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ABSORPTION CORRECTIONS IN A MUELLER REGGE ANALYSIS
OF INCLUSIVE PHOTO AND ELECTROPRODUCTION

by

N. 8. Craigie and G. Kramer

II. Institut Ffiir Theoretische Physik der Universitdt Hamburg

Abstract

We discuss the photon fragmentation region of inclusive pion photo- and electro-
production .in terms of a helicity dependent Mueller-Régge model, in which cut
contributions are taken into account. It is shown that the inadéquacies of a
pure Regge pole expansion can be corrected if certain types of Regge cut
contributions are includeéd. The transition from electro-production to the photo-
production limit is shown to be non smooth in the case of charged pions and we
point out the normal triple-Regge mechanisms are unlikely to be important in the

deep inelastic regiom.
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1. Introduction

0}

In a previous work -~ we carried out a Mueller-Regge analysis of the photon

fragmentation region of the inclusive photo~ and electroproduction reactions

Y + p > ﬁi + X o)

and o
Y+ p>T + X s (2)

in which spin and normality (sometimes referred to as naturality) properties were
taken into account. In reference [1] (hereafter referred to as I) we showed that
certain features of the data cannot be explained by Regge poles alone. The

situation looks somewhat similar to exclusive photoproduction processes like
+
Yy +tp—>T17 +n, (3)

for which a purely (evasive) Regge pole modeﬂz]wpuld predict, that the cross

section vaﬁishes as t » 0. This property is closely related to the correspondence
between the linear polarization of the photon and the normality of the Reggeon
exchanged sometimes referred to as the Stichel relations.3 These state that

the positive and negative normalities contribute respectively only to o, -and

| (the cross section for. perpendicular and parallel polarized photons). Thus

for a purely evasive Regge pole, either o or o vanishes and since

n
op T -t (as t » 0) for kinematic reasons, we have a dip in the forward
direction (here after referred to as a normality dip). However experimentally
the cross section for+(3) is peaked .in the forward direttion [4) and this has
been subsequently understood in terms of Regge cut cOntributidnsﬁ5’6] In (I)
‘we showed at a heuristic level,. that for the inelusive 'distributions {1) and

(2), the same normality arguments lead to the prediction that, if Regge poles

are exchanged in the vym channels, then the positive normality poles contribute

only to 9, s while the negative normality poles contribute only to AT
and o7 . Further since AT vanishes like ki for kinematic reasoms,

where kl 1s the transverse momentum of the pion, it follows that the inclusive
photoproduction distributions (1) and (2) will vanish as k_L + 0 in a Mueller
Regge model, in which only Regge pole contributions are taken into account.

[7]

Experimentally there is clear evidence against such normality dips in (1)

and (2). Infact for (1) the data shows a marked peaking as ki + 0, completely
analogous to the peak in the exclusive cross section (3). On the other nand,
unlike the inclusive case [reaction (2)], there is evidence[4] for such a dip

in the case of the exclusive neutral pion photo production reaction

v+p - ﬂo+p N (4)
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which in a Regge pole model would be dominated by w-exchange.

In deriving a Regge representation for an inclusive distribution, ome encounters

a number of formal problems, which makes it apparent that there are some essential
differences between the Reggization of higher point functions as compared with

the usual Gribov-Froissart continuation and Regge limit of the four point
function. These differences have been elaborated on in the case of spinless
particles in a number of papers [8]. The firm basis of the above normality
relations for the inclusive distributions has yet to be established. We shall
consider the problem elsewhere[g], where we make an attempt at establishing

such relations ét a somewhat more formal level, namely by deriving a generalized

Sommerfeld-Watson type representation of the six-point function from a simplified

model of its analyticity, analogous to fixed t-dispersion relatioms.

It was also shown in (1), that when (—qz) >> mﬁ the electreoproduction of

charged pions, which is dominated by pion exchange, is predominantly longitudinal
and that a non dip structure was expected. The Regge pole model for moderate

q2 (i.e. O < q2 < 0.5 GeVz) was infact seen to be compatable with the data. However
for larger q2 , due to the dependence on q2 and x entering through the

pion propagator, the triple-Regge pole contribution becomes more and more
compressed‘in the region near x = 1. Infact for q2 = ] GeVz, the plon exchange

contributes only to the region 0.85<x<1, leaving much of the photon fragmen-—

tation regiom unaccounted for.

