
For the s—-channel helicity amplitudes fgz of the process ab -+ cd
where a, b, ¢ and d also denote helicities of the corresponding particles,
parity conservation gives[2]

£ 2y (=)

a-c—~(b-4d) _dc
f
~b-a

ba (L.1)

where n depends on spins and intrinsic parities of a, b, ¢ and d. For

elastic processes and for yN - W, n = + 1. We define

de _ de d-b _—dc
o, = Gt ()T E ) (1.2a)
de de d-b _~dc
“ba ~ d (fba =) f—ba) (1.20)
so that
-de,_dc - - =d¢, dec _ ,_ b-d
n--ba/nba Ll—ba/uba =) (1.2¢)
1
For the amplitude fg:, M-purity is defined as M=+ 1 or M= - 1:
de
M =~ 1 means o, 0, (I.3a)
de
M = + 1 means u = 0. (I.3b)
The n~ and u~ type amplitudes will sometimes be called M = + 1 and
M = - 1 amplitudes respectively. Using the parity relation (1.1}, ngzz
is related to de and d-c to dc. The amplitudes of Eqs. (I.2) corres-
“ha Yb-a Uba _ *

2
pond , asymptotically [3], to pure normality in the crossed channel

ac - bd. However, we shall need only the definitions (I.2) and (I.3)

which hold for general values of the kinematical variables,

For the elastic process ab -+ cd, T-invariance gives the relation [2]

ba _

P a=c=(b-d) fdc

de =) ba (I.4)
where the particles a and c are the same and so are b and d. The T-inv-

ariance relation (I.4) and the corresponding parity relation (1.1} for

elastic- scattering overlap for only the helicity combinations b = -d,
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a=-c¢, Similarly, the T-invariance relation (I.4) overlaps with the
M-purity restrictioms (I.3) only for (a = ¢, b = =d) and similarly, for
(a=-2¢,b=4d), In fact, (I.4) implies M = + 1 for the amplitudes
ba ba
f—ba nd fb—a'
ba
uL =0, M=4+1 (I.5a)
ba _
U.b-a = 0, M=+ 1 . (I.Sb)
de

The T-invariance relation (I.4) does not restrict any of the ny
. . de .

amplitudes, and restricts only some of theilba amplitudes., We shall

call M-purity for the amplitudes fﬁga and fzfa as the M-purity of

type 1; T-invariance gives M = + 1 for this type in elastic processes;

M~purity for other helicity amplitudes will be called M—purity of type 2.

For yN - yN, Egs. (I.5) are the only restrictions that T-invariance
puts on helicity amplitudes, if one takes (as we shall do) parity-
conservation (I.1) for granted. The fact that M-purity and T-invariance
restrictions are related is contained in (I.5). While (I.4) is for
elastic processes like yN -+ yN, the M-purity restrictions can hold for
any general reaction like yN - VN. It is now easy to imagine, for any
general reaction, M-purity relations which resemble the T-invariance
relations between spin-effects in elastic scattering, This is further
illustrated in sec. 2 where the asymmetry-polarisation equality following

from T-invariance is compared with its M-purity analogues.

While M-purity implies M = +1 or M = -1, T-invariance makes only
some M = -1 amplitudes vanish. Of course, M-purity may also hold for

only certain particular amplitudes.
(1.2) Interest in M—-purity Relations; Why the Processes yN « yN and
YN > VN?
The only established evidence against T—invariance comes from

neutral kaon decays; there, too, the relative strength of the T-non-
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\ . . . =3 . . . .
invariant amplitude is very small ~ 10 ~. So, T-invariance 1s qulte

general, but M-purity is a model which is interesting in certain
situations.3 A good point about the M-purity relations is their
applicability to any general reaction even if the corresponding time-
reversed process be very hard to achieve experimentally, e.g.,
projectile + nucleon - nucleon + anything. Secondly, very high energy
diffractive processes may have a dominant natural parity contribution
in the crossed channel; there are many experimentally interesting
reactions in this category. 1In fact, present data on yN » ¢ﬁ support
this hypothesis for the normality of the Pomeronq. Thirdly, combina-
tions of contributions which are expected to be M-pure can be formed
in different processes, and M-purity relations of the type we consider
can be used as tests of the M-purity of these combinations. In this
sense, M-purity relations are relevant also to the dynamical

interpretation of amplitude—analyses.

Our detailed application of the comparison between T-invariance
relations and M-purity relations to yN - yN and yN - WN is motivated
by several reasons. These reactions are easily accessible experimen—
tally and offer enough spin—complications so as to make this comparison
feasible; some spin-effects are relatively easy to study experimentally
because the vector meson density-matrix, ﬁolarised photons and
polarised targets are already availakle, In contrast, in 7N elastic
scattering, for example, T-invariance and also the vanishing of
unnatural parity contributions already follow from the parity relation
(I.1) because of the spinlessness of the pion - thus making the desired
comparison impossible. Omne wants to consider an example in which there
aré some nonoverlapping restrictions on helicity amplitudes due to
T-invariance and to M~purity, and in which T~invariance and M-purity
do imply restrictions that go beyond those already implied by parity-

conservation. One such experimentally interesting case is AN -+ AN



—-fH=

where A is a spin-} baryon, but because both A and y have only two
helicities, this example is not essentially different from yN - yN
which we are considering in detail. From AN - AN data, there is no
ﬁositive experimental evidence of M-purity, while our example has

the advantage that yN - VN data {(and to a large5 extent, also yN » yN)
give evidence of being dominated by natural parity (M = +1) contribu-
tions, Next, the M-purity relations in yN - VN (and yN - yN) predict
some observables, and are therefore testable by future measurements,
Looked at the other way,’since the value of these predicted observables
follows from only M-purity (which is experimentally supported), their

6
measurement will not reveal further dynamical information for this

process; this statement is already of some interest.

Though yN - VN looks very similar to yN -+ yN, the helicity zero
component of the vector meson does give this process some essential
features of an inelastic reaction so that a comparison between the
M-purity relations in yN - VN and in yN + yN is capable of showing
some possible modifications due to inelasticity, Comparison between
the M-purity relations and the T-invariance relations in yN - YN shows

how the M-purity ones go beyond the T-invariance omnes.

We restrict our illustrations of the various comparisons to the
following spin effects for an initial state polarised in generality:
cross~-section asymmetries, recoil nucleon and final photon polarisa-
tions, and the vector meson decay density-matrix., We sghall not con-
sider the correlations between the poiarisations of the final nucleon
and the final photon/vector meson; these correlations are difficult
to measure experimentally. Our purpose is to mention some simple illustra-
tions of the resemblance between M-purity relations and T-invariance
relations among observable spin-effects, rather than to consider the

complete set of these relatioms.
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The plan of the paper: Section 2 gives the standard asymmétry-
polarisation equality and its M-purity analogues, and compares the two;
the generality of the polarisation configuration under which this analogue
holds has been pointed out. Section 3 is devoted to some further notation
used for yN + yN and yN - VN in the subsequent parts of the paper. In
sec. 4, we consider,_for yN -+ yN, some T-invariance relations and compare
them with their M-purity analogues; the main points are sumarised in
table 1, The experimentai evidence for M-purity in yN » VN, its compari-
son with and implications (based on a vector dominance argument) for
YN - yN are considered in sec. 5. The subsequent section is devoted
to the M-purity relations for yN - VN, closely compared with those
(of sec. 4) for yN - yN; some comments on the modifications due to the
inelastic feature of yN -+ VN are included. In sec. 7, an overall summary
of the paper and a short discussion are given., The Appendix gives a
general treatment of cross—-section asymmetries in yN + yN and yN - VN,
in'particular, the information obtainable from these asymmetry-measure-=

ments; only parity-conservation has been assumed.

For a first reading of this paper, secs. 4, 5, 6 and the Appendix
may be omitted, For the reader who is not interested in details, the

tables are a convenient summary of subsecs. (4.1) and (4.2) and sec. 6.
2. THE ASYMMETRY = POLARISATION EQUALITY FOR ELASTIC PROCESSES, AND

ITS M-PURITY ANALOGUES,

Here, we consider the cross-section asymmetry A with the spin-}

particle b polarised perpendicular to the plane of the reaction
a+b -+ X+1b! (IT.1)

and compare it with the polarisation P (perpendicular to the plane of
the reaction) of the spin-} particle b' when b is unpolarised. The

polarisation state of the system X is not observed and the system a



may be arbitrarily polarised.

