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Abstract: A covariant perturbation scheme is developed to
"givel'a ‘co-ordinate independent perturbation expansion of © ¢
the chiral invariant pion model with nucleons. On thé mass =
shell the-covariant approach is shown to be equivaient to

the standard perturbation theory.
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INTRODUCTION
In a series of papers [1 zj}a-non—linear chiral SU(2)xSuU(2)

invarient Lagrangian (iun ! ) U pion| fields only) was

i Tt

studied within the framework of..co-ordinate independent per-

turbation expangion. This medel ﬁ@@mtﬁgﬂwmﬁﬁg”}gmga1culate in

a co-ordinate independent manner the phase shifts for pion-
pion scattering at low energies in the effective range appro-
ximation. However, it is c¢lear that the pion-nucleon scattering
problem at low eniergies as well as the calculations on'the.corr
rections for the axial current coupling ¢onstant -lie beyond

the framework of the covariaﬂ@mﬁqmmalism developed in [1 ,.21 .
To deal with such problems.oné‘has to developed a bovariant
perturbation expansion of SU(2)xSU(2) invariant Lagrangians
which are functions of the pion as well as the nucleon fields.
In this paper we develop such & covariant formalism. Further-
more we show.that, on the mass jshell, ' thercovaniiant formalism
yields results which are completely equiv&lent‘with the re-
sults of the standard perturbation expansion. The on mass shell
equivalence between. cdwariant~and‘non-p@vdrmantwparturhatﬁon
theory for the .case of chiral imvariant. Lagranglans whiah are
functions of the pion fields only was w.dgmpn_strawe.d in: 7]

Our proof for the equivalence gheorem is:very smmﬁiar!to.the~
one given in | 7 ] , that is, we, show explicitly homudnewcan
express covariant graphs by contributions of non-covariant

ones and vice versa.
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| I. THE MODEL

In this paper we study the chiral SU(2) x SU(2) non-linear

pion model with nucleons within the framewqu of co~ordinate

independent perturbation expansion (Eckér, Honerkamp [ﬂ, 2] ).

The pion fields, which form an isovector, transform non- ‘
linearly ‘under chiral SU(2) x SU(2) transformations, and are
| taken to be the co-ordinates of a curved manifold, which is a

3-sphere, ¢5. of radius Fﬁ ,

F, being the pion decay con-
stant. The nucleon fields, on the other hand, transform in a
quasilinear manner, and form an isospinor corresponding to
isospin /2 . The 'standard form' [3] of such a realization

is given by

Qe SV@)xSLE) ¢ T T ¢ —> q)’::D(éu,m)'v)glz (1)

where D 'is-a linear 2-dimensional representation of 8U(2), ‘
and
7 A nlA win)V
gE’ = g € ,
where V, and A, (i=1, 2, 3) are respectively the vec-
tor.and axial vector generators of SU(2) x SU(2). Any arbi-

trary non-~linear chiral realizaﬁion is obtained from the stan-

dard form (1) by a redefinition of the fields (=n ,\V ) e.g.
™ — 1’ = ﬂf(‘”) ) ;(o)::i. (2)

where §(n) is a SU(2) scalar analytic function of =n .

Following the prescription of Callan, Colleman, Wess and

Zumino {47 we write down ‘an SU(2) x SU(2) invariant Lagran-

gian with pions and nucleons in the form
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curvature F ) . The quan@ity’%%T‘ is, £, !HCtaﬁy

H
under the pien. field Fedgilnltlon (2), ‘Pg59@$wgﬁ%ﬁﬂfwwwa;hﬁ
forms like a covariant tensor I-SJ Wﬁmé%$9nF?ﬁﬁ??ﬁﬁ#@t.[\r-
corresponds to the, 0ppratﬁon‘o£”covani&mt aiifereniﬁétibn‘on‘h
the nucleon fields [4, 5|, ;e shall show later on that all
the interaction terms 1n‘X? are due to the curvature|oﬁmf?3
and vanish in the flat space limit. However, it 1s=possible

to add further témﬁgfthat~doanpt have this properiy. Such
terns musé be themselves chirallinvariant, because the mini-
mal form of the Lagrangian given above is already ghiral-in-,,

variant. We shall add one such term to-the'minimalgfnrM’fdg_@

the Lagrangian and take”th@fﬁqgﬁﬁng;aq,&ehgiﬁy to be

EER T A S T .

-y I TR
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where | (o) are 2 x 2 matrices depending on the pion field

and satisfyingﬂbheﬁCliffqndnalgﬁhra; STl S
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A representation of this algebra can be obtained in the

form
. | | a
[ () = €a,(T) Ty \
_ |
.where €., ( a=1,2,%) are dreibein fields satis- _
. fying *
[ €3: €ay)(m) = ()
eaif‘b{ = Cjab . ' ' ‘
Like C:vaTT[ [ (%) transforms as a contravariant

~ vector under pion field redefinitions (2) . It is, there-

-y : ’
fore, clear that oC’ is a co~ordinate scalar.

| IT. COVARTIANT EXPANSION OF THE ACTION

Consider the total action ES::yﬁJ?¢ﬁ¥). Our aim is
to construct a covariant perturbation expansion of S with [
the terms of the expansion transforming covariantly under 2
pion field redefinitions of the type (2). To this end we fol-
low | 1], and write

S(rw) = Simt Sa(myF)

wheféi's1(ﬁ)',lahd 'SZ (n,%},qi) represent the contributions
from the first and the last two terms in (3) respectively.

5;1(n) , of course, corresponds to pion selfinteractions and

its appropriate covariant expansion can be found in 1:1_].
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Confiring ourselvesl’ thérdfore! tioms {trr., (’b @) wel:introduce: /.

a classical pion field C;D(x) which satisfies the equation

§5(10,0) _ Ti(xy = o ~(5)
_cS’rll(X)

where“:jEKX) is & cla551ca1 ‘source for the field ¢>(x) ' nl*the
following we intend to give a covariant expansion of Sz'f- 'Hﬁ'd'tﬂld
the classical field cFi , ‘Let ‘§i(:ﬂ)‘ be the gebdesics in e§?

from <5( to 7T' where the parameter]) (oé-)-éfs) measures the

length for this curve, and S-(o) % ér(s) . & ()

~

(i = 1, 2, 3) satlsfy the equatlons

Adz;t k{ | gk(::ls.&_‘?_o |_§:.. M T R A '(6)

where flk are the Christoffel symbols, of the second kind,

for the metric 9uj - BéféﬁﬁhwéHﬁm@%ﬁﬁ@ﬁﬁﬂ%ﬂﬁ@ﬁﬁ@GT”*h@WQXQE’

B 0 i
it is neécessary ‘to cofisider in gome:detail:the.: cewariant spinor
iffererttiationm. ! i D n e e e

CE i S o U I L I

Let {Jp be 2 J- compogent field defiped by

<,

t

il

where, gy (the Yoyl connection) sapisfies, the differential

equation [67.

(8
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‘{{——) Sq) , % —> n' we deduce from (8) that _Q,g trans-
forms like

Qf — SQE»ST‘i + S, 5 (9)

The covarlant SpanI‘ differention (or Weyl covarlant deriva-
tive) is, now, given by

V.o = LP;{ 52, ¢ | €10)
It is clear from (9) that \P,Etransforms like Lf) i.e.

Vo — 5\{)&

Simllarly we write

o= ¢+ pt (11)
and
Bpp = Dpp- 2yt c 2
| Ay qﬂ”:’gf‘uﬁh— t}ﬁﬂ_f’a,mf (13)

We now turn to the problem of the covariant expansion of 5;_(7? )VVJ)

We introduce two spinorial quantities Ok (1) and Nl () satis-

fying the equations
IO _ QF, dES, =o (14)
ax ko !