Bearing in mind the above points, we attempt in the present work to carry out

a Mueller-Regge analysis of the inclusive processes (1) and (2), in which we
include the Regge cut contributions in a helicity dependent framework. The
latter is set up in section 2 and the specific Regge cut contributions relevant
to processes (1) and (2) are calculated in section 3. Although the results in
these sections are on heuristic footing, they are adequate from the phenomeno-—
logical point of view. This is demonstrated in section 4, where we compére the
resulting model with the data. The kind of Regge cut contributions we consider
are similar to these considered by J.. Cardy [10] in connection with the
renormalization of the triple-Reggeon vertex from the point of view of Gribov's

Reggeon calculus. Some details are elaborated on in the Appendix.
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2. Calculation of Regge Cut Contributions

In order to incorporate the helicity dependence correctly, it turns out to be
convenient to calculate the Regge cut contributioms in terms of rescattering
effects in the s-channel Fig.l. For this purpose we work with the s-channel

helicity inclusive structure functions defined by

3
AT o d7k; 2
e a s L) 1 = amt et ([ ky k- p - Q)
: Ap X{(n, g i=1 (2m)32k; 1 :
*
<<k kyyek TPy A g, A5 <k, k,eeak [T p) IR

where in the summation over X(n,£), £ demotes all the unobserved descrete

Labels involved in the missing mass state X. In (2.1) g, k and p are respectively
the momenta of the incoming virtual photon, the outgoing pion and the target
proton; q' and p' refer to the complex conjugate matrix element and in order

that we can write seperate partial wave expansions for both the above matrix

elements, we allow (q,p) and (q', p') to be different, but keep the constraint
' _

p+q=p' +q'.

We shall use E + E = 3

+
ol
]

0 as the reference system and define

q = (qo, q sin® cos¢ , q sind sind , q cos@)

q'= (qo, q sinf'cosé’, q sinG'sind’, q cos8')

k = (ko, o, 0, kz) . k2 = Xq = kz cosf . (2.2)
The variables

T = 2q sing/2

'= 2q sing'/2

correspond approximately to the transverse momentum of the observed pion in a
k - . 3
system, in which q is choosen along the z-axis. 1 and t' are related to the

squared four momentum transfer variables t and t' by:



- - a2 o - 2 . 2
t = (k q}” = tmin TSX with ;2 W
2 min ~(1—x){—q * “E“)
t'=(k-¢g")' =t . - 2% .
min

rt

(2.3)

As we are interested in the behaviour of (2.1) in the limit kl//; - 0, we

can make use of the usual small angle high energy approximation. Namely we can
convert the partial wave expansions in yp and y'p' channels into impact
parameter integrals over b = J/q and b' = J'/q' , where J and J' are
respectively the angular momenta in the above two channels. The result is given

by (see Appendix A)

AT, e) = ] J db' b f @b b B bt bsmyet M IR
m==—« o] o
x J, 2 (b1) T, (") (2.4)

m - A is the helicity of the intermediate state with missing mass MZ% . The

summation over m includes the average over the proton helicity. The b-space

t
amplitude hA A(b',b;m) is obtained from the inverse of (2.4), which is given

by
2m 27 © e

hA'A(b',b;m) = J %% J %%l [ dr 1 J dr't! HA'K (t',0"37,¢)
0 o o o

X JA1+m(b'T') Jk+m(bT)el(A m) ¢ e_l(y""m)¢ (2.5)

It is convenient to introduce the m-projection of the inclusive amplitude
through
=] [=+]
M At ,rm) = | dtt et | de e B Ab,bim) I, (b't') T, (bt (2.6)
3l L A'4m A+m i
o o

so that

P om0y = T BN Nt nmye TS EGeme (2.7)

m:—ﬁ
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(2.4) to (2.7) define the appropriate impact parameter expansion of the six-

point function ypm ~ v'p'n'. The Regge cuts can be thought of as absorption
corrections to a pure Regge pole expansion of Ypﬂ.+ v'p'n'.The detailed structure
of such an expansion for the forward direction was discussed in (I). The
generalizations to the non-forward case are left to the next section. Here we

t t
assume hg A (b',b;m) has been calculated from (2.5) and H; A(T',¢;1,¢) .
Then, following the prescription of reference [5] for the exclusive case, the
1
rescattering correction to H; A(b',b;m) arising through the intermediate

pop state shown in Fig.2, is given by

R At ,bim) = § XbT) hA;A(b,b;m) S(b) (2.6)