The polarisation P is

- +a  fO _~ok

P=-21In (' X ij Pa fj@ )/D (11.2)
J30,8,0
D = z f'Q:U. pBe fﬂa* (II.3)

. i a 10
2,3,0,8,0 18 J
where Py is the density-matrix for the particle a; the helicities

o
B

particles a, b, X and b"respectively; the helicities = } are

8,j,0 and £ in the amplitude f; for the process (II.1) refer to the

denoted by *, The asymmetry A is

e ek
A=p [ ] ££2 0,07 05 £, (11.4)
2535k,0,8,0

where oo is the Pauli matrix and p is the polarisation of b.

Using the hermiticity of py» OnE can show that

A=MpP (I1.5)
C e -o _ +Q
if either f-O =M f+9 (1T1.6)
o -
or/and f__e = =M f+e (I1.7)

where M = +1 or -1, The conditions (II1.6) and (I1.7) obviously mean
M-purity for these amplitudes; o and ® are arbitrary. One may note
that for the corresponding elastic process, T-invariance gives M = +1

in only (II.7) for only & =.0; T -invariance does not refer to (II.6).

For the case when the particle a is unpolarised, the matrix Py is
essentially the unit matrix and using the T-invariance relation (I.4),
one gets the standard asymmetry-polarisation equality [I1] for elastic

scattering
A = p E. (II.B)

When the particle a is polarised, T-invariance relates A not to P,

but to some elements of the final-state joint density-matrix which



measure correlations between the two final particles.

In the simple case when a and X are spinless, just the parity
relation (I.1) gives M = +1 (~1) when the product of the intrinsic
parities of a and b is the same as (opposite to) the corresponding
product for X and b'; the relation (11.5) then gives (II.8) for

N - wN, 7N » KA, eN - eN, etc.,; and

A=-pP _ (11.9)

for mN + gN where € is a i - O+.partic1e; no reference to T-—
invariance need be made. For elastic scatterings 7N - wN and

¢N -+ eN, T-invariance gives M = +1 for only the amplitudes (I1.7)
with helicities ¢ = ©® = 0, leading to (II.8), or (IL.5) with M = +1,
On the other hand, the M—purity relatiom (II.5) would hold even if
(I1.7) be not valid, but only (IL,6) is true; this is an example of
the standard equality (II,8) being satisfied even if T-invariance did

not hold [é].

So, the M-purity relation (II.5) holds in a much more general
situation than the T-invariance relation (II1.8), the differences
being in the requirements on 1) the nature of a and X, and of b
and b', and 2) the spin-states of a and X, The T-invariance relatiomn
(II.8) requires the particles b and b' ( and similarly, a and X) to
be the same, and a = unpolarised7. In getting (II.5), however, there
is no such restriction on the identity of the particles b and b' (or
of a and X), nor on the polarisation state of a; a and X could have
different spins which need not even be known; b and b' could have
all quantum ﬁumbers (except spin) different; the relation (II.5)

would hold for the rather general process

Anything + b = b' + Anything (I1.10)



where b and b' have spin=},

We shall not discuss extensions of these considerations to other
spin values for b and/or b'; the case of unequal spins for b and b'
offers no interesting comparison to the T-invariance relation (II,8).
In yN » yN and yN - VN, we shall encounter M-purity relations similar
to (II.5), but involving spin-1 effects, others involving spin-}

effects, and also those involving both spin-1 effects and spin-} effects,

The example of this'section illustrates the point that M-purity
relations for spin-effects can hold for more general configurations
than do the corresponding T-iuvariance ones. In scome cases, there may
be no corresponding T-invariance relation, this is the case for rela-
tions due to M-purity of type 2. It is interesting that any statement
resembling the asymmetry polarisatioh theorem is at all possible for a
general inelastic reaction; in fact, the generality of the configura-

tion for which (I1.5) holds is remarkable as compared to that for (I1.8).

The importance of the theorem (I1.8) can hardly be overestimated:
a measurement of A avoids the need of a subsidiary experiment to
measure P. Similar remarks would hold for M-purity relatioms of the
" type of (I1.5) for situations in which there is evidence for M-purity.
Looked at the other way, a measurement of both sides of (IT.8) would
test the underlying symmetry; similar is the case of testing M-purity

by using relations like (II.5).
3. SOME FURTHER NOTATION FOR yN - VN AND yN - yN

- .
We use s—channel helicity amplitudes f;aa (s,t); four-momenta

and helicities are defined as follows: (pu,i) for the target nucleon N;

(p;, i'") for the recoii nucleon N'; (ku,a) for the initial photom vy;
and (k&,a') for the final photon y' or vector meson V. The invariants

are s = —(p + k)z and t = —(P"P)z-
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As in refs., [7] and [8], the polarisation of the photon beam and
of the target nucleon are described by the conventional density-matrices

3
)

u=0

31 + 3.

134

(II1.1)

°
H

P o
Hoou
and

3
}) t.oo (111.2)

> -
1 +cz.
3( L. O) RIS

PN

where the "four-vector' notation implies P, = 5 = 1, oy = the unit

. - . .
matrix,and ¢ represents the three Pauli matrices. The vector

B = |P| (-cos2¢, - sin2¢,0)
describes linearly polarised photons with an angle ¢ between the reaction
plane (taken as the XZ plane) and the polarisation vector

e = (cos¢,_sin¢,o)
of the photons; P3 corresponds to circular polarisation. For the
target nucleon, &1 and ¢, are the transverse polarisations respectively
in and normal to the reaction plane, and Tq is similarly the degree of

longitudinal polarisation. The parameters Pj and Cj are restricted
ch[ < 1 and ]le <1, G=1, 2, 3),

The (unnormalised) joint density-matrix of the vector meson-niucleon

final state is

ilji'utal E ita! j_j 'GB th|*
[ = £, o 0 £ (I11.3a)
N',V - N
’ 1,),0,B e Y 18
where the vector-meson V can also be the final photon (y'). The

G‘B' ‘l"'l

(unnormalised) density-matrices p of the vector-meson and pN'J of

the final nucleon are respectively

0‘.'8' ili',a‘!BT
p =
izi pN'aV
= f%'a' pij pmi3 f%'s'* (I11.3b)
I A ig N "y 3B *
1,157,048
and iry? iti', a'al
Py = z Pty
N ¢ NT,V
o
_ ita' ij aB .i'a'*
= fia Py pY i (I1I.3¢)

a',i,j,a,ﬁ
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The (unnormalised) density-matrix py, of the final photons in yN =+ yN
is defined in the same way as p for the vector meson in yN » VN. The
normalisation of the heliecity amplitudes is provided by the differential
cross~section o as
AL EER] r,"
Co = E pl'l sc o’ z pl'l - Z pa o’ _ tr o (III.&)
. 1 1 N’V > 1 N
1 9% 1 o
c = (2n/E") 72,
wher E* is the imitial photon energy in the C,M, system, The polarisation
P' of the final photon and the polarisation E' of the final nucleon are
described analogously to the corresponding initial polarisations in

(I1I1.1, 2):

| +=
.= 2 Re pN,/tr Pyt
2! = -2 Im poq/tr p
2 NI N'l .
++ —_—
2y = lpgr = oyed/tr pgr 3
+—
Pl = 2Re DY'/tr TR
+—
P! = =2 Im tr
2 p,Y'l'j p,Yl ]
T - -
Pa (o v = p e)/tr o, (1I1.5)

where + and - stand for the nucleon helicities +} and -} , and for the
8 .
* photon helicities +1 and -1 respectively.
For a given initial polarisation configuration (Pm,cn), (m,n) = fixed,
but # o, we expand the cross-sections ¢ and the density-matrices

pN|’v, Ps Py and py, as for example

p(Bsz ) = p(0,0 + P p(m,0) + tq POyn) + P r o(mmn) (III.6)
where the expansion coefficients p(m,n) are very convenient bilinears of

amplitudes, and p(PO,cO) = p(0,0) for the unpolarised case; in (II1I.6)

the initial density-matrices are

P, =41 + B o), o= 11+ o), (mn) = fixed,
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For the expansion coefficients, one gets, for example,
tat - RPN | r: s 1aTg
0 B mym)= 1 7 flal (g )98 (g oyt gt B (111.7)