%_1_2?_}_ SJFF—Q?deE;_—; 0 (15)

| where sz is the matrix element given by

i |
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" tields. The last term in (3) reduceb, in : thi.s ‘fla"t space limit,

- l

. B {16
Q‘x { :J _%-._.,. albf' ’[—TE‘IJ Tb,_]'l‘ ; , v ('?6) ‘

ma Qo= @), ()= o) TR
19 (0) = gf«(ﬂ 5 29 (S)q;.:{]..bj'(w)- = ' i::

We remark that in the caqse of vanl' lg cup:'vature equations

|

fij ; "—nuc:;l.eon inter:-
RIRIEINE S NI

actions arising from the cowvariant derivért:h.ve of the nucleon

(6), Ef4)‘,|land (15%Ii ﬂﬁpl@ tille aﬂaéén@

to the gradient coupling term ___ L{, Is %“ q, 'aw . Now, we

can write & o/ fHLL s IH‘!-:- ‘| S A C 1 ]

S, (m e, %) =S5 (S0, Sm Sm) (m

The functional on the right hand side of (}7). is and oxdinary

function of A with a .Taylor ‘expansiori
S,(E0), 90, ON) = 5. (86), Do) Vo)) +

M(4S, (500 30 S} 4+ A [AE S, (Se) I, 0(0)) +-2-4(18)
(45 (5,90, ()))A:;‘_Z?__(‘m (S0, 8¢ “)),,:j

where ‘ ' "
L"::. |4—. Vo S

do_ 4508, 4 5 as* 3
d) PR dA 51% ax SS—*
- with the arrows 1nd1catifng le‘tfj'mand 'r1|ght deflvatgves. ‘Using

equa‘tlons (8), (14), and (15) equation (18) ylelds

(e 50 B S T AL By L
( %5 ) Ai'i (éCA))SF G:’\':) ))-— SN R B

+ (450 a SQA Uﬁm)@fu)) (9

where

Ab (s = & z(g—m S(A] 19(A
) 38’*&7 )JSPCA)

AL (5) = AllSan) ma;w@(go))|+m &) O

S5
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Ak (s = SAL.isuy _ _Q%;j Ab.i(5O)
d$I) PR
+ Ao( L(.g-(/\))ﬂ & A«-m(f(z\)) |

I3 ¢
and so on. Hence by virtue of the fact that Cl?‘_jg_ /1 = f_ 5
=0

where |0 is a chiral bivector defined in [1] , we get for A=Ss

S (’TLPLP) g«A CCP)SS:F +Z ' § 14«( kﬂ@:)é}!ﬂk Fk (20)

The corresponding expression for S,(w) given in [1] has the

form
51C7T) = 51 (47)_,-% E’!T S‘r;kr--érz Cqb) [_"k, F'k"

where the covariant derivatives of the coordinate scalar >,
are defined in the usual manner, i.e.
Sy =5,
Sf;zj" = Sf,t]' *“Ft? Se;m
Before closing this section it will be instructive to look
at the expapsion (20) from a slightly different point of view.
First we observe that any 'infegreLl curvé of (6) is determined

by a point, which is taken to be the point corresponding to CPL

[e

L : E - ¢
and a direction at this point, namely d§ =
A=o0 S

Thus we have

S = &)+ LA 2 cllé‘/ Vo
d)?
The coefficients of ‘}* and higher powers in ) are given by

(6) by differentiation with respect to A and replacing the

second and higher derivatives of é-‘ by means of (6) and the
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resulting equations. Thus by puti‘tfing--;:)'---_:s we finally obtain

Pl T g bk (2

where r;:'kn are the geneféiiééd Chrlstoffelisymbols with
erl':'-— 3; . Similarly we observe that thr-; integral curves of
the first order equations (14), and (15) are determined by a
po:.nt whlch is taken convenlently ‘to be 5‘& and E

spectlvely. Applylng the same procedhre as above we obtaln

Yy - 5.y Q«kg}; A Qik,kzgf rhorke

2!
3 . s : g : ﬂk’ 1
P L E EEMF"E A TR

‘where

Q"‘k f chk 8 '*—thk QJE P Q L ST
}phé = "Qbﬁ(k ¢ + Q |:g2~;6}’.h o Q‘Xm Fk! S TS

In general we can wrlte

b= b +Z _—IQQ,' Lk.é rk F*" (@2

@:KI: i'if' * Z’ §!3 %M! v Kn Fé : 11 i || (23)

CPE U R SR

O AE S : B
Let T =g 4 Xt and expand _1;he functlonal S(u L/J (_’U)

LI

around L}SL . Then e

ST, p) = 1(925)+Z S,k b, (c,é)?( 4 -Q/k" +

ot fwm_Z:,f F A AT
T R O A A CI IS B T
From (21) we have . O

UL T R TR Ty L T, TR LRI gat LT ”"'"!'V‘]I‘f'wr""' SRR B LR i SR TV T [ R TR Ly (e




C XLaiganS e T Tk () e |

f L
M=t n.

‘Inserting (22), (23), and (25) in (24) we readily obtain the ‘

covariant expansion

S(m ) =S, (¢)+Z 2 Sk () TH TR
+ %“Ai(#)?f +nZ-}7:'L’ ?"‘Ai.k,.-.k" (¢) ?F F.k’... F_k" (26) ‘

We remark that in general summation over repeated indices im-

plies integration over their associated space-time co-ordinates,

e.g.
| 4 b
S (@)%k,)(kz: (e Jd % ,Z 3=5, X o X e
1,k k. / k?_ é\TI'E'(x)(S‘TI‘ 2k ’) ?_::;’
and :
VAL, = [dfd 20 e (AL (6 lox ) ) |
‘where o, i

- e

AF (x, x'") = (S\ S /#; .
R ‘r“‘r"

£Wy°IX) | ¥ ) <f4?(KJ

III COVARIANT PERTURBATION SCHEME . ‘ ‘
In this section we shall develop a covariant perturbation

theory, as well as the non-covariant analogue of it, using
functional integral techniques. The sfarting point is the \
generating functional for connected Green's functions, LIJ(Jpwi)} |

given by

L (Tn,0 .
e JM):—A—/’/—/UU-‘JW[%; UA%FJW

P e—XF l{ S(?T, W, (F) ’fj[:?::(x)‘!r'.(x)+¢“(x)7¢(")+?«(x)‘/)oz“)]dx (27) | ‘

e e R R SRR T s —— t



Where_V],ﬁ' are spinor sources of thé anticommﬁtﬁng't&pe;
Vi 1 .
and N a normalization factor which is fixed by the con-

dition ELU@)

1 . We remark that the.:factor %9GF) , with
g(w)::IDEL(%{“?W)) is required to maintainia formal:' in-
variance of the'funct%onal measure With.rgspect to pion field

redefinitions. In general we have, Using a condensed notation,

{1 3¢ {o)ffngiwd }

TTT g Tlop T =™ PrDyDp

(28)

To obtain a ddvafiént péﬁturbéfion!egpéhgion Qnéqprﬁéeéﬂb by
inserting the covariant expans&én for the action (26), anapfﬁé
expansions (22), (23), and (25) into the expression (27) for
the generating fupqti@nal. After chanéing thewinteégation va-
riables from 7. fo ' and from (Q”ﬁ?#) to (5%,&) one ex-

pands all the exponentials exgeg

15, uz@:)l”* reEAR @)

1) (i

pression 'for tHe PeHerdting funétional! of tonhetted Green!s

tfor|'the tenm: that involves .

., 'Inl this way' ofie’ obtains'an ex-

functions’ in tH& covarisnit theory, whith we dehbve by'Jﬂ(j'77)

; \ N
' This 'is wrlt%en ‘ak Fdiiows -

PR S A Y = T [P R sy TR T T g peR PR | S g R T e o e R R v o
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o ‘) | bk
. F(:r7,7): A eL(S 1(P)+ T 4/:DF (aﬂ)\l——' Sf kkz(d))r' K ‘
N

jDE DE(BLP)(

o

ez'( %—“Aa (¢)§F + ‘ﬁ“ Ea("" §M7«)

xexP{(-z T T (o z 272 0fs, &)

ol

| + ({2 TP e, ) ]

N=1

. . Ao e P [y
A2 DR K, TT (B atn s )
n V= ' .

v 2 > TMKON T (Sow ey

}1}.1_3;_-:0 | n-r _ ] }\G- ‘
+ Z Z [ =2 K (Xn-r Z (1 K(/“)r W (?“A‘f.:@?}n f)
24 r=3 Dy, }4( )f,; . =1
><—r (51 T [ )W } =

P 1
where we have used the concise notation of [7] . (), is a
partition of n , that is, a sequence 1,,1;,...,1, of natural
rt
numbers (A,>0 ) such thatZ,v),,:_n . Such partions are de-

y=4
noted as follows

On = (MM nin)

Fach partition carries its own symmetry number, K())n y Eiven

by.