[11]

where we write §(b) 1in the form

2
S(b) = [1 - e 0 /4a] . (2.7)

<
2
The second term in g(b) can represent the b-space projection of the Pomeron
pole contribution, in which case we are lead to the Reggeon diagrams shown
in Fig.3. 'However for the purpose of numerical estimates it is convenient
also to relate the constants ¢ and a directly to the helicity independent

o, P scattering amplitude F(s,t) wusing

_ at
Im F(s,t) = Oior 5 ©
with
_ Yeot _
¢ 8ra (2.8)

Using the integrals

—

S(t" - 1) (2.9)

. . 1 -
J db b Jn(b T) Jn(b ™) -
o

and

: 12 (2 412
{ db b Jn(b T)‘Jn(b e b"/4a = Zae a(r®+1'%)

0

Iy(2att’) (2.10)

it is simple to show that



1
B >t(T'ﬁ;rn) =

03

~ A'}\ ~
db'b’ [ db b S¥b"hp “(b',bsmS(b) T, (bTT') Iy, (bT)
0

1
A
(t],73m)

A
{ dt T] HR
o

- 12412
a(t +T ) I

% o %1 §(t'-t]) = cae A +m (22 Ty}

- 2,2
x {-;— s(t-t,) - cae a(to+]) s (22 7T (2.11)

If we insert (2.11) in (2.7), then we can carry out the summation over m by

making repeated use of the addition formula

oo,
Z cosd _ g im ¢
e = ] e I_ (%) (2.12)
m=—0
writing 4?7 = dr d¢ , where T = (1 cos ¢, T sin ¢) the final result can be
written in the form
B 2+
dZz! , d°t
ATA > . L 1 1 >y _ Ty MA o, > > o
H (1,t') = J o { 5 S ¥t Tl) HR (Tl, jl) S(t Tl)

where

—a@2 -T2

s(T-7,) = 5(2’(?’—?]) - cae (2.13)

The result (2.13) as far as the t~integration structure is concerned, can be
derived directly from the Reggeon diagrams in Fig.3 using the method of
Heinz Rothe [12] (see Appendix B). However the method developed above‘Shows
how one can write down the corresponding formula for arbitrary external

helicities.

If one uses exponential approximations for Regge residues and linear forms for
the Regge trajectory functions, the integrals in (2.13) can be explicitly
evaluated. It turns out for our purposes that such approximations are sufficient

to show the general effsct of the Regge cut corrections and we shall consider
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the specific cases we are interested in, in the next section.

In the small transverse momentum region one can use (2.11), since only a few
terms in the m—summation will be important. In particular the term m = -3 =-}'
is the only non vanishing contribution in the limit <t = t' -+ 0,in which, for

general m , we have the property

RS TR PARL YR
T

t
HA A(T ,T,m} 7 as T > 0 (2.14)

(2.11) involves only a two dimensional integral instead of the four dimensional
integral involved in (2.13), so it could infact be useful for numerical purposes,

when the simplifying assumptions in the next section are not made.

3. Evaluation of Rescattering Formula for m— and w—Exchange

1. w—-Exchange

Pion exchange presents a problem, since it is not explicitly gauge invariant.
Therefore we must make a gauge invariant extension. We do this by specifying

an explicitly gauge invariant covariant which is equal to F;,a", defined in I,

for ¢ = q' and p = p', This covariant, which we denote also by P;'u"’
is
Pregr = = (Ply ka' =k, p'a")(p, kq =~ k_ pq) (3.1)

With (3.1) we obtain for the m-Regge exchange contribution in the nonforward

direction (kL = k tgb, ki =k tg 6'):

a (1) + o (t)
s

++ ~i(¢"=¢)
H o = ki k e Cugﬁt ) Caﬂ(t') EFJ

2

x Im T (M7 ¢, t;t)(Fﬁ(qz))2
Tt C AL D RN S CR DR (3.2)
™ m
e a_(£")+a_(t)
H:O =kpe e Ca*ﬂ(t') de(t) [ﬁ% ' T m TwN(MzstO’t"t)

2 2‘ 2.2b
T
F @0? o7 22




a (t") + o (t)