[ . . ia m n 1B

1504B,1,3
The coefficients p(m,n), pN,(m,n), pN,’V(m,n), «es. contain all the
information; no loss of generality is incurred by not considering
mixtures of these polarisations in the initial state. One can expand

only the unnormalised density matrices as in (IIL.6)}, but not the

normalised ones

B,z ) = o,z )/tr o(By,2)) (111.8)

which are not simple polynomials in_%n and %y similarly, ;’j and P',
of (ITI.5) cannot be so expanded. Our unnormalised "actual"” polarisa-

tions %5 and 23 defined as

1 - t
%’j (®_,z ) = Pj(Pm,cn) tr o1 (Bt y) (III.9a)

. f\,' _
and cj(Pm.zn) = cj(Pm,cn) tr pys (P HT ) (III1.9b)

can indeed be expanded like (III.6), as for example

- _ ! Ny v, (I11.10)
LBty = 5500,0) + By 2 (m,0) + ¢, Ti(0,n) + Pz oilm,n)
Similarly, the "universally normalised actual’ polarisations
S = Pt
PLELT,) i?j (Bst )/ tr 0 1(0,0) (I1I.11a)
_ 4 o Yy
and cj(Pm,cn) Cj (Pm,cn)/ tr pN,(O ,0) (II1.11b)

can be expanded in terms of their coefficients, as in (II1.6). The

definitions (III.11) obviously imply

A universal normalisation independent of initial polarisation has been

used by Schilling et al [8]:
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_ AT
S (Pm’cn)[Theirs - P (Pm';n)/ tr p(O’O)IOurs (1II.13a)
so that
Aat
O'A?t' (Pm, Cﬂ) P (Pml Cn)
p.l’\[\' M: »N p <PmicN)
Theirs Ours

This comparison (III.13) is important for our use of yN -+ VN data [5]

(sec. 5) because their [&] notation has been used in ref, [5].

It is worth noting that for the following combinations of (m, n),

parity—-conservation makes tr p{= tr pN,) vanish [7,8]:

++ — +4 - _ '
pyr(myn) = = poy (m,n)  and ay.(m,n) = = 0Y|(m.n)l (111.14)

for m= (Qorl), n=(lor 3): and m= (2 or 3), n = (0 or 2).
(I1I.15)

The notation for cross-section asymmetries is given in Eqs. (4,10

to 12) of the Appendix.

The notational phrase '"nth equality of (V.1 or 2)" are defined when

Eqs., (V,1 and 2) first appear {(sec. 5).
4. SOME T-~INVARIANCE AND M~PURITY RELATIONS IN vN =+ yN

Assuming (as throughout) parity-conservation, there are only eight
independent helicity amplitudes for yN - ¥N:

A R N s

£.., f £, £, f

£ and f:: . (IV.1)

-4 T3 ++¥ T

Qut of these, the first two are not restricted by the T-invariance

relation (I.4), while the last four are:

++ -+

f_+ = - f++ (IV.2a)

++ +=

£, = £, (IV.2b)
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giving
u_’: = o, u: = 0, ' . (IV.3a)
++ 4
'L1+_ = o0, u++ = 0 R . {1v. 3b)

as examples of Eqs, (I.5). The relations

o P +- =+
_JE,, = E_JE = -1 (IV.4)

f

involving the remaining two amplitudes of (IV,1) are given by both
parity-conservation (I.lj and T-invariance (X.4); (IV.4) does not
restrict any n— or u- type amplitudes. We distinguish the consequences
of {IV.3) which is characteristic of T-invariance from those of (IV.4),
Because of (IV.3), the omnly independént nonvanishing u-amplitudes are

++ ++ '

while the n-amplitudes

++ ++ _++ ++
IV.6
e D_» D, and n __ (IV.6)

allowed by parity-conservation are also allowed by T-invariance.,

4.1) T-Invariance Relations

Using only parity-conservation which includes the T-invariance

constraint (IV.4), one gets [7]

B0 = Fa,n (W.7)

va,om - ¥ | (1.8)

T, = a0 | S av.e)
and ¥(1,2) = P}0,0) (Iv.10)

Thesg can be expreésed in terms of the actual polarisations %i(?i,cj)
and Eé(fh’ck)’ and also in terms of the cross-section asymmetiies
défined in the Appendix. .The four relations (IV.7 to 10) combine to
give

B, = PG, B ,E) (1V.11)
152
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where the argument on the right hand side expresses the relevant values
of P, and r, respectively. Because ]Pll £ 1 and Ilel[ < 1, this
relation is meaningful for only Pl = + 1 and similarly, for Ly = + 1,
giving
%’i(Pl,gz) = Pz, %’é(Pl,cz) for P =t 1, 7, =P or - P, (IV.12)
Further use of the T-invariance restriction (IV.3) in (IV.7 and 10)

gives

300,00 = € (0,2) (1V.13)

and ?i(o,o) C o(1,0) ' (IV.14)

which provide examples of the standard asymmetry-polarisation theorem
for elastic scattering. In fact, using the asymmetries A(PO, + cz)
and A(+ Pl,co) of Eqs. (A.15 and 16) of the Appendix, the above two

relations read, in terms of the normalised polarisations Cé and Pi as

ARoetTy) = T, . £, (R,T0) (IV.15)

Po . BI(RRTQ) | (1v.16)

and A(tPl,co) 1

which are the equality (II.8) corresponding to the nucleon and the photon

respectively.

Another consequence of T~invariance (IV.,3) is to relate [7]

different final photon polarisations

¥1(2,2) %5(3,2) (IV.17)

i

and %5(3,0) - %’3(2,0) (IV.18)
which can be expressed in terms of the actual polarisations as, for
example
' - = 1 - T
P,I¥} (P30, = BL(Ruly)T = P rPL(Ppt,) = BY(Ry,00)) (Iv.19)

and P, By (Pycg)= = B, Fi(RiTg)- _ (IV,20)
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T-invariance (IV.3) also gives relations [7] between the final

nucleon polarisations in the reaction plane and final photonm polarisa-

tions:
¥1(0,1) = Ei'(z,O), (IV.21)
$5(0,3) = -21(2,0), (1V.22)
B10,3) = 713,00, | (Iv.23)
and Bi(o,1) = ~Ei(3.0) (IV.24)

which may be rewritten in terms of the actual polarisations as, for

example
1 = f\,,'
P, 52(%,c1) = 0Bty o (1v.25)
P, BI(Bory) = -tgti g | (1V.26)
"\a' _ Yy
. t - - v
and PR, = -5ty . (1v.28)

(4.2) M-Purity Relations

In subsec. 4.1 were considered some relations as consequences of
the M-purity (M =+ 1) of type 1, as embodied in (Iv.3). If one has
full M-purity (of type 2 as well), simplifications in these relations

occur, and some new relations hold; we consider the two separately.
(4.2a) M~Purity Modifications in the T-Invariance Relations of subsec. (4.1)

The relations (IV.7 to 10) involving recoil nucleon polarisations

normal to the reaction plane become, under M-purity,

Z5(0,0)

= BI(1,2) = McC 00,2 (1v.29)
35(1.0) = ?{(0.2) = MC o(l,2) ' (1Iv.30)
25(0,2) = ?i(l,O) = MC 0(0,0) (1v.31)
%5(1,2) = ﬁi(o,O) = MC o(1,0) (Iv.32)
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Out of these only (IV.29 and 32) have T-invariance analogues in
(IV.13 and 14). 1In fact, the four‘cross-section coefficients in
(IV.29 to 32) are the only nonvanishing ones for yN - vN and yN + VN
under M-purity; all the nonvanishing cross—-section asymmetries are
then related to recoil nucleon polarisations perpendicular to the
reaction plane (or, equivalently, to the corresponding final photon

polarisations %i). Combining the four relatioms (IV.29 to 32), full

M-purity gives

vy
cZCPlgz) MC z, c(P1,1/c2> (Iv.33)

1 1 - .
and ?I(Prcz) MC P o(l/P),L,) (IV.34)

where the arguments on the right hand side express the relevant values
of Pl and CZ respectively. Because of the restrictions |P1] <1,

Il/Pl| g 1, (IV.34) is meaningful for only P, = + 1, and similarly,

1
(IV.33) for T, = % 1 giviﬁg

E'Z(Pl,gz =£1) = & MC o(P,z, = £ 1) (IV.35)
and BI(P, =+ 1,z,) = * MC 0P =% 1,5,) (1V.36)
which read as