KOW = 1
_l—:}-f}v.{(p-,) ¥

::iii ‘H!!‘
T T 1 1 o O O O P e B A S O e N T TIOR3 0 O R0 T AT P T R RPN AR TN A0 1 9 i i TR T
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The index I, is a shorthand for indices %,--- kn . It is

- clear that, apart from'off shell cogtriqucior;s, the right hand
side of (29) i's'"-’inciepaénﬂént of the choice of the pion field co-
ordinates. We also remark that in {(29) we have disregarded con-
tributions of thie Saﬂ(o) type, whlch.ariselfrom the Jacobian
functions (%}) ,(%%P_) : and (3(!’) , ‘as well as from \I—g_'

(see (28)). This is certainly in agréement with the BPH point

of view. In (29) we negle:ct all explicit couplings of the
sources to non-linear .funct;:éné;of the fields, since these

terms contain no single particle pole in their matrix elements. ‘

The functional integral now reduces to a series of functional ‘
integrals that can be calculated in a standard way. These in-

tegrals are either of the Gaussian type [1] s, or of the type
jb?bé o LEALS G R+ T v

:DG‘L ( (LA)Eg) :_§__ - [E-{CWJB(CF)"(‘?D} E_ (30)
where B 1is the operator ii;xlxﬁeilse to (th") , and Det ((c'A)i)
is the functional determlnant of (i A) . Thus, in order to

., o . .
I:: \, | . H I

calculate the functlonal F(J q 7) we need to know the vertlces

A5 T = 31; Rooka 1 YT=B4

aﬁd
Ax Th Au R, K., - o= 1,2, ...

From ]:2] we have

_— oy "y i T i Voacd iy ke
S, k.. k,, (P) = 4 9/45 )@mk k1 E k, k*r JURT b ' DTQ'D"

ZA-i kZ'f') Va

3 Y, r,,,_.
- ( )k mk K3 R%"‘Ks 2 ™ Ran-z Rapsy Yo (Dr) (n}z)

ny g C ph, (31)
513k;---k2n+4:4 f"¢ Mk,kzr; s R Rln-tkz.m n(_D )k (n_?,,)

2')4-

} IR m—r. nIWNIIT;IIHMIIu'\"||ll|‘r|\lll LUCURTGLL R IR TER N R BT B \Nm."\lw|T-|wum|“|m‘r! $ |l!w r“' Tr”! |fr|1'm:‘;ww |‘!‘Hr"m' \'W"t Iruglr"ﬂ\ 1|‘!1le"!|!! y‘r"'W !"‘H‘!'l'!l!"rf"\!?!!ﬂ " I!IF!\N""I!TI!!I \mv !1 E!w-ﬂ-w‘- REL UL TR LS TL T T B 1] 1‘!\‘-|||qlu\p||!|!!nnlr 1 g
Lol . I | - X

L
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where P\mnu is the Riemann curvature tensor, In the present

. 3
case, where the curved 1sospace,S , has a constant curvature

F+=%, we have ) ' - ' ~
Rmnkf = ‘F_;_"l(gmk ﬁnf = Gy gnk) cg\(xm—xn)cf‘(xm-—xk)f(xm—x{?)
Also (DF); is the diffe.rential operator given by |
(DF)y = (élfa_, + r}e9f¢_)ékﬁ‘xk) | |
where .BN{) indicates differentiation \;vith respect to X; \

We shall now obtain expressions for the vertex functions

AL.In (n>1) « From (7), and (11) we obtain

(AL = (B J2m &+ e gl Crale eag 271

with

3 ‘ B (x) |
(8p)e = 9 3~ 2 Cabe 3t ([ 70 wu1)]

We first calculate ‘ ' ‘

(Arﬁ.k = (Ar.)i)k - -Q-_{‘k (Af*); + (A[*)oxc Q;k

This is given by

_(A}‘)ﬁ.k = %—[_‘rm: rm] Rmnk{ 9/‘*?6{ | . ‘ l'

Similarly, for | ‘

' (Ta Cas Dr‘?ﬁ g)f: ko= (Ta €as '9/495{)5,& _Q‘b’:k ((Td):’e"farqba

+((Ta)5€e349"¢4)'95”< |

we obtain

(Taeaf})ﬂfb(.)f{‘.k — ha)i €a€<Df‘);’

:

BRI sl )

A | 8 TR IR A R R D O R O T P o S Py 1P A O T 0 T ¥ WY TR T O T T T AT I 0 ST AR A MDEF SR RO M S SRR 1700
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These results can bé generalized to the nth derivative case

giving rise to the é&ﬁf@%gf%ﬁgW@mwuﬁ DLtk 5 i e
' 1 R r T TP PRN TR b
A“ “Riv kan (ﬁb) Eabe (T )4 € €y Rm“k,n kkyvy - X
. . g \ II | :.~, : ; _
X R kﬂm a_'kzn—l I(}, (ﬂj‘khq ‘ N . y (32)
y » ﬁ_ RL |4 E - ’RT;H . . "gbr"
R ¥ (T Cai Rpp/n N gt 7
o ‘
o | : ()
and R s
Tt
A“ ky-- hz’”” ((P) = —-.; Ea"bc (Tc)“ eﬂ Rm”k LI kzn‘kznu n+r?¢>
e o (T )k e R e RY g ( ]z )kw (53) 1
! L \ | (Y‘ >4)

In deriving these formulae we have“USed ﬁhe facf that due to

the constant curvature situation, the covariant derivatives. . .
of the Rlemann tensor ane zero as well as the fact that the

Weyl derlvative of the drelbein field is/ 'zéro . due to equatlon

(8). Furthermore owing to the form of the generatlng functional P
in (29) only the symmetrlc part of the vertex functlons makes

a contribution. Therefore, com‘lete symmetrlzatﬁon of the'

Fy «.. K, dindices is understood in (31), (32), and (33).

In the dreibein f@eid:fgfﬁélisﬁ one!is not déaliﬂg directly
with chiral teﬂsdr5577 .ty » but only with their components along
the dreibein flelds themseives, which from the basis functlons
of a local 3-D Euclldeagmspace, mhes?,componeptg are scalars

FT;r..an given by

T L o T
& dn e&, Eci,-, - In

T R R T T T T T e L T T ST S R T TN T A T, W T T O T TR R RN R L R
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Thus we have

: k, k., o
(502, a0 = €5 eal Siib,.4

where the eﬁpressions GS,)@_”an (nz;)are given in [j2:]. Also
from (32), and (33) we obtain

' : £, En
(Ai)c?,---dn_ — &g, €a. Ao( by En
where
(AE( )dt."' Cﬂi) 64 be (TC )“ J;zag C'G-gy,_zazn—f (-ﬁ)hﬁzn
22
-+ ('1) 3/5[1—&) [J‘ asza, —(j‘&b Cf;,az_] d2”,32h9,¢b
F2ﬂ+’l (34)

(Ai )az, e Bangr = (’i)n Js‘ tca )z‘ EJ\ab C(“zr = J\a az.cj;’ 2z C‘Cts 34 inzn-u az,,(qum

| + (“1)‘4-” .(Eabc CTC )f_ fj\ﬁ,&, C'Pa-zn Q21 ggbb . (35)
(n24)
and
o | (36)
(Ax)a = £ po Ga)l(Plear .

We remark that under_dreibein field rotations, which, of course,
leave the metric invariant,(sthu-an an.d.(»4.5’;);1,...&!,7 transform

like Euclidean tensors.

We now turn to the non—covariant perturbation theory, which
can be developed along 31m11ar llnes. The startlng p01nt is

again the generatlng functional (27). Inserting (24) in (27)

we obtain

) i
l . S
A T T A A B O T R ST 017 O P M WS 0 g WA BT 0 A P Y A O T T AT AT~ o
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il (Ton,5 ; { S . kz‘ ¥
o) 4 e (_5 1(p)+ 7 M/DJF 1.k ks Cqb)X X

N
fD%D- AL AL @ 0Tt B '7«17

x{ L4 2 iEM K, U( pAln @ AT)

nzt  (Dn
Ty T P
+Z S iR TT (S (6) ™)
nzz (/\)ﬂ 4
+Z > s Z*:!KOJM ST M K ()
n>4 Y=z ())r” VT : (f‘)r e
| pi=puzo

. S .