00 _ * ' g 2. '
HTr = c:%(t ) Cuﬂ(t) [ﬁz Im TTI'N(M stst o t)
(3.2)
2
2..2 2 b
F -4q" ——v .
( H(q 1)7 (-4q oq puq')
In (3.2) we used the following defipitions:
I —iﬂdw(t)
= 1 - -
Caﬂ(t) =0 r( @ﬂ(t)) 2(1 + e ) (3.3)
b = ko|q| + k p, (3.4)
2 2
e =@-ah e=@-©n t=@ -’ (3.5)

The off-shell 7N- amplitude will be approximated by its on-shell expression

t ) :
2. oo 2% (5 or, 2
Im TwN(M ittt ,£) = (M7) TN M) (3.6)

We can accommodate off-shell effects by modifying (3.6) with multiplicative
exponential functions of t and t'. The variables k, and k! can be expressed

1 1
by T and t' defined in (2.4):

kl =k tg 6 ¥ X1

kl =k tg 6'~ x71' _ (3.7)
and

ty, = —12 - 1'2 4+ 277" cos(¢=4") (3.8)

whereas the relation between 1, t' and t, t' respectively was written down

in (2.5).

We shall neglect the t-dependence of the signature factor but retain‘the

t-dependence of the pion pole, so that L (t) is approximated by
. i

z, (1) * L . (3.9)

ki) t - m2
m

For the pion pole term we use the following integral representation

- 2
1 - T omi-¢ . *E
= ! [ dz e © e " tnin (3.10)
m2 - t m? - t_.
I m min 0
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By using (3.10) we can perform the integrations in (2.18) analytically since
only Gaussian integrals occur. The cut-corrected cross sections are obtained
as integrals over z or/and z'. To be able to give the result in a concise

form we write the k, factors in the pion Regge amplitudes separately. From

1
(3.2) we have for kl = kl and ¢ = ¢' = O:
++ - 2 ﬁ++(
HTT (TsT) - J.. T TsT)
+ 2 m+
I-ITr (t ,1) = ki HTT (1,7) ‘ (3.11)
+0 Ut O
H, (t,7)y = ki H (t,71)
00 %00
Ho(r,1) = H o (t,1)
The result of the integrations in (2.18) appears in the following form:
Ay TA Ay A
Y’ Y(T,T) = HﬂY Y(T,T)

' [ T b il ? Y
- H AY(O:O)i - (ca)f dz' J dz e VMG oy v ey (Bu12)
o] o}

o

f (ot 1
+ (ca)2 J dz' J dz e (2'+2) I}\Y AY(Z',Z)j
0 o

2
ATA
L]
with integrands I?Y AY(z',z) and IzY Y(z‘,z) as follows:
- . , BT m(asB)
I1 (z',z) = I] (z',z) = kl e e A4 5
(a+B (z')+B )
v
2
-B,T m(a+B )
I:O(z',z) =k e : — , (3.13)
" (atB (Z')+BV)
2 .

l ™

10%z"2) = e ! .
L}
at+B (z )+Bv
*
B (z')(a+B_ )
with 8, = B(z) + Y (3.14)

* 1]
+ +
a+B (z') Bv
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and
o " —6212 2 azklz(aﬂa *(2')+ZBV)(a+B(Z)+ZBv)l
:[2 (Z',Z) = _"_—_—'—E e {X Bv o —— J'
(D(z',z)) D(ZT:Z)
— e a2 k_L2 * —Bzrz
I2 (z',2) = — (a+B (z')+ZBV) (a+B(z)+ZBv) e
(D(z',2))
2
m ak -B.T
I;o(z',z) =-—~ﬂ——4£——§ (a+B(z) + ZBV) e 2
(D(z',2))
11'2 - Bzfz
Ioo(z',z) = e (3.15)
2 D(z',z)
with
* 2
D(z',z) = (a+B (z') + Bv) (a+B(z)+Bv) - Bv (3.16)
By, = Trvay(2BY (2)B(2) + (BX (2)+B(2))(a+2B,)) (.11

(In (3.12) one of the z-integration in the interference terms can be trivially

performed);

In (3.13) to (3.17) the quantity a is the exponential slope of the absorptive
amplitude defined in (2.11) whereas B(z) is the exponential slope in the t-chan-

nel (see (3.2)) together with the slope of the pion pole term through the integral
representation (3.10)

fr .
B(z) = i __EE____ + a% [ 1n iﬁ - %EJ} X (3.18)

The BV is the exponential slope in the t, channel (see (3.6)) which for the

Pomeranchuk exchange is given by

) .
B = a +a'lnM .1
P P P (3.19)

In (3.19) we have introduced a constant term a to

have the freedom to introduce a t dependent residue in the Regge exchanges

in the t, channel. It is well known that for the Pomeranchuk such z term is

necessary to describe the data for wN scattering.