Ci(Pl’Cz =+ 1) = = M (1Iv.37) |
and PP, =% 1,7,) = = M | (IV.38)

in terms of the normalisgd polarisations, The M-purity relations

(IV.37 and 38) have the interesting feature that there is no dependencelo
on the polarisation of the "other" particle: if the initial nucleon
(photon) is fully polarised, so is the final nucleon (photon), inde-
pendent of the value of the initial photon (nucleon) polarisation

Pl(cz), the relative sign between the initial and final nucleon (photon)

polarisations being given by M,
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The relation of (IV.29 and 32) to cross—-section asymmetriés is,
apart from the factor M, the same as in (IV.15 and 16)}. The relation
of (IV.30) to various cross—section asymmetries may be written in
terms of the double asymmetry A(x Pl’ * Cz) and the single asymmetries
A(PO, * cz) and A(* Pl,go) as

A(*P.,z. )} + A(P_,*Z,)
qﬁ'(l‘,()) - MCE0,0! -1 + 1770 O 2

(IV.39)

or equivalently in terms of these single asymmetries and A(Pl,icz) as

A(Pl,tcz) (1+A(iP1,CC?)-A(PO ,tt;z) (1IV.40)

where, of course, thg left hand side may be expressed in terms of the
actual polarisations as for example [Eé(Plﬁb)-%é(Po.Co)J/PllOr
replaced'by the corresponding expressions for %i(O,Z). The relations
(Iv.39 and 40) expressing‘the recoil nucleon polarisations in terms of
cross-section asymmetries\have no T-invariance analogue because the
"other''particle (the photon in Eé(l;@ or the nucieon in ?i(O,Z)) is

initially polarised.

The relation (IV.31) shows that under M-purity, the final state
polarisation coefficients Eé@),a and %i(l,g when the corresponding
initial particle is polarised, but the "other" particle initially

unpolarised, are determined by the unpolarised cross—section ¢{0,0).

The relatioms (IV.29 to 32) also provide interesting M=-purity

11
analogues of the depolarisation relation of mN scattering

Final Pdlarisation = D. Initial Polarisation + P (IV.41)

where all the polarisations are perpendicular to the reaction plane;
P is the recoil polarisation cbtained with an unpolarised target;

D is the depolarisation coefficient; for wN -» 7N, D = + 1 and for
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7N > ¢N, D = = 1, The relation closest to (IV.4l), arising from (IV,31),

reads in terms of the 'universally normalised actual' polarisations as

A' _ A‘
CLoPslo) = Moy + To(P 4T ) (IV,42)

or equivalently,

H

At Al
Pl(Pl,go) M:E’l + Pl(Po,go) . (Iv.43)

the role of the depolarisation coefficient being taken by M now, The
corresponding relations arising from (IV.29, 30, 32) look less simple,

but are straightforward to write,

Coming to the M-purity analogues of (IV,17, 18), one gets

ﬁécz,z) M%’é(3,2) (IV.44)

35(3,0) -M%f:;(z,O). ' (IV.45)

Egs. (IV.17, 18) are the M = + 1 examﬁles of these relations.

The T-invariance relations (IV.21 tc 24) between final nucleon
polarisations in the reaction plane and final photon polarisations
involve interference between amplitudes of the n— and the u- type so

that for full M-purity, they become identities of the O = O type,

(4.2b) New M~Purity Relations

Here we mention only two relations resembling (IV.44 and 45)

between final photon polarisations:

B

%‘5(2,0) M %‘5(3,0) (IV.46)

B1(3,2)

f

-M %‘3(2,2) (IV.47)

Taken together, the M-purity relations (IV.44 to 47) cover the case of
both unpolarised targets and targets polarised normal to the reaction

plane. Written in terms of the actual polarisations, (IV.46 and 47)
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read respectively as

P3?503,50) = MP, ?503,¢0) (IV.48)
and P BL(B,T,) = -2 ¥! (P, M2 ) (1V.49)

where the T-invariance result (IV.18) has been used in (IV.49), and
Mz, in the argument on the right hand side of (IV.49) gives the relevant

value of cz.

(4,3) Remarks on the Comparison between the T-Invariance and the M~Purity

Relations in yN - yN,.

A convenient summary of subsécs, (4.1) and (4.2) is given in table 1.
In some cases, there are only T-invariance relations and no corresponding
useful M-purity ones-(no: 5); in other cases, there are only M-purity
relations but no corresponding T~invariance relations (nos; 6b,7,8,10);
in still other cases one has both the T-invariance relations and their
corresponding M-purity analogues (nos: 2, 3,6a34,9). The fact that
M-purity relations like the asymmetry polarisatidn equality can hold
even when the "other" particle is polarised is illustrated by item no: 7
which is based on (IV.30). Another example where an M-purity relation
goes beyond T-invariance is the depolarisation-like relatioms (IV.42, 43)

based on (1v.31).

There 1is some vector meson~dominance argument (subsec. (5.2)) for
full M-purity (with M = + 1) in yN - yN; the argument is not model-
independent, To decide whether data favour only T-invariance |
(Mhpurity‘of type 1), or full M-purity, one can consider situations
where either only f-invariance relations or only M-purity relations
exist. For example, are the T=invariance relations (IV., 21 to 28) non-
trivial, or only null identities as fullerpurity would give? Examples

of the other type are to test the consequences (IV.39, 40; 42, 43; 46, 47)
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of full M-purity; these consequences do not follow if one had only
T-invariance. The above tests require measurements of final state

polarisations,

5. EXPERIMENTAL EVIDENCE FOR M-PURITY IN yN - VN; IMPLICATIONS FOR
¥N - yN

(5.1 yN -+ VN

Data on the vector meson density matrix are available J5] for
linearly polarised photons, and unpolarised target nucleons. In order
to examine the M-purity implications of these data, we recall [4] the
M-purity restrictions on elements of the vector meson density matrix
for various initial polarisations. Stated in terms of the density-

. . . 1j .
matrix coefficients p J(m,k), these relaticns read as

_ poo(le) _ Re p+—(olk) _ Re p+-(1Jk) - _Re o+°(1,k) _

M= l/M
0%%00,K)  pTT(L,K) SCRS Re o' °(0,k)
and (v.1)
SImeT@00  ImeT B0 gy w.2)

o T (3,k) 0¥t (2,k)

where k is O or 2,The equality of the first, second, third and fourth
expressions in (V.1) to M would be called the first, second, third

and fourth equalities of (V.1); and similarly for (V.2), The denom—
inators in (V.2) do not appear in the decay distribution of the vector
meson, If one had M-purity of only type 1, one would obtain the second
equality of (V,1) for k = 0, the third equality of (V.1) for k = 2, the
first equality of (V.2) for k = 2 and the second equality of (V.2) for
k = 0. The first and the last equalities of (V.1) obviously involve

amplitudes with zerc V-helicity.

For our purposes, the available data [5] refer to only (V.1) for

k = 0 (unpolarised targets). The highest energy (9.3 GeV photon energy)
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data on yN - pN show that all the density-matrix elements in (V.1)
except those in its third equality are rather small, and consistent
with being zero, especially for small momentum transfers. The elements

in the third equality are both equal, giving

Re p* (1,00/077(0,0) = +1 V.3)

within experimental errors which are not large. The highest energy
(9.3 GeV photon energy) data on yN » wN, ¢N also show f5] the same
features, though the errors are larger than for yN - pN. Written in

terms of the n— and u-type amplitudes, (V.3) reads as

(a-b)/(a+b) = + 1, (Vida)
where
a = a1 + a2 ,
_ ++,2 ++ 2
4 - ‘++1 + |n_+1 ,
a, = [aitf%« |l
2 Sl TRy (V.4b)
b = b1 + b2 ,
+4+,2 4,2
b]_ = [U++l +|u..+! .
by = WINPT (V.50)

Equations (V.4) imply that within the experimental errers,
u = g = q = u. = 0 (V.5)

in 4N - VN, This result is vremarkable in that the single ratio (V.3)
implies the vanishing of all the u-type amplitudes with a nonzero
helicity of the vector meson. The n~ and u~ type amplitudes with a
zero helicity of the vectoy meson are experimentally small, and do not
provide such a clear-cut conelusion, though data are consistent with

the vanishing of these u—amplitudes also,
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The direct experimental evidence for
Re o7 (0,00/p7"(1,0) = + 1 | (V.6)
is veak since these density-matrix elements are small and consistent
with zero. However, (V.5) implies (V.6). Similarly, (V.2) fully and
the second and third equalities of (V.1) for also polarised targets
(k = 2) are implied by (V.5). One may note that M-purity of only

type 1 would not lead to the result (V,3).