. O A I A AT AR B oo
At this stage it is convenient to in*troducfe certain abbrevia-
tions [7] Let f _T(Sf =+, L))” be the con‘tr‘ibution to

the integral fj)x e"Pf—— S, o —,T (Syz @)ﬂr) “which corres-

ponds to the connection mapping C ~associated with the par-
tlcular' pairing for the J( s L It correspo‘nds to a graph with

no external llnes. The vertices of the graphs are fixed by the
i g b oy L oo e

par‘tltlon (}) (see ]:7] ), and C descrlbes whlch ver‘tlces
el | \I' o :

have to be conrectéd by i a1l plon propagators zG LJ (A full pro— |

[

pagator is the one that includes all pOSSlble tree 1nsei"tlons) \

S.um.larly ;rf —-J' (Lp"‘A’ (4:)4/ ’&’I’) A is the con‘tri-
R el £ty f g : fi

bution to the 1n'tegral fD?Y extp {LS, rj (4;)2’ x’}ﬁD}qu} exp‘{l (xf"‘-‘-’\q(‘{’)(lbf

. ; A 1 b
+7 \}’u‘f’ 7«)}—]_(‘{""/4“ I,(‘#)}‘?TI”) whlch corresponds ‘to 'the connectlon
ool A ‘ R
mapping assoc:.a-ted w1th the partlcular palrlng of the X’s
:‘:..‘ \I Lo
as well as the %@F,'qx LFF, and yar)F pairings. Agaln this cor-

I Rt I T N TER I W LI T Ol Ui | ST E A TEA T T U L S R e TR IO CIRT TR R, B TR SR L D L R R L T R TR R R N AR R A L L
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responds to a graph with no external pion lines, but with pos-
sible external nucleon lines coupled to the appfopriate nucleon
sources. Such external lines arise because of (30). With this

notation we obtain for hJthj)the'expression

. . / o
tLhl(mpn) =il (7.97) + *U—Jiew,, (7:7.79) +

220 KON [ TT (s0m x™)
x,C

n=3 )
A=)

N.S

=0

e

e
1t

T KO [T (P A7)
C =1

(A)n 19,7, C

8
=
1

3

]
kN
=
p
W

Dn-r (p)r

3 S5 KO T K G,
C

n-r r
x 77 (@“Ai,xgagﬁfg QKIF)AG /] (Sf)f x tF )/Af (38)
xeg,c - f=1

RS
!

‘ s
The tree LiJ, as well as the one loop LLJ1100P contribu~

tree
' tions arise from

: e ¢ B O ¢ —"‘A-fftb) Ay, + P
et(ST(¢)+J}¢ )/DXEZ Smj ($) X Xij?Dyb . E(,V 'rbﬁ'*? Wty 7"]

1

i
LiJ%ree ande{ioop contain respectively a;i the tree and one
loop contributions due to pion selfinteractions; they also
contain some tree and one loop contributions arising from

pion-nucleon interactions. The remaining contributions of the

latter type arise from the last two terms in (38).

|
T AT T T O A T O I or PO gy AT TRNTRR et 141

OO 1 RN B B B 0 O AT OO e o A4 190 W NTHAAN AT
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In 4 similar manner equatlon (29) yields the following ex-

pression for the generating functiopal - (7 ')‘1)

I e __.7[

o NEEEDEN Mvee (T97) 4 ¢ I—’i’{,.w? (3979) +
e . .L_ v Av
‘ Yo > > éz’\"K(Dmf J )l'(&;I,, V.J)

N=3 }\('\»)ﬁw c . r) c =1

= h _ S
L Z Z ‘ZA K(/\) f ﬂ—(?KAfL ?F F.Iy)
n=1 (A)Vl C F %"tg- C .Jrf

fZ Z Z 5SRO, iz'“fk(r),.x

TA (M, (,«),_ c

| 71‘ I
[ 2(% A o5 ) T (Si;2, 1)
p=1

It is clear from (39) that the basic 1ngred1ents of 'the‘ co-
variant perturbation expansion (for the on shell connected
Green's i‘unctlons) are the covarlant vertlces 6 , T, («.P)and
Ai_iﬂ () glven by (31), (32) and (33), and the fu“lEL propa-
gators G J(cp) and ED;:(&F)Wthh are ‘the inverses of S “j (‘f)

and (A ) () respectively, i.e.

J# Sy (-,(,{';'4%)?”?‘(;?,x'g;b)‘- CJ.(X ) (o)

fA" e A) (x, x ¢) Bf(x"‘;“x”t/) I J(x* C(41)

The full propagators G J{y 7 cp) and BF ()/)/ qb) can be de-
picted graphically as follows

¥ x
S Gy g : T S
Yoy )= };'—--;,4‘ Mk S0 2 +7..._ﬂ-?.«__)l_’.
X A .
x

LR s S SRR R R il i ul Ay ) ' T N
TR T IH!\'!N]IWFIP! AN S UTRIIIR L ARV RARL & i T KT U F'T wv!'rlt|||-r[l-|-‘1r|1!‘! T ARt T AT B R R R ANE AT T e "‘T' .
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_ % |
. . ‘ » ),F 7(“ x x..-i--x :
8o | L | |
t M(XY?#:; _ 4 - . + . + . 1 l
e )-73 Y )y yr 7 e 7 y 4 P4
' |
X

where T Go-j ’ and = (. SF . GQ and f SF are

the limits of G ana B

respectively)when the pion source ‘
J is taken to zero. Thus

G‘:f‘(x.- x') JU G (x-x")

where . - _ ‘
G’o (“-) oy ! ¢
477‘2(.}(' < c"c)
and |
F oo ,
iBi (X-—x’) T Cjo( L SF’(K‘“‘c )
where i

(:‘}(x}__m) SF [xl..x‘) - J()ﬁ—x’) ‘

IV. RELATIONS BETWEEN COVARIANT AND NON-COVARIANT DERIVATIVES

In this section we shall establlsh the connectlon between
the covar:.ant and non—covarlant derlvat:.ves of the total action
S= S,—rS . For the flrst part of the action, S, , the required

cormectlon is given in L 7] . This reads

o | | | ) N
e | a2
Sy;,, I”——n' Z K()\) S'i g 4 [] (T 7 |
L N, V=g

YT 000U 1D AR § O OO ) WP T TR 1RO 0 07 01007 O A RO PO AN 1P R P11 L0 EHE AP S SRR AMARE O

e T
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n , W . A
‘with r::EL Ay . The coefficiemms _T;,sa'—T}f”kv are symme-
B 1%:*

tric in the lower 1nd1ces, and c&m be ‘expressed 'in. terms'of

the generalized Christoffel symbols TZ{“_; y which oc-

»

cur in (21). We confine, therefore, ourselves to the second

part of thewacmioﬁ,=5£ L”Fr@m“624)lhhd'(26) We,mhtain'fﬁﬂﬂ
Py I ‘

Toagnieg -k» T : S

Sumpp) = - ’4«(95)7’;; +_Z 2 AL 2 (49)% ?"I"

T o8 o T o f . (43)
= 5 AL ccp)éf +2: 1 ST Az, (6) 7 [

Now the relations (22), (23), and (25) can be invertedrto'ex-
press P. , Ex , and ?“'1n terms of: 2" %« , and yf respec-

tively. Thus we obtaln

e Tt (Tiaey W
n=yq - o -
FREAME
4 ’ .:;i 2 ! ! .
(45)
i (46)

ELA A

G B
& EI:m telrms Qi

ged

i w I il |\| "
Ve 5@¢55 F%icourse, Iﬂg%
has to be expressé*a"'ﬂ%; ll! “044) fmSer Hx"%‘ilé""(w%

(45), and (46) in ‘the r;ght He

Mexmre351ons w1th the same %fi“ﬁ

|| Ih“ L!!
equatlon we obtaln a f@rmula 1wa_gop‘,

m‘\ VI nn

| H \‘ ”P“H F F|If I||Il HI s ‘[H'\F'F"rﬂ[‘[!l

||]'n'!n||lMT!i"!T'll_ﬂl;|n N‘!ﬂ"r!rﬂqni: wpy llF”llI! r i'\rrm TR !'!HM.“ !:
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7AL 7o (9) % X" = | MZ Xe«f Ay AJ! Ly, ‘im

n+n +n3..._r1

AT Ko, 1T a4

=1

11 . '

. {3

where V=2 and nﬁ;§;v):) . Followmng [7:]we introduce
V=4 Vi g

the graphical notation shown below:

7 . / ? / ’ \
1y, \hos N \Vl-, \\’f\ / \\n / R /

y |
é Y % -«4-—¥—<— —~<—8—<— —(—d—(—- ..(_k/_<.
IL- Ai,]‘." AM In“. §N1n X“In
) n
We can, now, express graphically formulae (42) and (47) for

small values of n :

For later convenlence we introduce the notlon of a generallzed
partltlon. A sequence ):), :t~u3:z (£ =1 2,...,M) of natural
numbers ) 20 1is called a generallzed partion of n , if

2: VA“) y and o= Zivn_. We denote such generalized par-
U=y g . ( _
titions as follows‘ {)} __{(4 ”__ &)) (1¥”___ y:))}

The symmetrj number associated with {)«}n is denoted by |<{)}"‘
M

where K{Ahf=ﬂrTP<()“Uﬂ{ . It is now possible to rewrite
t=1
(47) in the following way

L U
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| " J - B
AL L @) P X = n! e K{A3, ftty Pyt by Pos..tq x

(48)

where Tl-=g:)(yl) (i = 1,2,3) with v =o0 and Yz =0 implying
X I_Jy ang Pf_ 4 5; respectively.