R ———— TR TP e v e R AR L LU TR SR LSO L T T U L e
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e+ . 2 . .
We see that H does not vanish for k,” =0 as expected. The nonvanishing term
comes from the double-cut contribution. The pole—cut interference term vanishes

for kL2=O similar to the pure pole term. For small k, the pole-cut interference

term is negative. Thus for an appropriate value for Jhc: we can expect that the
terms proportional to kJ_2 (thelpuri+pole+ierm, I1 and the term in I2) can

be minimized. The combination 5 (B + H ) which is proportional to the
transversely polarized cross section T is particularly simple and is completely

given by the double cut term, namely

-3 o 2.0 2 2
— _ 1 T-x<B - k /x .
l(H++ +H ) = (ca)Z dz' dz e (z+2") M = H++(0 0)
2 ) A a (O
o 5 (D(z',2))
(3.20)
We see that the cross section e vanishes for x +~ 0 like x2 if kl =0,

and in a more complicated form for kl # 0. Furthermore we remark that the
longitudinal cross section is affected by cut terms much less than the other

cross sectlons.

2. w—Exchange

We study w exchange in order to calculate the cross section for 7° inclusive
production. It is clear that the results can also be used for p exchange and

A, exchange with appropriate changes of notation.

For w exchange we have no problem with gauge invariance since it is
explicitly gauge invariant. As input we need the imaginary part of the off-shell
wN scattering amplitude for non forward angles. Even the nucleon spin averaged

part consists of many terms. For small scattering angles they produce
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comparable contributions. It would be a too lengthy calculation to incorporate

all possible terms. Furthermore we have no information about their relative

size. Therefore we take for Im Tﬁg , the simple form
WwN
T = ! . .
Im " v P, P, (3.21)

Terms proportional to 8y do not contribute in the high energy limit as was
found in I. With (3.21) we have calculated explicitly H;+ and H;" for

different kl and kl . The result is:

2a.,(t) .
++ _ 1 o2 2 2 |8 w 4 2 ' ' =i ("=}
H, =3 me(q )|Cam(t)l [ﬁ?] M VI(M sttt st) kikl e
H+— _ H++ e—zi¢ (3-22)
(4] W
This agrees with (3.18) in I if kl = kl , ¢ =2¢'=0 . Of course the

other amplitudes H;O and H:o vanish in the high energy limit. For estimates
of cross sections we shall approximate MAV1 by the imaginary part of the
off-shell pion-nucleon scattering amplitude.

4

M VI(MZ, . NN (32

s t',t) = Im T (M ,to;t',t). (3.23)

0,
v ++ +—

Except from t and ¢t independent factors the structure of Hw and Hu

. : ++ += . .

is the same as that of I-I1T and HTr except that the 7 and w trajectories

are different. For the w trajectory the signature factor can be taken as

constant except for the t dependent phase factor:

~ima (£)}/2 !
t (ty=e i =
% F(aw(t)+1) sinm aw(t)
' (3.24)
-ira (£)/2 o
T e @ i © .

F(aw(0)+l) sinm aw(O)

s 1 D R SR RO AL Iy A TR L N LT T L AT D i 4y g NFURY R | RURIRE b e
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Thus for the w signature factor we do not need the integral representation (3.10).
Then the cut contributions are obtained explicitly without further integrations.
The results can be read off from (3.12) to (3.17) by removing the z integration

and re-defining B according to

B={b + aé(ln ﬁ% ~ in/2)Ix . | (3.25)

Al
g Yy

One obtains for the expression

MAL A A \
H (1,7) = HwY Yoy HwY Y(0,0)

ATho 5 Al
x {= (ca)(@; ¥V + cicu) + (ea) L, Ty (3.26)
where
-t — —6112 . mw(a + B)
I =1, = ki e 5 (3.27)
‘ (a + B*¥+ B_)
v
B¥Xa + Bv)
with &, =B + (3.28)
a+B*+ B
v
2
s =81 (a+B * +2B_ ) (a+B+2B )
++ _ il 2 2 2 2 v v
12 =3z e {x Bv + a kl = 1 (3.29)
2,212 _g .2
— m“a kL 621