Further experimental evidence for M-Purity in yN - VN comes from

data for the asymmetries Pc and T defined as [5,8]

P = (oN - GU)/(GN + UU) s

vV.7)
I = (U“ - Ul)/(cu + UL)

G (1,0) + Re 077(1,00)/( " (0,0) + Re p*(0,0)) (V.8)

I

,U S ) )
where ¢ are contributions to the cross—section from natural and unnatural parity
exchanges respectively in the t~channel, ay.y are cross~sections for

’ L]
producing pseudoscalar meson-pairs (from V-decay) parallel and normal

respectively to the photon polarisation. To leading order in energy,

P, = (2Re 077 (1,0) - 0°°€1,0))/tr 0(Q,0). (v.9)

The second and third equalities of (V,1), if used in (V.8), lead to

I = M. | | (v.10)
From these definitions, and the fact that p++(1,0), Re p+—(0,0),
poo(0,0) and 900(1,0) are experimentally small, it is clear that
to a good approximation, PU and £ depend primarily oﬁ only the large
matrix—elements Re p+_(l,0) and p++(0,0) which occur also in (V.3).

The main experimental evidence for M-purity in yN > VN is, therefore,

based on (V.3) which implies M = + 1 for all amplitudes with nonzero

V*helicitx.
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We estimate the experimental errors associated with M—purity in
yN > VN using yN - pON data [5] for unpolarised targets at 9.3 GeV/c
at a typical small |t| value, t = - (0.12 + 0.18) (GeV/ﬁ)z.. Eq. (V.1)
then reads as |

_ ~0,05+0.04 _ 0.0130.03 _'0.48+0.05 _ _—0.010,03
0.03%0.02 -0.02%0.04 0.485%0.01 0.03%0.02

M (V.1la)

or

1.6+1,7 = =0,5:#1,8 = 0,99:0.11

0.33:1.02 = M (V.11lb)

whgre the correlations between the various errors have been dropped
(also hereafter), Except for the ratio (V.3), the errors in (V.11)
are too large to justify a firm conélusion about M = + 1, though

M =+ 1 is allowed. For the ratio (V.3), the quantity b/a is seen

to be small, Neglecting second and higher powers of b/a, one gets

from (V.11b),
b/a = 0,005+0.055 (v.12)

which shows that the M = ~1 combination b is at most about 3% of

the M = + 1 combination a.
+— ++ F
In fact, the numbers for Re p (1,0), ¢ (0,0) and Imp {2,0)

imply [7] that any of the three combinations s b1 and b2 are at most

a few percent of the dominant combination a;:

I
'
=2
]

(0.96+0,064) d , b, +D (0.005+0.051) d

1 1 1 2 ’
a, +ta = (0.965+£0,051) d, a, * b1 = (0.,005£0,041) 4 ,
a, + b2 = (0.965+0,041) d, a, - b2 = (0,0+0,064) d (V.13)

where d is the overall normalisation. Taking 0.05d as the typical upper
limit on bl and b2' the M = - 1 amplitudes occuring in b are consistent

with zero, and bounded in magnitude by about a fifth of the M = + 1
+4+ 2 ++, 2
2+ nlt B

combination (In++

. It would be nice to have much smaller
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errors in (V,12). We use bfa = 0.in the next subsection.

Using data on poo(0,0) and poo(l,O), one similarly gets

l +012 + I +o!2

n, . n_, {0,04+0,022) 4 (V.l4a)

1

|42 + 10 = (-0.01:0.022) @ (V.14b)

It is, therefore, difficult to make a firm statement about M-purity of
these small (helicity-flip) amplitudesf Because the remainingavailable [5]
density-matrix—elements depend on unknown relative phases between

different helicity amplitudes, it is hard to get further numerical

estimates for M-purity,
©.2) Implications for yN + yN

The result (V.5) is interesting also for yN » yN, The vanishing
++ -+, ) : . .
of1;h+ and u_ is M-purity M =+ 1) of type 1, as given by T-invar-

. . - . ++
iance in yN - yN, but vanishing of the amplitudesu

du ++
+ an .. means

M-purity (M = + 1) of type 2 which is not required by T-invariance in
YN + yN. One may regard M-purity (M-= + 1) of type 1 in yN - VN as
support12 for the vector-meson dominance of the electromagnetic current,
since the corresponding purity in yN - yN is already guaranteed by T-
invariance. The smallness of the yN - VN amplitudes with zero
V-helicity may be regarded as another support for vector meson
dominance, since these amplitudes are absent in yN - yN. With this
support from data, one may turn the argument around: One can use

the vector meson dominance model to deduce that the vanishing of

++

U andllt: in YN > VN implies the vanishing of these amplitudes

. . ++ + .
also in yN -+ N, S:.nceu++ and‘l_: are the only independent u-

amplitudes in T-invariant yN -+ yN, the result (V.5) coupled with

vector dominance implies that there are no u-type amplitudes in yN -+ yN,
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This full M-purity in even yN -+ yN has obvious implicatioﬁs for
the. comparison between M-purity relations and T-invariance relations,
considered in subsec (4.3). An experimental test of these consequences
~of full M-purity would throw light also on the vector dominance model,
as the above argﬁment shows. One should, however, note that at
present there are some experimental errors associated with (V.5) on which
our argument for full M-purity in yN - yN is based. It would be nice to

reduce these experimental errors.
6. M-PURITY RELATIONS IN yN - VN; COMPARISON WITH yN - yN

Subsec. (5.1) shows that there is good evidence for M-purity

(M = +'1) for amﬁlitudes with nonzero V-helicity in yN - VN, while
that for amplitudes with zero V-helicity is not so good. These latter
amplitudes are relatively small /3], making M-purity a good approxima-
tion in yN ~ VN, The extra (= zero) V-helicity in yN > VN as compared
to yN > yN allows one to study the effect of inelasticity on M-purity
relations as a question of principle. As we shall see, this feature
of inelasticity does not modify some classes of M-purity relations,

exemplifying their generality.

For yN - VN, one needs to consider the vector meson density-matrix
instead of the final photon polarisation of yN - yN. Using the relation
of this. polarisation to the photon demsity-matrix, one translates the
relations involving these polarisations into the corresponding yN ~ VN

relations. The relations (IV.7 to 10), for example, now become I7]

respectively
#1(0,0) = 2 Re 0T, - 0%, (VI.1)
¥(l,00 = 2Rep’ (0,2) = 0 (0,2) - (VI.2)
?,‘,:,_(o,z) = 2 Re pT (1,0) - p°°1,0 (V1.3)
and ’;”:,,_(1,2) = 2 Re pT (0,00 - °%0,0) (VI.4)
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where the elements poo represent the modification due to amplitudes
with zero V-heliecity; these relations now depend on only parity-

conservation (I.1),

We now consider the yN » VN analogues of the M-purity relations
of sec., 4. The M-purity analogues of (IV.29 to 32) can be obtained by

combining (VI.1 to 4) with the first three equalities of (V,1):

23 (0,0)

= 2Re p (1,2 0%°(1,2) = MC 0(0,2) , (VI.S5)
£5(1,0) = 2 Re p7T(0,2) - p°°(0,2) = M<C o(L,2) , (V1.6)
€5(0,2) = 2 Re p" (1,0)- ¢°°(1,0) = M€ 9(0,0) ’ (VI.7)
%’5(1,2) = 2 Re p’ (0,0)- 0°°(0,0) = MC o(L,0) . (VI.8)

The way in which the cross—section coefficients appear in these

relations is the same as in yN - yN, TFor full M-purity, the relation
between recoil nucleon polarisations and these coefficients is also

unchanged.,

Unlike yN -+ yN, there is mo T-invariance analogue of (VI.5 and 8)
now, but we consider M-purity of only type 1 to illustrate how the
inelastic component (i.e., amplitudes with zero V-helicity) behaves so
as to leave the relations between {' and c's for full M=-purity
unmodified. For M~purity of only type 1, the interesting elements are

+= +e .
Re p (1,2) and Re p (0,0). The relevant relations (VI.5, 8) then

become

€500,0) = 2 Re p" (1,2)-p°%(1,2) =M € 0(0,2)-/M°°(0,2)+p°°(1,2) ],
(VI.9)
¥1(L,2) = 2 Re 577(0,00-°%(0,0) = M C o (1,00-/M°°(1,0)4p°%(0,0) 1.
(VI.10)
If M-purity holds also for amplitudes with zero. V-helicity with the

same value of M as for the other amplitudes, the first equality of
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(V.1) shows that the square brackets in (VL,9, 10) vanish and éne
recovers, for full M-purity, the analogues (VI.5, 8) of the T-

invariance relations (IV.13, 14) for even the inelastic reaction
yN - VN, A similar remark applies to analogues (VI.6, 7) of the

full M-purity relatioms (IV.30, 31).