V. THE EQUIVALENCE THEOREM

It is desirable. to show the equlvalence of the non-covarlant
and the covariant perturbation expansions on the mass Spall.
That is, we expect that, on the mass shell, the generating
functional LLJ(J_,'?ﬁ) and F(T,!;,ff) for connected Green"s func-
tions in the non-covariant and covariant theory respectively
are equivalent up to contributions of'the*typenggﬁﬂ. It is the
purpose of this section to establish the equivalence in some
detail. This equivalence will serve as a‘pOSsible'l&hk between
the usual BPH approach and the covariant approach. We shall fol-
low closgely the'proof“of‘theﬂEquivalence Theoren' in the case
of pure pion selfinteractions given in [7] . To this end we
deconpose each contribution from (38) into a sum of contribu-
tions containing (i) the corresponding covariant_contribution
from (39) , (ii) contributions which vanish on the mass shell,
and (111) contrlbutlons Whlch do not vanish on the mass shell
and are not covariant. However, 1t can be shown that contrl- |
butlons of the type (111) are either of the type §¢ TO)
they are cancelled out bv analogous contrlbutlons, which arise
from the decomposltlon of a finite set of other contrlbutlons

from (38).

ALEE R TUTUT RS IR R TR TN RGO VL TR TR TURE R DL (R U ATk {1 Tl o LR U e RTILA i L Tt R DR T b LU Tl R T L LU LR (U R L) (LR L B LR
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To proceéd any furfher we need to introduce the notion -of
a double generalized partition. In [7] a double partifion,
denoted by [ (M), ] is definéd to be the mapping (1) —> My
which assigns to each partition ()) a natural number pu,>o0
whi‘ch.is called the multiplicity of ()\) In'-a similar ﬁlanner
we introduce a double generalized partition, LE)ih] , de-
fined to be the mapping {1} — Fexs 'which assignls'to each
the multlpllclty IA“}>0 . Suppose all the generalized parti-
tions that occur in [{,\}n ] are of the form ‘

(J)(M) ( “"’J

D= T T

with m =1, 2, ..., N . Then

(J)(m) ‘ cj'c)im) - 4
{)}f‘] }_— _ﬂ‘ { Y\‘;")J) ) ‘&T‘ ] (49)
where the order n of [{)}t] is given by

e ‘

N
£y (m)
:thi’tm ZJ/A (ZZ, Ajm) |
™M=t J=1 Yo g i
We also define the symmetry number associated with [{)}’:]
to be |

N

.  (50)
K ['{ )j —" F”"” ( K{ A(M} )’A 77_ ( 777 9 ,‘U)fm) ﬁm li
L M=y o 7-7- )0 f"";( [ ald

Vs
The contributions from L—/tree and LJ—Iiloop colncide

(on the mass shell) with the corresponding contributions

/
from F and [_'

trée 11o0p * Henge it is only necesgsary

to establish the equivalence between W(J, 7.9) and @(79.7)

T M) PR Ll SRR b AL LHL L L R )T

ARLLAR L UL LU VLT RV DU L LT LG L mnu-rlmm'nmﬂ-wwmw!m'wwmmﬂmnlu !
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where

W(7,7,7>— L—LJ(T)7 7)_JLL!']:TEB(777)F 1&0’1(77 7)

and | , )
D(795) = T(795) = [hee (7395) =T 00y (5:9.7%)

From now on, however, we .shgll_ ne_glezct the contributions to

w ( T:ﬂ,ﬁ,‘) which contain only pure pion selfinteractions.
Such contributions are dealt with in [7] . Let W(Iq,ﬁ')
denote the remaining contributions in W( 7,75) + Inserting
(42), and (48) in (38) we obtain the following expression
for _\A_J(T,?,ﬁ)

i) =2, > 3w K]

24 [DiE] C

N )
; / . F
T J Jd -
X/ [‘7‘} X—*’Cf,...f,»’cm) Af-é',---[,;cm)"&_;d'»@---fém] (]PF

Xpw,C 7
z YICH) . . (MJ(J) /"m
m J)
X ﬁ _—T (TILHJ(j) % ]
J -1
-1 M

w22 2 D 5T iFE Kpgr g (B KTer .

ny4 r=3 [{A]n’f,] L&) C
1
S . £~
/ J ‘ L):_(IU .X-O()/Z,..-{rcm /A <t - frem) %J,& fogern (%J/g s
%" ™M =4

(T (g 27 ) ]

J | X

( I I(M(j’

7 A ﬂ( :::“) ':IJ)G_‘)“‘)JJOL. (51)
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‘ N 3 ntmr
where in the first term n=2_ pn (> > VJVC”M))
V(W5 M=y =1 Y=g '
) : i) _ .
and ﬂ ::'v*, A, ( ¢4,2,z) » Whereas 1f{f?e second |
- M : Com . wCY . :
term  ny = 3 (32 FE9)  n 22 350D (jozn
i ) W=y BT 4 MU n . '
- - and  r= Zpe( 3 v ) |
¢ . =1 V=4 !
with Y{::é?: &’ . Each term in the first part of (51)
=/

is characterised by a double generalized partition | {1}/ ] !
and a connection mapping C . It corresponds to a graph
(with no external pion lines, but with possible external l

nucleon lines

-

coupled to the sources 7 and ifwd?vﬂpsge

each Vertex —<wie  is replaced by a vertex \E? ??\g? with
the same number of pion lines ( X' ) . The connection mapping

C ‘dcts on the X'sas well as the y,s and s . The multipli-
city of each type of vertex is determined'by fm (m:4,zL.va).
Similarly each term in the second part of (51) is characterized
by a pair of double partitions [:{)}:T] and [j(G)ft] , and a
connection ﬁapping c . It dan be represented by a graph (with

no external pion lines, but with possible external nucleon

’ .
\\ , \\‘_. /

lines coupled to 7 and ﬁ' ), where each vertex _+SL+_and v’

L Y oo }
is replaced respectively by a vertex ~diéfkﬁiand ‘éﬁ with the

same number of legs (X‘).

We consider first the contribution to'iﬁ(Jiqﬂ) characterized

by the particular double partitions

v |
CORT =L T i@ a™@3t™ ] ne 2

2

and

L1 =1 f{{mm”"’)(o)}"”]
[T = [T (m)hi T

L'=a

vy mroc ooy

LN RS o LT LR T LT L LT LI
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M N
with n-r=2_ HmMm . and V= 2. pc¥: . By examining the
=4

symmetry factors KL{)F 7 , K[{:)}nff,] , and K LG

we can infer that this part of W(T,'?,Tj) is in 1-1 correspon-

dence with (7, 7,7).

Let us consider now the contribution to 175(337,5) arising from

the second part in (51), when the double partition [(6‘?’:} con-

. n
tains at least one partition (¢‘’)with > &.’-4 . Such par-

Y=t

titions give rise to vertices of the type 5., Tli-z_“ . How-
ever, because of (5) S, =~ Ty and graphs containing at

least one such vertex, therefore, give vanishing contributions

on the mass shell.

Let Aw (7,19 ) denote the remaining contributions to (51).
Then

EAW(T,.?,,?-),—_—Z Z/ Z | o, Hm K[{x}{:] .