[
o
]
94
m

* ,
(a + B* + ZBV)(a + B + ZBV)

with D= [a + B + B_[2 - B2
v v

(3.30)
8, =5 (2/B|2 + (B*+ B)(a + 2B))

++ += \ \
As one expects we see that %{H —‘H )y - c” 1s completely determined by the

double~cut term, nanely

2
-8.kZ/x
1, ++ 4 ~ 4 2 m2x2 2
z(H - H ) =H (0,0) (ca) EB§~ e = (3.31)
Except for the integration over z and z' this has the same structure as o,
for one-pion exchange (see (3.25)), it vanishes like x2 for x - 0 and k, = 0.

L
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If in a model using Regge poles, we define ap and u; to be the t-slopes

of the Reggeons in the t- and t _—channels respectively and u; to be the

t-slope of the pomeron in the initial vyPp-channel, then we can calculate the

2 . . .
t = -xk| slope of the cut mé , using the substitutions

B =x a‘R in s/M2

' 2
BV—CLV fn M

a = aP-ruP in s

In the limit s -+ =, M2 fixed (x = 1), one obtains

(3.32)

(3.33)

(3.34)
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4., Discussion and Conclusions

Using the results of Section 3 we have calculated the Regge pole plus cut con-
tributions for various values of the absorption parameter ¢. In Fig. 4 we show
a comparison of the ki dependence of the yp » 7 x distribution with the data
of Moffeit et al. [13] at EY = 9.3 GeV. The ¢ = 2 curve reproduces the data at
this energy quite well, in particular the peak-shoulder structure in the region
0 < ki < 0.1 GeVZ. On the other hénd thé value ¢ = 2.6 reproduces the data of
Burfeindt et al. [14] at the lower energy EY = 3.2 GeV (Fig. 5).The nonvanish-
ing of the cross section with ki ts more marked in this data, for which

ki = 0.01 x2 < 0.5 mﬂz. We see that both the 7 and 7 distributions are re-
produced with ¢ = 2.6 expect near x = 0,9, where one has to properly take care

of the A,

33 contribution (see Referemce [1]).

The variation of ¢ with energy may indicate that multiple-pomeron-exchange
1s relevant at these energies. A nice test of the detailed dynamics would be

obtained from a measurement of 9 and 0, seperately. For example o 1is given

1
entirely in terms of the double cut contribution and leads to the exponentially
falling curve in Fig. 6. In contrast 9 shows a marked interference structure.

This is responsible for the shoulder in 95

Similarly the calculation for neutral pion inclusive photoproduction is com-
pared with the data of Berger et al. [15] in Fig. 7, where we again plot the
distribution in k.. |
Here the two curves for x = .86 and x = .64 are shown with c = 0.7. The data
for the'large;‘x is adequately reproduced with this value of c. However there
is a deviation from the data of smaller x, which might be expected from the
kinematic limitations on the triple-Regge expansion and the likelihood that
the photon and target fragmentation regions overlap at these energies. For

x> .7 a good test of the modified triple Regge dynamics we have considered,
would be again to measure Y and o, individually. In this case the double cut
contributés only to Sy gnd o, shows a marked interference structure(Fig. 8).
It is interesting to compare Figs.6 and 8, when one sees some differences in
the small ki behaviour. In particular we notice the expected difference in the
scale as reflected for example in the position of the dip. This comes from

the sharp variation in the pion pPropagator as a function of k2 in the case of

1
charged pion production.



17

The electroproduction of charged pions has also been calculated for various values
of q2 and compared with the data [16] in Fig. 9. The conclusion in (I), that for
q2 >0. 1 GeV2 the charged distributions are ﬁredominantly longitudinal is un-
changed by the addition of the cuts. We see that.Regge cuts smear out the x
distributions, which for the pion pole, is dictated by the dependence of the
pion propagator on x and q2, namely x2/[(1*x) + (mi + ki)/(-qz)]z- The broader
distributions agree better with the data. In the calculation we use,for q2 = 0,
0.3 and 1 GeVz, the values of ¢ = 2.6, 2.2 and 1.8 respectively. A dependence

of ¢ on q2 is expected and in principle could be extracted from the q2 deperid-
ence of Yy +prp 4 xo, which will recieve an important contribution from the
interference term shown in Fig. 10. However, we see that the larger q2 data

[17] in the region 0 < x <0.8 is not easily explained within the triple Regge
framework. The reason is the dependence on the particle-Reggeon form factors,
which for fixed mass are expected always to be rapidly decreasing functions of
qz. Presumably for larger q2 the triple Regge mechanism becomes an increasing-

ly poor approximation to Fig. 11.