Because the above relations between recoil nucleon polari-
sations and cross—section coefficients are the same as in yN - yN,
the relations (IV.33, 35, 37) which determine recoil nucleon
polarisations hold also for yN - VN; so does the M-purity version
of (1IV.15). Similarly, the relations (IV,39, 40) between recoil nugleon
polarisations and cross—section‘asymmetries remain unmodified., Also,
the relation (IV.42) resembling the depolarisation relation for TN

scattering is not modified.

Using the definition of %3 and (III,14), one sees that the
YN - VN analogues of the M-purity relations13 (IV.44 to 47) are
all contained in (V.2). Similarly, the M-purity relations (like IV.34,
36,38,43) concerning %i all get translated into the yN > VN case by

using the second and third equalities of (V.1).

The M-purity analogues of (IV.21 to 28) continue to be null

identities, as in yN > yN.

: oo e et . X
Some comments on these p modifications: They occur already in

the relevant relations (VI. 1 to 4) following from only parityf
invariance, but apﬁear systematically in such a way that for full
M-purity, the form of the relations (VI.5 to 8) between recoil nucleon
po;arisations and cross-section coefficients is not changed as compared
to yN » yN, The M-purity equalities relating Re p+-(i,k) to p++(j,k),
(i,j) = ©,1), i # j, k = (0,2), embodied in (V.1) do not get modifiedl3

. . . . ++
in going over to yN - VN, It is the relation of p to tr p (and

therefore, to ¢) that gets modified by the pOo contributions, The
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interesting point is that the poo modifications occur in such a way
that under full M-purity, the trace of the final photon density matrix
Pt in YN - yN gets replaced by exactly the trace of the vector

meson density matrix p in vN - VN,

There is thus a "vertex—dependence"” in the effects of imelasticity

on M-purity relations: The relations (IV.29 to 32) between recoil
nucleon polarisations and cross-section coefficients are not modified

in going over to yN -» VN. The corresponding relations (IV.29 to 32)

2 Re P:: (1,k) = M.C. a(j,k), i # 3, (i,i) = (0O,1), k = (0,2)
' (VI.11)

of YN - 4N become (VI. 5 to 8)

2 Re p' (i,k) = MC o(j,k) + p°%(i,k) (VI.12)
for yN -~ VYN, 1In contrast to the "unexcited vertex" (nucleon -+ nucleon),

there is a modification at the "inelastic vertex' {(photon -+ vector meson).

7. SUMMARY AND DISCUSSION

We have considered M-purity relationé for spin-effects in elastic
and in inelastic scattering; the emphasis was on relations which
resemble those following from T»invariance'in elastic scattering- in
particular, the asymmetry-polarisation equality of sec. 2. The clue
to why some M-purity relations resemble T-invariance omes is the fact
that T-invariance forbids some M = - 1 amplitudes in elastic scattering,
Eq. (I.5). The M-purity analogues of the asymmetry-polarisation theorem
hold, however, for spin configurations much more general than that for the

theorem, as discussed in sec. 2, It is interesting that any relations

resembling those following from T-invariance do exist between spin

effects also for inelastic reactions.
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Several reasons were given in subsec. {(1.2) why M-purity is
experimentally interesting, but perhaps the cleanest case where
there is already experimental evidence (sec. 5) of M-purity (with
M = + 1, especially for amplitudes with nonzero V—hélicity) is
YN » VN for which M-purity relations were given in sec. 6 and compared
with the corresponding omes for yN - yN. The M-purity relatiomns for
yN + yN were compared with the corresponding T-invariance relations in

sec. 4, the results being summarised in table 1.

Our examples of the T-invariance relations could be divided into
three classes: a) relations between different final state photon
polarisations, (IV.17, 18}, b) relétions between recoil nucleon
polarisations in the reaction plane and final photon polarisations
(IV.21 to 24) and c) relations between recoil nucleon polarisations
normal to the reaction plane and final photon polarisations, (IV.7 to
10)., It is to class c) that the two examples (IV.15, 16) of the
standard asymmetry-polarisation theorem in yN - yN belong; in fact,
the M-purity analogues and extensions (IV.29 to 32) and GI.3 to 8)
of the class ¢) all resemble the theorem. The M-purity analogues of
the class b) are only null-identities; ﬁhose of the class a) are
the relations (IV.44 to 47) for yN - yN and (V.2) for yN - VN (and
YN +.YN). But the M-purity analogues for the classes a) and b) do
not reéeal interesting information about the transition from an
elastic to an inelastic reaction; they do not involve the inelastic
component (i.e., amplitudes with zero V-helicity), and go over unchanged
to YN + VN, The M-purity anélogueé of the class ¢) do offer this

information; we discuss this class now.

Consider first the recoil nucleon polarisations and their relation

to the corresponding cross-section asymmetries. From T~invariance, one
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gets the standard theorem (IV.13) for yN - yN. The corresponding
M-purity relations for yN - yN and YN - VN are, respectivelylh,

(IV.29) and (VI.5). The interesting point is that not only do the
ﬁ—amplitudes forbidden by T-invariance in YN + yN agppear in the proper
way so as to give the relations (IV.29) and (VI.5), but also do the
extra amplitudes (of both n— and u~ types) with a zero V-helicity

appear properly so as to give (VI,5), The relations (IV.30) and (VI.6)
provide examples of M-purity relations having no T-invariance analogues;
these relations between cross-section asymmetries and recoil polarisations
have the "other" particle polarised. The comment about the extra n- and
u~ amplitudes with a zero V-helicity appearing properly so as to leave

the form (IV.30) unchanged applies again. Similarly for the transition

from (IV,31,32) to (VI.7,8).

While the form of the relation of cross-section asymmetries to
recoil nucleon polarisations is not changed in going from yN -+ yN to
yN > VN, there is a change in the form of the corresponding relation
to recoil photon polarisations %i written.as 2 Re p:T. These changes
due to the inelastic component are conveniently summarised in
Eqs. (VI.11,12) where an extra positive semi-~definite quantity p00 adds

on to the appropriate cross-section coefficient,

This implies a "vertex—dependence' in the effects of inelasticity

on the M-purity analogues and extensions of the asymmetry-polarisation
theorem: When one considers the recoil polarisation and the cross-section
asymmetry corresponding to the unexcited vertex (nucleon - nucleon),

there is no effect of inelasticity. For the excited vertex (photon - vector
meéon), there is a modification due to inelasticity. While the example of

YN - yN, VN is interesting, it provides only a rather simple form of
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introducing inelasticity. On the basis of only this example, it is
difficult to make statements about the changes in M-purity analogues of
the asymmetry-polarisation theorem in going over to a more generally

. . P - P +
excited vertex (for example, a spin—change: J =1 toJ =2).

The corresponding relations for the unexcited vertex (nucleon > nucleon)

are just an example of sec. 2 where these relations were illustrated
for the case when the only restriction on the unexcited vertex was the
equality of the initial and final spins. The y - V vertex goes only a:
little farther than this, Because the case of a more general excited
vertex has no direct T-invariance analogue, we do not consider the

M-purity analogues of the theorem for such a vertex.

In table 2 (which is only another version of table 1) is given a
summary of our illustrations of the T-invariance and the M—purity
relations for y§ - yN; and in table 3, a summary of the modifications

in these M-purity relatioms in going over to yN - VN,

The information to be obtained from cross—section asymmetry
measurements in yN + yN, VN has been considered in the Appendix.
The question: '“which asymmetries are necessary (and which determined
therefrom by parity comservation)?” has been answered, see remarks
(espécially no: 1) there. A simple observation concerning the asymmetry-
polarisation theorem is that though T-invariance relates the recoil
polarisation for an unpolarised initial state to the cross—section
asymmetry with the '"other" particle unpolarised, parity invariance
equates this asymmetry also to the corresponding asymmetry with
some special nonzero polarisations of the "other" particle; the
various asymmetries in Eqs. (A.15 and 16) of the Appendix provide

the relevant examples.
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Appendix $ Cross section Asymmetries in YN - VN and yN - yN

Some consequences of parity-invariance for cross-section asymmetries in
vector meson photoproduction and Compton scattering are now considered.