21 [3K] C

N :
Xf /} E(?V —Zo(.!,.-./,;m; Ag.f,...irzcmig,ﬁ,,_/@cm (]D)g X
M= 4

AN

Z ";M) m) R ¢y -
T T 5™ T

DUV DI D WAL L A2 Iy IS RGP

nz4 rs=4 E{A }nf:'-r ] )’:(G-)rf’ :J C

= d 3
Xf ﬂ Ekf) Xf@_,_(ﬁc,,) Ay_g’__,/,&cm c)"{,..../,}cm) %g x

X55,C e

i)

] > n emy e el Fim
X W ( _]_T ( Tréw') X )L /:f x 52
J=1 V=4

ce)

N N, y PRI X
o Hfsfjf,...(’q- TT (—T:r,f"’ X ) j
- n=1 Y= |
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where the summations féi" indicate that the double generalized
partitions L {A1F'] and {2} ] should not consist of ge-
neralized partitions of the type {(oj(1%)(0)]1  alone. Also
the summation J_ ~ indicates that the double partition [ (e)f]
should not (i) ‘consist of partltlons of the type (15) alone,

and (ii) contain partltlons of the type ( ol )) w1th _Z; G‘“ 1

The equivalence between covariant and non-covariant perturba-
tion expansions will be established, if we can show that, up to
terms which contain §®(o) factors, A\Tv(f7,7)t’ranishes identi-
cally on the mass shell. In order to prove this we shall make
use of the following iist ‘of idénfities (due to (40), and (4‘1)):

(1) ‘5}34_“ (x;¢).g(; (x,"p) 1. P, (X% ¢)'7ﬁ
(53)

[

1 %1;.%___ { x )?) _T.L! { x)

b4

g £ et w . &,
(”}, A“.f,.r..( ;?!;)tG' ((X,x )t?)S'f‘-!f{i(x)X)';f))T---(x/(54)

| | | oo : ,
(1) AE;, (x )c#)B)P( (x, x”;,?b}'A; (x’, x5 4) igtz... (x")
| (55)
= (1) Ai.y,... (x5 $) §;¢'1.-. (x)
.. | . S , -
() Xy AL exp) BE Ot 4 A (5 )

= (-0) Xﬁ g (%) A;lz (x5 ¢) (56)
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The above identities shqw the possibl%ty of contractions of
full pion as well as nucleon propagators.. Tp% factors gppe§ring
on the right hand side of (53%) - (56)legy a very ;@pogﬁapt

role in the proof of the_equivalence theorem. In general we
shall have to examine the change of factors of 1 in Aw

due to contractions., It is clear that each contractlon reduces
by one the number of vertices of the graph quep qqulqeraglon
leaving, therefore, a factor of i_.(gee‘factors of i; in (51)).
In (53) and (54) there is a factor of i due to the fact that
full piqn propagators always.appear ig the form fC}' andlnot_

simply G . This comes about because of the functional inte-

gral
1 DX e ‘Z_L_:S'f’ ‘j [‘1)))",\’) ' )/kf )/ﬁzn v i
N !
— const . “ L ;Ei? [(;k;kﬁﬁ_,; l'(;kﬁﬁﬂkﬁ” (57)

EDE?L (St,q° 1%
where the sum in (57) is over all p0551ble pairings, oflthe Wﬁ,s
Thus every contractlon correspondlng toy (53) and (54) gives
rise to an overall factor 12&—1 Equatlons (55) and (56},
on the other hand, correspond to full nucleon propagator con-
tractions. Now, from (30) it is clear thét in ofder'to get
an internal nucleon pnopagat@r oorrasp@ndlng to ¢;:I;ﬁﬁ
both left and right derlvatlves _Eim_ and E;— have toh

z@ﬂ?“-! % TZﬂﬁ;

act on the samg:term (ﬁﬁ) t5(¢)('7 in the expan51on of
exp]jl({ﬁ).g,(;q)J" . Thus, we' pick up an addltldnal factor |
(-1). Taking now into account the factor of (nl) appearlng on

the right hand side of (5%5) and (56) we see that, once again,

the overall factor is 52 = - 1 . Hence we reach the conclu-

LI L e g UG (TR DN R LA RUD U LRI T T U LU DT b L IHWF’I'?""rﬁﬂ‘l‘llﬂ‘|||'|'["'I|“|"1'|”|‘“‘ 'p|||||I[|\|‘|m|\l[ Uil EUE T ‘!"FI"IIN““'I""I‘H‘W“IITNF""FFII‘"Il'l!ﬂﬂ\ﬂlﬁ"lﬂlﬂ"ﬂmllk VIR R U PR Y
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sion that every contraction of a full internal propagator

gives rise to a factor (-1), which must be taken into account.

~ We remark that (53) and (54) correspond to contractions de-
scribed in [7] . From the work of reference [7]we.know that
the vertices S”‘;J. giving rise to contractions _arise necessari-
ly from partitions of the type (7,k) k>2 . Each partition

(1,R ) contained in E(@)f’] gives rise to a vertex factor

Sf-)t'p TI{; 7(“’)(:11 . Let X' be connected to X/ by
the action of C . Then, either X’ is connected to S, =
or to a nontrivial T , i.e. TJM (but not ‘TJM ) . In ge-

| neral we have
s Ko-mmmm oo ﬂ’_é::: ) ’._‘E--o ——————— -E—q(é;:;

—

"~

e
Y
)
N.
Lan M
e

fu

- -
-.\‘ ’:-" “-._._ : T, ‘E-:—
/_]E—ﬂ- ------- “Er R g
i r
(t) e
b -
\“‘ .\"\ ‘E‘E;}-
TRom- - R

(1l )y

A vertex or a graph containing S, 5 c‘J‘ of the kind corresponding
to (1)a and ({), is called contractible. Now let us examine
the cases due to internal nucleon propagator contractions. We

note that vertices AE( may arise from the following types

| DRI K{SINP (3318 ) AN 0 FA e S T T S e

G LT T ST TR TR ] I UL 1 GRLRL S VR Y A
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of generalized partition: (i) {(/\m),,, (0)(0)} , (ii) {(/\“’),.,. (o) ()(‘3))n3}
and (iii) {(o)(0)( Am)n;} . Each generalized partition .
of the type (i) implies a vertex factor @“X{& As, fi: (T:[{i y:r,,y\ﬁ;%
Let SDF be connected to @-J by the connection mapping /C .
d

Then there exist two possibilities. Either {¥ ° is connected

to a vertex described by a generalized:par‘tition of the form
Ay (3)’ or to a vertex
{0, () Dot | ,

{()\(1)/),1! (Am/)n’ ()\(3),)”,} . Graphically we have
A z 3

L i
or o < S Free

“""f\

LN
A e,
N h )

e

& graph of the first kind containing AE is again called
contractible, Similarly in the case where AEC arises from

{(o)[o)(’)“ﬁ)ﬁj} we have the following two possibilities:

el et e
Ay hd ! \

ik F b Y LTI I S ek Auar
i v N N T b LR

% L b _ L. ﬁ ’ “;"E
M or )X_f 1&3\ < —O~—®\<

Again it is only the first kind that leads to contractible ver-

P

|

-

tices (or graph_s); Finally the case where Ai arises from
{(A"’),,r (O)CM”%J leads to no contractible vertices (or

graphs).

In general A“v_v (7,7»7) contains contractible graphs. If one
applies the identities (53) - (56) to the contractible vertices
of such a graph, one gets an uncontractible graph., It is under-
stood, of coufsé, that the connection mapping of the original

contractible graph has to be restricted to the remaining }0«, 3—0—“
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and 7(‘ . Now (52) shows that this contribution of such a

contractible graph to Aw is equal to the contribution of

the associated uncontractible graph, explicitly present in

(52), apart from a sign and a combinatorial factor (due to
thg presence. of the symmetry factors ;iif]ffj])or
.F<[?A3£wf}'kfﬂff)ﬁj - and the poss;bility_that the diffe-
rent connection mappings of the contractible graph give rise
to the same connection mapping on réstriction to the uncon-
tractible graph). The sign arises in the way described in the
remarks made following equation (56). Following [:7:]we re-
mafk that the uncontractible graphs of Aw give rise to an
equivalence relation among the totality of the graphs. The
equivalence classes consist of all graphs, which, after com-
plete contraction (by means of repeated applications of (53)-
(56), lead to a fixed uncontractible graph. Thus, what we
have to.do, is to deal with a general equivalence class,fg(ge)
corresponding to an uncontractible graph go , and show that
Aw ['8(8‘7 =0 , where AW |&.@a) denotes the partial sum of
AW  taken over the class E(go). It is shown in [ 7 ]
that; in the case of pure pion selfinteractions alcne the
corresponding class‘EYgg)which is in'general'quite large,
can be divided into smaller classes with vanishing partial
sums. The same 1s true in our case, and this is what we would

like to show in the remaining part of this section

Let %“ be an uncontractible graph, and 6f($0 the c¢lass
generated by it. E?Cagfis;precisely obtained by doing all