We finally remark on the behaviour of Tyys Oy oL and 91 in the transition re-
gion q2 v mi, which is indicated in Fig. 12.for q~ = 0.05 GeVz. In particular
one sees that the interference term Op is only large in this very narrow regilon.
This demonstrates how the electroproduction can change very rapidly as a funct-
. 2 . . , .

ion of q°, when we go to the photoproduction limit, in contrast to the smooth
limiting behaviour proposed by Bjorken and Kogut [18]. Presumably this small

2 s . . . .

q~ range would be a sensitive region, in which the Mueller-Regge-expansion

discussed in this paper can be tested.

© o e L ) i mep S et Sy R Ly PO e Lt L T R R L YU R B TR LU LU R LU U TR L
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Appendix A

Here we derive the representation (2 4) and its inverse (2.5) from (2.1). We
begin by explicity exhibiting the summation over the total helicity A of the
missing mass state x. Denpting the total angular momentum of x by S, and all

the other labels including the degeneracy by n «* ¥e can write the -summation
over § defined in (2.1) by
3

no dky 6 (4 %
Z[u o M7 8 ktepma) [koky ok ><kGk Lk
£ 1 (27, 1
(A. 1)
= z Jk,szstAx,hx><kspx,SX,lx,nx|
Sx? hg Ny

On inserting (A.1) in (2.1), we can partial wave analyze the matrix elements
with the result:

AT (2J+l) (23'+1) .J I L Vo
= Z Z L DA”A ,A (¢ses ¢) DA ,l'“A (¢ 56 » ¢ )
m= A_+A X X P
* P J=Max{!xxl 2= |}
Jf=Max{|xxJ }A'—lpl} . (A.2)

J | .,
X Z <A}Ap]Tn(s,M2);sx,kx,nX> <sX,Ax,nxJTn (s,Mz)]A,Ap>'

n,s i
2 x’nx

+e . : T L ¥
= Z el(m+h)¢ e-l(m+A )¢ HM (s Mz,cose,cose')
m

TR (2341 (23'+1) 1 31 Nt
- Z 4 m & ) d}\ )\ ’m..;\ (e) dm_p\ ,)\.'_}\ (e ) hIIl (J,J )
J=Max{:m-xp],1x SWE P P P

(A.3)
J'=Max{|{m=x_|,|2'-2_|}
P P
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M ¥ At T s_,mea_,ho><s mh_,n ITJ'|AA> (A.4)
. el T TP x X P’'x!' n 'p N

N,8 4N
*xx

One obtains an impact parameter representation by using the approximation

J o
d)\U (8) = Jl

_k-ul ((23+1)s8inb/2) o .(A.S)

and by defining the variables,

1

b=gq (J+1/2)
{A.6)
T = 2q sin6/2
The result is
gt . ab'b' | dbb 3 . (b'T') I, (b1) B M(blbsm) (A.7)
m ) m+A m+A! ' e :
b' : b
m m

1
where b_ = [Max{ | mfxp\,lh—xp|}+ 5]

1
q
When one examines the kinematic singularities of the D-funections, which have
to be compensated by corresponding factors in the amplitude one finds that
AT
n* “(b,b'im) = (b bD" as b, b' > 0 (A.8)

Hence at high energies the lower limit bm ~ m/Ys can be set equal to zero pro-

vided m < VS i.e., summation over m converges sufficiently fast.
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Appendix B

We provide here an alternative method of deriving (2.13) based on analyzing
Reggeon diagrams in the triple-Regge limit. We illustrate the method by con-
sidering the double Regge cut diagram shown in Fig. 13, which can be represent-

ed by the expression (neglecting helicity)

s ]al(tl) [ 5 }QZ(tZ)
51%2

o]

my? (M5, )s
2751
4 o, aF a (t!) a, ()
XJ d*k y A21 2 (S;,:t;’tz,’t,) {_____s__'] 1% [__Z_S____;] 245 (5.1)
(2m) s! ¥g (M +s Ms'!
1 2 277,
“1% 2
. ' * 1 ' 1
xDlscMz A6 (52,52 WM, tl’tz’t’t]’tE’t’to)