Using an expansion like (III.6) for the complete set of the actual cross-
sections o(Pi,Zy), one gets

6 (Pyrtg) = 9(Bysty) = a(Pyst4) = a(Pyytg) = a(Pyszq) = 0(0,0) (A.1)
G(By,ty) = 0(Pys5,) = 0(Bgsly) = 9(0,0) + g, ¢(0,2) (A.2)
c(Pl,co) = 0(P,5q) = o(Pl,c3) = 0(0,0) + P, a(1,0) (A.3)
c(Pl,cz) = ¢(0,0) + P1 o(1,0) + Z, gf0,2) + Plgz o<1,2) (A.4)
5(P,,0,) = 6(0,0) + Pooy 0(2,1) : | (A.5)
5(By0tg) = (0,0 + Byry 0(2,3) (4.6
o (Py,ty) =.o(0,0) + Pz 0(3,1) (A.7)
a(Pq,54) = 0(0,0) + P,z ¢(3,3) (A.8)

where use has been made of the vanishing [7] (because of parity=-invariance)

of eight coefficients out of the sixteen possible ones:

0(0,1) = o(1,1) = 0(2,0) = 0(3,0) = 0(2,2) = 0(3,2) = 0(0,3) = o(1,3)
= 0. (A.9)
The cross—-section asymmetries are
g(B, ;%) = 0(P;y=Ty) (A.10)
AP, £ 0,) = —r = ’ ’
L k -G_CT)_i,ﬁk) + O(Pi,‘C—}:)_
o(P.,z,) = o(~F.,z,)
A(ipiizk) - G(Pl k) _ G(-Pl k) , (A.11)
%k 1%k
g(P.,t ) = o(-P,,~¢ )
. - i’k 1 k
and A(iPi,_ck) U(Pi'gg) " G(_Pi’_ck) (A.12)

where (i and k) can be (0, 1, 2 and 3), but the subscript of the
polarisation appearing with both signs in the argument of an asymmetry

cannot be zero; the asymmetries (A.10) and (A.11) can be called
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"single" asymmetries in contrast to the "double" asymmetry (A.12). As
shown below, the double asymmetry A(iPl,icz) is interesting, but the
other nonzero double asymmetries are very simply given by some single

asymmetry because of parity-invariance.

The parity-conservation results (A.l to 8) give, for the single

asymmetries,

A(iPz,ﬁo) = A(iPz,CZ) = A(iP3;C0) = A(tP3,€2) =0, (A,14)
ABystLy) = AR,,50,) = A(R4,5L,) = g, 0(0,2)/5(0,0) , (A.15)
AP ,L0) = AGEP L)) = A(#R ,0.) = P 0(1,0)/0(0,0) , (4.16)
A(iPZ,C3) = A(Pz,tzs) = P2C3 0(2,3)/0(0,0) , (A.18)
‘ A(tPB,cl) = A(PB,tgl) = P,z g(3,1)/0(0,0) , (A.19)

A(ZP4,C4) = A(Pg,%L4) = Pyig 0(3,3){0(0.0) ’ (4,20)
AP ,20,) = £,(0(0,2) + By 0(1,2)1/[0(0,0) + P, (1,0)] , (a.21)
A(Py,z,) = P, [0(1,0) + £, 0(1,2)]/[a(0,0) + ¢, 0(0,2)] , (a.22)
1+ A(PlgiC2)= 1+ A(iPl.ﬁz)Jfl + A(PO,iEZ)J/[l + A(ipl.co)f R (A,23)

and, for the double asymmetries,
A(iPz,i-cl) = A(j:Pz,tcB) = A(¢P3,iz;1) = A(i—P3,:':Z;3) =0, (A.24) |
A(iPl,i't’,'l) = A(iPlsiCB) = Pl 0(1:0)/0(0s0) ’ (4.25)
A(:Pz,igz) = A(¢P3,t;2) =z, c(0,2)/c(0,0) , (A.26)
A(tP,%2,) = [Py o(1,0) + ¢, 0(0,2)]/{c(0,0) + Pz, o(1,2)] . (A.27)

The.double asymmetries (A.25, 26) are related to the single asymmetries

(A.16, 15) which are interesting for T-invariance in yN > yN, One gets
A(iPl,:cl) = A(iPl,cl) = A(iPl,CO) _ (A.28a)

= A(iplniCB) = A(iPlaCS) = A(iPPCO) ’ (A.28b)
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A(iPz,it;z) = A(Pz,icz) = A(Po,iz;z) ‘ (A.29a)

= A(iP3,tc2) = A(PB,icz) = A(Po,tcz) . (A.29b)

The remaining double asymmetry (A.27) can also be related to single
asymmetries, but the relation is not equally simple. One gets
A(iPl,co) + A(Po,tcz) = A(tPl,th) 1+ P1C2 a{1,2)/0(0,0)] ; (A, 30)
since the factor P1;2 0(1,2)/0(0,0) also occurs in the single
asymmetries (A.21, 22), one gets

A(Pl,icz) {1 + A(iPl,CO)J ~ ARy, az) = =1 +[A(1P1,;O)+A§Po,t§2)1/
A(tPl,icz) ’ (A.31),

used in (IV.39, 40), Because of (A.23), a corresponding relation
holds between A(iPl,cz) and A(iPl, i;z).
SOME REMARKS

1), Out of the eight independent nonvanishing cross—section coefficients,

the seven independent ratios

¢(1,0}/6(0,0), ¢(2,1)/a(0,0), 0(2,3)/c(0,0), 0(3,1)/6(0,0), ¢(3,3)/c(0,0),
g(1,2)/c(0,0) and ¢(0,2)/0(0,0) (4.32)
represent the information obtainable from asymmetry measurements. This
information is contained in seven independent asymmetries - for example,

the set

(ARG 12+0,)s AR, 32251)s AR, 33#5)] and AGEL,T), (4.33)

0,1’

or equivalently, the set
[A(tPl,co’z), A(th,c1’3), A(iP3,Cl’3)J and A(Pg,%L,). - (A.34)

24) Asymmetries requiring a reversal of target polarisation in the
reaction plane may be regarded unnecessary because a) some of these
vanish, as in (A.13), and b) the others are related to asymmetries
requiring a reversal of the photon (but not nucleon) polarisations,

as in (A.17 to 20).
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2B)  One can make a corresponding statement for asymmetries requiring
a reversal of photon polarisations which are either circular, or at
45°(135°) to the reaction plane because a) some of these vanish, as
in (A.14), and b) the others are related to asymmetries requiring a
reversal of the nucleon (but not photon) polarisations in the reaction

plane, as in (A.17 to 20).

0Of course, either photon or nucleon polarisation reversal is
necessary to measure the asymmetries (A,17 to 20), The same remark
applies to (A.21, 22) though the polarisation directions now relevant

are different.

34) The asymmetry (A.15) requiring a reversal of nucleon polarisation

normal to the reaction plane remains the same whether the "other"

particle (photon) is polarised circularly or linearly at 45°(135%) to

the reaction plane or not polarised at all., While, T-invariance relates

- (IV.15) - only A(Po,tgz) to the recoil nucleon polarisation normal to

the reaction plane with an unpolarised initial state, the relation (A,15) shows
that that recoil polarisation is related also to the corresponding cross—
section asymmetries for some spoaac:iall5 nonzero polarisations of the

" "other" particle; these special polarisations behave as "inactive

spectators'.

3B) A corresponding statement holds in the case of the asymmetries
(A.16) requiring a reversal of photon polarisations normal (or parallel)
to the reaction plane; the initial nucleon may be unpolarised or
polarised in the reaction plane; T-invariance relates - (IV.16) - only
A(iPl,cO) to the final state photon polarisation normal (or parallel)

to the reaction plane with an unpolarised initial state,



To obtain 0(0,2)/0(0,0),‘it is not necessary to use photon polaris-
ations which are circular or linear at 450(1350) to the reaction plane;
an unpolarised photon beam would doj this supplements the remark 2B)
above. Similarly, initial nucleon polarisations in the reaction plane
do not go beyond an unpolarised target in determining ¢(1,0)/c(0,0);

this supplements the remark 2A) above.