admissible blow ups (a blow up is an operation corresponding



to the inverse application of (53) -.(56)). Let there be No
admissible blow ups on (g , then No = %%éﬁ?§l=Thus one
way of- d1v1d1ngé%3‘)1nto smaller classes is to divide all
blow ups on 8¢ into a sequence of 1ndependent types. The
application of a blow up of a given independent type (keeping
everything else fixed) then gives rise to one such a smaller
class. This is in fact the construction of (s,* ) equivalence
classes in [7 ] . To this end we choose a vertex from 30
which allows blow ups. If this choice corresponds to a vertex
arising from pion selfinteractions, then the results of ['7]
are directly applicable with only trivial modifications. With-
out loss of generality we assume that our choicé corresponds
to a vertex ¥} =% {(o)(fk)CO)i} . Let {*¥} be given by
{%'}:.{(xﬂ“)ﬁ (xiw)m(¥02¥. The vertex {#} allows, in general,
three types of blow ups with blow up factors given by (i) the
generalized partition {Cxﬂpa(o)(o)} , (ii) the-generalized
partition {(o)(o) (%*)s, 3 and (iii) a non-trivial T
of the form T . . Now, let f«m be the multiplicity
of {¥} in 4., . Next we proceed as follows. We blow up the
vertices fL££} of g, in an arbitrary way. Then we blow up the !
vertices {¥] of g, arbitrarily except for factors J (X(?)5 (03¢0}
i and { Co)[o)[xm)ﬁ;?. Thus, each of the M., partially blown up

vertices is described by a generalized partition

(2.) o %.Ez)f

{(%(1)7_ (,f T .. n, Ny )C%(iﬂ— }
with )‘6('2)” < ZE'(Z) (( 227 , nnJ Zx(_z)r Z x €2

(=1 P

—
The last relation fixes_XfU uniquely. Next we define

(.;:(2?)52 — Max (4 R ¢
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the maximum taken with respect to the lexicographic order of
(2)/ (&% V3

the partitions - ('f ¥"L . Let 1, of the [,y ver-

.tices be of this maximal type. They define a double genera-

lized partition

Cicxny, (F, (x5 1]
This set of vertices can be distinguished uniquely from the -
remaining - p{”ﬁﬂo non-maximal partiélly blown up vertices.
We then blow up an arbitrary set of these non-maximal vertices
in the way that gives blow up factors of the form fcxv)s o) cod]
and [ (o)(o (%‘3’),;3} . Our partially t‘blo*«m up graph is now

described by the following double generalized partition:

Mo
E{(aef”),i(ouco)? {cono)(xm)—.,,-} foxm), (xfl)),,,.(;em)}

= 2y 2 N—- =
ECO)C%( )}_'L(%CB))'_‘;}MT { C{(H)h_l (’%( )H_l(o)} 7 {(O) (% (z))ﬁ_z(o)}P'!]

- " (57)
x [ R [(}22) 1

where the multiplicities are determined by the condition that
the remainder factors E{ R,E“][(P\z)‘&] are disjoint from the
first fééfdr.in (57). The above double generalized partition
together with a connection mapping C (specified dLiring the
blow up process) deflne our {X} - collapsegraph Define an {*j-
contractlon to be a contraction on 36 (?(30 given by one of the
following cases (i) a contraction of a vertex f(f“’)q, (0)(0)}
with a vertex {(o)(i(‘”)ﬁzC*c”)ﬁg? , (ii) a contraction of a vertex
{ (00 (X3, | with a vertex { (x%); (f&?)r_,z(o)}
and (iii) a contr'action' of two vertices {(9&‘”);,(0)(0)} and

{(o)(b)()f(”),,—g} with a vertex {(Om?m)ﬁ;(”} . Our {*f- col-

TR p— Yy
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lapse graph does not admit any f*}]- comtractions. Two graphs
in é;ggq are called {x? —equivalent; if they‘become equal
(up to.a numerical factor) after performing all. the apper-
taining f?};contractions. This equivalence relations splits
Efgg)into smaller classes. Each of these classes contains exact-
1y one (¥}-collapse graph. Now_for each {*}~collapse graph we
can do the remaining blow ups, which give rise to blow up
factors § (¥); (0)(0)} and {(o)(o)(x%a Y . Eagh such blow
up results ih a graph, which is described by one of the following
double generalized partitions.

[ [C£)s (D)(0)3M0+5+-u feorcorc 3&‘”),:;3 z No+tru §

= 5 no"S"'l'_"H.
x { (%(ﬂ)ﬁ_’ (% ( ?)ﬁz (96(3)),7,? g x

x { (0) (X )5, (%°7)5, ] S (x) (E) (o)™

AL En o} LT[ ()] (o9

with 0<s+t+u < n, . The next step'is to evaluate how
many coﬁnedtion mappings C ex1st for a glven double genera—
llzed partltlon (58), which will give C, after restrlctlon to

the. B collapse graph Thls is stralghtforward We obtaln

the follow1ng factor

-1 a (Mots+u ] (Mot 10! (# ,+s)" (N4t )P +uw)!
/Y/Of No.- Mf. N-'-I Pf. t’u

(59)

' s+t '
where the factor (-1) arises from the fact that every con-

traction gives rise to a factor 1"=-4 . Now it is clear from
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(52) that we. have to calculate also the symmetry factor as-
soclated wlth the blown up graphs described by ( 58). It is
_important, however, to remember that the disjoint factors
HR,} ][{ Kz)]glve rlse to. numerical factors, which are in-
dependent of 8, t, and u, and can, therefore.,_ be omitted.
Multiplying the required symmetry factor with (59), and
eumming over all the elements of the {af}- class we get: | 1

' Constant factor independent of s,t,u § Nne ! (,,)S*J‘

R

: R Fel Lig,! : ;
no.j ‘ oLssban<n, (ﬂo s fM).S.'&‘L(_ ‘

~. Covisi . factor (4+24-1-4 )n" 0
n ! :

Ther;e remains the exceptional cese wher'e the choice of a ver-
tex leads to a generalized partition of the form { %] =
{CO)C%.‘”),,, (o)} with (}Er"i’)— =F (1;’—1) . In this case one
Wlll proceed in a manner completely analogous to [ 7] . Here
we sketch themaln steps. First we blow up the vertices + {x7
of 3 . Then we blow up the vertices §¥7 of 3 except for

the fac‘tors _I-L( ( s belng a fixed glven natural number)
S

Now each of the /{17 partlally Blown up vertices is descrlbed

by a generallzed partltlon

[T : ’ 2y 2y’
2) X — 9(
{(0)C1 > " )(O);
(‘z) s / (22
with "< x(“ (c > 7_) , and E x 200 = § X,
: : t= L T4

which fixes _,4{;2) .. Then we define

= ey - (23 €2y’

X2 Ax2) _FTw x022 Ak -
(22--.55 .nznl):: Max (-2 2 .. s F . -,
and

(;c&)) - ({56&1(2.)

UUEE SR T

LRk SUNTL LR BTV AD LT LR R ], (L L RN e L R T PR e P R SRR T R F T P R S




where A implies omission and the ﬁaximum is‘again taken
with'reS§ect to the lexicographic order of the:partitions

(£$w111£j Now, let n, be the number of theee maximal ver-
tices.'They define the following double generalized parti-
tion

?

[[(’07 (1}“(1.,.

ST m R )(0)} ]
We consider now the remaining Py e non-maximal vertices, and
we fix them by blowing an arbitrary set of them in a way that

gives blow up factors —ﬂf_ . Thus, our partially blown up

. tg

graph is described by the following double generalized parti-

tion
[j(ﬂ $) ;][i_T_r {(0?(1%' L S%;ZL”}..WQ%51)607}HVL]Y'(60)
L1037 (RI™]

where, once again, [f{z 1 '][:CR;)*] are dlSJOlnt from
the first two factors in (60). The aboveldouble generalized
partltlon (60) together w1th the connectlon mapplng (: (spe—.
cified durlng the blow up process) deflne our (Sixi) -collapse
graph ‘Such a graph does not admit any Cs{*})-contractlons,
where an (SZ*})-contractlon is defined to be the contractlon
in g}ef?(g y » which contract a vertex (1,5) with a vertex
{(o)(1*12“1,g*ZLV ”*’ﬂbﬁ Such contractions characterize the

(s, §x3) equivalence class. Each class contains exactly one
(s,§%7 )=-collapse graph. For each (s,{x})-collapse graph one
can do, now, the remaining blow ups of the remaining 1, maxi-

mal vertices, giving rise to blow up factors 71{;5' . Each

n s

blow up result in a graph described by a generalized double

partition
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x5

2 “"‘(2.; " {u
}: 1)S)I\Fo+y2=:{y(y ] L_ r\- f (o) (4?, e Esmy 5 %F, )(D)}n + )

(61)

—(2)

Loy (7B ;:ﬁl")(oﬁm—(] D_K_fih][( RD™T

%52 | , o
‘with f:% 4, and o< {’S_”o . As in the previous case one:
has to evaluate how many'connection'mappings C exist for a
given double geﬁeralized partition (61), which will give rise
to (o on restriction to the.corresponding @Aiakcollapse graph.