The standard procedure [12] is to convert the loop integral over dak to an in-
tegral over the Reggeon mass wvariable t, = k2, t, = (k—q)2 and the channel

invariants sl=(p—q/2—k)2 and 5, = (p'+q/2+k)2 defined in Fig.i3

4 _
dk =17 dt1 dt2 ds1 ds2
2 '
P p°p P*q pek -1/2
! i 1, t,
J=4| PP P qu Pk (B.2)
P*q P'*'q ¢ q k%
pk p'*k kg k2
. 2 .
a) In the limit s + «, M°, Sl’ 52 fixed
-1/2
- 2 2
J =48 ! {(q'k)z—k q ]
-1 -1/2
=g A (t],tz,t)
d* > 1/s a2 7 d.sé ds,
L)
where t, = 1 2, t, = (?-?')2, t =7 (B.4)

1



b) In the limit (s/M2) = (1-%)
I=4

where Q = (1+x) q/2 + (1-x)p

2
Q" =
Defining
t1=
t2=
t =
then
> a® 1
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fixed,s * <, Sy Sy fixed

_ : -1/2
s e -k’

xq> =xt (8.5)
12

(¥;?‘)2/x

Tz/x

ds, ds, (B.6)

Providing the singularity structure of the amplitudes in the channel variables

S and s2

we can Yewrite

etec. have the necessary left-right singularity structure, for case b)

H in the following form

2 2
2 -, 2=, * a, (T )+a (1T
H=Jd rzjd«er(?’?,)N(—{},,)sl 1
(2m) (2m)
o (12112 pywa, (13-T1 112 /%) (B.7)
s 2 2
x (-jf)
M
o,
' 172 2 ' Vot
DlscM2 T (M ,t],tz,t,t1 ,t2 ,t ,to)
where o o P -
> i 2 ‘ 172
N{t,T') = B (tl) B (tz) + [ ds1 Im A2 (s],tl,tz,t) ga.a)
s

and

[=}

TR T TR TR TR T N TR DTSR
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%1% Sy °‘1-' 2 9
Disc . T =8 " (t)) B (¢t ) Disc T,” M, t,,t,,,t ) (B.9)
. ] I 2 6 22180,

+ terms involving discontinuities of

T

S'2

A6 in the variables Sy
In (B.8) and (B.9) we have explicity extracted the pole contributions in the
variable s, and $,- These terms lead to the Reggeon diagrams shown in Fig. 3.
for yp + w+x {The continuum contributions are estimated by inserting a multi-

plicativ- factor as a first approximation see (Section III}
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 -

10

11

Rescattering expansion for the Mueller discontinuity formula

Rescattering corrections to the Mueller Regge expansion of

Yp > 1+ %

Reggeon diagram expansion for the triple Regge limit of vp » 7 x

(The double dotted line represents the 0p°)

Data for yp - T x from Moffeit et al.[13], compared to the theore-
tical curves with ¢ = 2 and ¢ = 2.6. The dotted curve is the pion

pole contribution.

Comparison of the model with ¢ = 2 and 2.6 respectively with the
small klz data (kL = .11 x) of Burfeindt et al.[14]. (The dotted

curve shows the prediction for yp - mox)

A plot of the dependence of OII’ UL and OU and the pole term as a
2

function of k_L .
Comparison of the model with the data of Berger et al. [15) on
Yp m° x. (The dotted line represents the w exchange term and

the solid curve corresponds to ¢ = 0.7)

The dependence of O1pr 9 o OU and the w-pole term on kLz.

Comparison of the Mueller Regge model for q2 = 0.0, 0.2 and 1 GeV2
with the x distribution of the inclusive data for yp ~ 7 x from

Reference [16]
Triple Regge expansion of v P > P %

Full Mueller Regge diagram of YR T X in the photon fragmentation

region (x > O)
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2

) + . .
Fig. 12 Plot of S 91 O and o1 for yp + 7 x as a function of kl in

™

the transitional region q2 = 0.05

Fig. 13 Reggeon diagram for the double cut contribution
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