4)  Under M-purity, the asymmetries (A.17 to 20) vanish [7], leaving
(A.15, 16 and 21) as the only nonzero independent ones; these occur

in Eqs. (IV.29 to 32) for yN » yN and (VI.5 to 8) for yN - VN,
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FOOTNQTES
This notation should not be confused with the Toller quantum
number 'M'., For example, Toller poles with the quantum number

"M'! = 1 conspire, and do not have M-purity in our sense.

For elastic scattering and for yN - VN, the n and u amplitudes

refer to natural and unnatural parity contributions respectively,

There are known instances where M-purity is not a good approximation;
for example, high energy two-body processes involving significant

pion—exchange contributions.

If the Pomeron factorises, it must have M-purity, even if it be

not a Regge pole [4].

This uses an argument based on the vector—dominance model; the
available [5] density-matrix data for yN - VN indicate that in
vy > yN, even the unnatural parity contributions allowed by

T-invariance are zero, or at most very small; sec. 5.

The discussion of cross—section asymmetries with general
jnitial state polarisations, given in the Appendix, is relevant in

this context. Many useful predictions about these asymmetries

follow from only parity-conservatiom, and further ones from M-purity;

see remarks 1 to 4 in the Appendix,

See, however, the remark 3) in the Appendix; for some special

polarisations of a, the asymmetry may be the same as for unpolarised a.

This notation will be followed alsc for the vector meson density-

matrix p.

One may note that while for some choice of m and n, tr p{m,n) can
be zero, tr p(Pm,cn) is nonvanishing for all (m,n) because the
unpolarised term tr p(0,0) is always nonzero. The same remark applies

to the other density-matrices: In (II1,5), the

D.Yl’ pm!! pNI ,v‘

argument of the trace is (Pm,gn).
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The forms (IV.37 and 38) are suitable for generalisation to
yN - VN, For vN -+ yN, taking into account the T-invariance
relations (IV.11l and 12), one gets

i,y = 2 1) = £ MoQP,L, = £ M)/o(R,T, = £ 1)
' - = _ _
and Pl(Pl =+ 1, Cz) M 0(Pl * M, M;z)jg(Pl t 1, CZ)

where M = + 1 has been taken for purity of the type 1; 1in these

relations, the right hand side does depend on P, and Ly for M =-1

1
(but not for M = +.1), M now referring to (IV.30 and 31).

For a summary, see ref, (9).

We note that our considerations involve only ratios of density-
matrix elements; these ratios will remain unaffected even if the
overall normalisation [5] provided by the vector dominance model
is not correct,

In the vector dominance model, the effective p-~ contribution to
the Compton amplitude is an order of magnitude larger than the
corresponding w— and ¢— contributions so that the errocrs in

YN > yN, ¢N data in comnection with (V.3) are not very important,

These relations do not involve amplitudes with zero V-helicity,

and go over from yN + yN to yN » VN unchanged.

Of course, (IV,29) is interesting mainly for its comparison with
yN - VN because for.yN + yN, M = + 1 is given by T-invariance,

leading to (IV,.13),

Here, for example, this is not true for photon polarisations normal

to the reaction plane.



Summary of the T-Invariance and the M=

TABLE 1

Purity Relations for yN - yN Given in sec. &4

No: Equation; Its Source Quantities Related Remarks

1 (IV.7 to 12); Final nucleon polarisations Not necessary to

T—jnvariance constraint| normal to the reaction plane TO invoke T-
(IV.4) which overlaps Final photon linear polarisa- invariance
with parity- tions normal or parallel to the

conservation reaction plane when the initial
polarisations are also along
these directions, or are zero.

2 (Iv.13, 15); Cross-section asymmetry with Standaxrd
T-invariance constraint| initial nucleon polarised normal Asymmetry-Polar—
(IV.3) to the reaction plane and photon isation equality

unpolarised TO recoil nucleon for elastic
polarisation normal to the reac— scattering
tion plane, the initial nucleon '

and photon being unpolarised.

3 (Iv.14, 16) Same as in No: 2) with nucleon
T-invariance constraint; <> photon and with polarisation
(IV.3) normal to reaction plane - linear

polarisation normal or parallel
to reaction plane

4 (IV.17 to 20); Different final photon polarisa- M-purity ana-
T-invariance constraint| tioms either linear at 450 (1359) logues are in
(IV.3) to the reaction plane or circular, | (IV.44 and 45)

when the initial photon is also
polarised along one of these
directions, but the initial nucleon
is either unpolarised or polarised
normal to the reaction plane

5 (IV.21 to 28); Final nucleon polarisations in the

T-invariance constraint
(IV.3)

reaction plane, initial nucleon
being unpolarised and photon being
polarised either linearly at 4590
(1359) to the reaction plane or
circularly TO Final photon polar-
isation, either linear at 45°(135°)
to the reaction plane or circular,

and the nucleon polarised in the
reaction plane

M-purity analo-
gues are null
identities
because both
sides are an
interference
between ampli-
tudes of the

_ the initial photon being unpolarised n- and u- types

contd.



TABLE I continued

(Iv.29, 32);

6a Cross section coefficients for M-purity ana-
M-purity initial nucleon polarisation zero logues of
or normal to the reaction plane (Iv.13, 14)
6b (Iv.30, 31); and photon either unpolarised or
M-purity polarised linearly normal or No T-invariance
parallel to the reaction plane TO analogue,
Recoil nucleon polarisations
normal {or photon linear polari-
sations normal or parallel) to the
reaction plane when the initial
polarisations are the same as those
for a particular cross section co-
efficient,

7 (Iv.39, 40); Recoil nucleon polarisation Cross section
The M-purity re- normal to the reaction plane for asymmetry
lation (IV,30) initial nucleon unpolarised and version of

photons polarised linearly normal (Iv.30); Can
or parallel to the reaction plane be expressed in
TO Cross section asymmetries with | terms of recoil
photon and nucleon polarisation photon (instead
either zero or along the above of nucleon)
directions polarisations
No T-invariance
analogue

8a | (IV.42); Final nucleon polarisation when Resembles the
The M-purity initial nucleon is polarised TO Depolarisation
relation (IV.31) that when initial nucleon is Relation in

unpolarised and TO the initial N -+ tN; No

nucleon polarisation, all polar- T-invariance

isations being normal to the analogue;

reaction plane, and photons Similar relations

unpolarised follow from (IV,
29, 30, 32

8b (IV.43); Same as in no: 8a), with nucleon
The M-purity <> photon, and nucleon polarisa-
relation (IV.31) tions normal to the reaction

plane - linear photon polarisa-
tions normal or parallel to the
.reaction plane

9 (Iv.44, 45); Same as in no: 4) T-invariance

M-purity version is in
(Iv.17, 18)
10 (IV.46, 47); M-purity No T-invariance

analogue




TABLE 1iI

Summary of Illustrations of the Three Classes of T-Invariance and M-purity Relatioms
for yN + yN. The examples A-1 and A-2 are the standard asymmetry polarisation theorem

Relations due to Reference to Reference to
Class Examples Text (Equationj Table 1
T~invariance | M-purity Number) {Item Number)
A | Exist Exist 1. $}(0,0) = M C 0(1,0) (IV.14, 32) 3, ba
{use M = + 1) -
2. 23(0,0) = ¥ C. 3(0,2) (1v.13, 29) 2, 6a
3, %é(z,z) =M %5(3,2> (1V.17, 44) 4, 9
%5(3,0) = M $1(2,0) (IV.18, 45) 4, 9
B | Exist ¥gni 1. B5(0,1) = 21(2,0) (IV.21) 5
18
NullZ i"§<0,3) =—E5(2,0) (1v.22) 5
Identities) %5(0,3) = £1(3,0) (1v.23) 5
F3(0,1) = -21(3,0) (IV.24) 5
C | None Exist 1. %i(o,Z) =MC o(1,2) | (Iv.30) 6b, 7
%i(l,O) =MC 0(0,0) | (IV.31) 6b, 8b
y
2, TH(1,0) =M C o(1,2) | (IV.30) 6b, 7
"
£5(0,2) =M C 6{(0,0) | (IV.31) éb, 8a
3. ¥1(2,0) = M ¥1(3,0) (IV.46) 10
%éca,z) = M FL(2,2) | (IV.47) 10
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