From | 7 } we know that this is given by

e e % T ¢
v v€, )1 v L ' v L
(’4)1 : (N°+% () ﬂ (n + 4 ) ﬂ C’Eﬂr-!-f)
Nt not 4l (vl (62)

V=g F=1
Multiplying (62) by the symmétry factor associated with (61),
and summing over all the elements in the @jxy-class one readi-

ly obtains
(2)

T e (*‘”)J

| ‘
0< €<H (-H €) Y= ‘g .
x_su) €=¢.,

{1+ZC")(*W }Ho = {(4—:)3(‘u =0

Const. factor independent of £, ?
I . n,! ‘
Const. factor
h,!

We have, now, to examine certain cases, when the general
cancellation procedure is not applicable. Supposing for all
choices of {xfe-go one gets “fx} = {C5*”’“7)ngﬁ)C0)}

This vertex does not allow any blow ups. Hence 6;(go) consist
of only one element. In this case g is characterized by the
double generalized partition [?Ci“"”) (o)ﬁﬂ? (x“";koxo)? _]

and a connection mapplng. The latter gives rise to three possi-

it LR LR ] { ¥ UL, IR R ILE R (0
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bilities:

(i) Vertices of the type {(xr@),.(rc0r} form a closed fer-

mion loop. Such a graph is of the $'o) ~type, and is, there-

fore, disregarded. We remark, however, that such loops may

also occur in graphs containing vertices {'(x‘”);l(xfuxi_(xrnyﬂ}
for which the general cancellation procedure works.,

They formally cancel out. If, however, the graph under consi-

deration contains only such loops besides pure diﬁi'or §1E?

vertices, its class ( contains just one element and its con-
‘d

tribution does not vanish, but can be ignored being of the

8(4)(0)_-type .

(ii) Vertices of the type {(%“”“)A;(QCO)} are all coupled
to the appertaining nucleon sources. Such graphs give contri-

butions which vanish on the mass shell.

(iii) Some vertices are coupled to nucleon sources and some
form closed loops. Again such graphs are of the yﬂh# type and
are disregarded. ' |

The same three possibilities occur, when, for all choices of
f*} eg , one gets {76} = [co)co}Cfmcf))nt_; Once
again the contributions arising from these possibilities are

cither of the o (°)-type, or vanish on the mass shell.

Finally we have the same three possibilities in the case when

g%g = {C%(f)c”)nl.tza (o3¢ :Ea)((‘))”i(?) E
Graphically



@ . (c)

The cases (a) and (¢c) are dlsregarded béing of the Jﬁkﬂ—type.
.However, 1t is clear that in case () blow ups giving rise

to factors of the form fCx V@) (oyco} and

£ (o)(o) C,£‘3?%£n 1 can take place, and thé general

‘¢ancellation procedure is now applicable. a

_Wejremérk'that the-abpfe exceptional cases cover all the possi-
'bﬁlﬂfies-fqrwgéneralized vertices, which do not allow any blow
‘ upSwﬂWéwgééthhéréfore, that in thé cases, when there exist no
| pﬁSSﬁb&liﬁies for 'blow ups (and, therefore, the general cancel-

lation procédure does not work), we alﬁéys get contributions of

the-:gﬁhﬂ-type, or contributions vanishing on the mass shell. i
We, may conclude that, on the masSiShells Aw =o up to

c@n@nipppions qf the c;@hﬂ-type . This concludes the proof

of the Equivalence theorem.

It is éasy to classify the graphs, which will contribute to
the cancellation of the non-covariant parts in Aw arisiﬁg
.. from a-given graph{ g y in the‘non-covariant expansion. First
we agsume. that g ﬁés no external nucleon lines. Now, let n>1

and consider all partitions of the form

1 RO YDA R R BT TP )P RSP PPE IS N 010 11 SOGB40 8 RTS8 1 R DI b s (g (g CTIET | o]



an
(o) (Xzn = (yHyAy> |
(¢ ) (Vn, = (TT M)
(Pn, = (e )

with ji), -:f)z =0
n, ‘
and 2. (@“Z)Pe =y, , where n,+1,=1 . Take all the graphs
. E=d )
in the non-covariant expansion, which are described by parti-

tiong of the type (x) or (F») .

First we shall examine more closely the graphs of the type
(o¢) . They correspond to graphs arising from ‘pion-nucleon
interactions only. Let g’ be a graph of this type. Let P(?’)
be the power of F.' associated with 4 . Then _

P(g’) = i)/)y —-=2Zn = 2 L'B (g’)
where Lg(gf) is the I;1’1.;:11‘t)er' of pion lines in g’ . In general,
however, /\/'(9/):L(ar)_\/(gf)+4)where /\f(g’) is the number of
loops in 9’ ) L(Sr) = Log (8r)+ Lo (3) with L e (97)
being the number of nucleon lines in g’, and V(ﬂ') is the total
number of vertices in ?’ . Since gr has no external nucleon
lines Lr—(%') — V(EL’) . Hence /\f(g-f): LB(?')-ri)which implies
that

Plgy=zn =2 (N(3')-1)=2(N(g-1)
Thus the graphs of the type (x) are all the ‘connected graphs

with m+1 loops arising from pure pion-nucleon interactions.

We proceed now to examine the graphs of the type (F) . Let
9” be such a graph. Then

P(%"): (Z v, + 2 (G—Z)PG.)} - 2n  (63)

o= 41, =20
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Now V(g rr) _ .V'(‘.'lJ(gu) + l/(Z)(gu) )-l whe;‘e

l/“)(g")‘ is the number of vertices in g"due to pion-nu-

cleon interactions and \/(ZJfg”) the number of vertices

due to pion selfinteractions. Also LJB(Q*Q‘: E 27(3
1}
where 145 is the number of pion lines connecting vertices

(4) CZJ . .
belonging to the set % 5 is the number of pion

lines connecting vertices belonging to the set V' , and Lg
is the number of lines connecting pairs of vertices one of
which belongs to V”’ and the other to V. Since‘g"has no

external nucleon lines

NG = LgD-VEI+1 = Lo -V o s (en

From (63) and (64) we obtain

P(%,U)-: 2n = 2 Lg.(g")‘z V(ZJ(gﬂ): Z(N(g")—'f)

Thus the graphs of the type (p) are all the connected graphs

with n+i loops arising from plon—nucleon as well as pion self-

1nteractlons. The totallty of the graphs of the type (&) and
(p) constitute the class F,,

Example:

———- Y SN
__--* ’; 1
" ‘\_ s

In general the sum over E of graphs w1th non-covariant

2n
vertices is equal (apart from contributions which vanish on
the mass shell, and contributions of the type d “(o))

to the COrreSponding sum of graphs with covariant vertices.

WL S RERL R AR TR Ry




- 43

Considering the above exémple we have, on the mass shell

L, o 2 2 2 - : _ ",-
G e B+ G g

. z . . ,""‘\ -~ ‘
= (*1) [ S 4+ z.?-(-f] O_ O 12c 1)@____6 V4 £ (1) O ~) !
.ZJ 2.-, \\-"/ 2 ‘f ' ’

We turn now to the case when the given graph g has external

nucleon llnes. In order to get all the graphs, which contri-
bute to the cancellation of the non-covariant parts arising
from g , we proceed as follows. First we construct a graph 5~
obtained from g;.by closing the external nucleon lines in an
arbitrary (but admissible way) in order to form loops. Thus %
has only internal nucleon lines, the number of which is V(’(g)
Then we consider the appropriate class E;n , which contains %
We now split the nucleon loops of every element in Eﬂu} in

all possible ways, and select those graphg wihiichh nave the
samé_number of externél nuciepn lines, and the same number of
loops as in_é . These are the-gféphélfhat€wili contribute to
the cancellation of the non-covariant pgrts in 3 . Let this

set be denoterd by CYQ). We remark that the same element in

C(S) may arise from different elements in the class Zz?an)
Furthermore the sum over C of graphs with non-covariant
vertices is equal, on the mass'sheil, to the corresponding

sum of graphs with covariant verticeé (up to contributions of
the g“hO—type).

. — . v e S i e r——— —
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