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Abstract

We construct a gravity dual of a boost-invariant flow of an N = 4 SU(N) supersym-
metric Yang-Mills gauge theory plasma with chemical potential. We present both a first-
order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order
solution in parametric form in Fefferman-Graham coordinates. The resulting background
takes the form of a time-dependent AdS Reissner-Nordström-type black hole whose hori-
zons move into the bulk of the AdS space. The solution correctly reproduces the energy
and charge density as well as the viscosity of the plasma previously computed in the
literature.
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1 Introduction

In the recent years, the application of the AdS/CFT correspondence [1] to the quark-gluon
plasma (QGP) has become a very active research area. One line of research within such
holographic studies was initiated by Janik and Peschanski [2] who established a time-
dependent gravity dual of the boost-invariant flow of an N = 4 plasma. This geometry
has mainly been studied in the regime of large proper time, when the system is near
equilibrium and approaches the hydrodynamic regime (see however [3, 4]). In [5]–[12]
higher-order corrections to this late-time background were constructed and found to be
equivalent to a gradient expansion of hydrodynamics, see [13] for a review.

An important aspect of the plasma which has not yet received much attention in
a time-dependent gravity background is the effects of chemical potentials, even though
an asymptotic boost-invariant geometry (without corrections) dual to an N = 4 plasma
with U(1) R-charge is known for quite some time [14]. Also the transport coefficients
of plasmas with U(1) currents have already been holographically computed in [15]–[19]
(up to second order). Such currents are generated, for instance, shortly after the collision
of two heavy ions, when the two sheets of color glass condensates have passed through
each other and longitudinal color electric and magnetic flux tubes are produced between
the sheets [20]. This gives rise to a large topological charge density F µν

a F̃ a
µν , which in

turn leads to an imbalance of the number of quarks with left- and right-handed chirality
and chemical potentials µR and µL. In addition to the usual baryon chemical potential
µ = µR+µL

2
, one may therefore also consider a chiral chemical potential µ5 =

µR−µL

2
which

mimics the effect of an imbalanced chirality.
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In this paper we will construct a modification of the Janik-Peschanski background,
which will additionally include a time-dependent U(1) gauge field. The bulk theory will
be five-dimensional Einstein-Maxwell gravity with a negative cosmological constant and a
Chern-Simons term. As in the case without chemical potential, it appears to be difficult
to find an analytic solution for all times and we will restrict to solving the equations of
motion at late times. As a further simplification, we seek for a solution in which only the
time-component of the U(1) gauge field dual to the chemical potential is non-vanishing
(the spatial components are set to zero). Asymptotically, at large proper time τ , we may
expand the late-time geometry in powers of τ−2/3. Employing both Eddington-Finkelstein
and Fefferman-Graham coordinates we present the late-time solution up to first order (in
τ−2/3). The resulting background will essentially take the form of a time-dependent AdS5

Reissner-Nordström solution whose inner and outer horizon move into the bulk of the
AdS space. This background can be extended to a full type IIB supergravity solution
(by taking the product with an S5) and is dual to a strongly-coupled N = 4 SU(N)
supersymmetric-Yang-Mills plasma with a non-vanishing chemical potential.

2 Late-time background in Eddington-Finkelstein co-

ordinates

In this section we are interested in finding a late-time gravity dual of an expanding N = 4
viscous plasma with non-vanishing chemical potential.

The relevant five-dimensional Einstein-Maxwell-Chern-Simons action is given by

S =
1

16πG5

∫

d5x
√−g5

(

R + 12− FαβF
αβ +

4κ

3
ǫσαβγδAσFαβFγδ

)

, (2.1)

where α, β, ... denote the 5D bulk coordinates. The cosmological constant is Λ = −6 and
the Chern-Simons parameter is fixed as κ = −1/(2

√
3). Also, 1/(16πG5) = N2

c /(8π
2) for

an N = 4 plasma [15]. The corresponding equations of motion are given by the combined
system of Einstein-Maxwell equations,

Rαβ −
1

2
gαβR − 6gαβ + 2

(

Fα
γFγβ −

1

4
gαβF

2

)

= 0 , (2.2)

and covariant Maxwell equations (with Chern-Simons-term),

∇βF
βα + κǫαβγδσFβγFδσ = 0 . (2.3)

F αβ is the field strength of the U(1) gauge field Aα we wish to introduce in the background.

2.1 Boosted black brane solution

Our starting point for the construction of a time-dependent solution is the static AdS5

Reissner-Nordström (RN) black-hole solution [21]. Using ingoing Eddington-Finkelstein
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coordinates, we may write the RN metric and gauge field as

ds2 = −r2(1− m

r4
+

q2

r6
)dv2 + 2dvdr + r2d~x2 , (2.4)

A = −
√
3q

2r2
dτ̃ , (2.5)

with mass m and charge q. Here v is a time-like coordinate (not to be mixed up with the
scaling variable v introduced below), ~x are the spatial coordinates on the boundary, and r
parameterizes the holographic direction. The location of the outer horizon r+ = r+(m, q)
is given by the largest real positive root of V (r+) = r6+ −mr2+ + q2 = 0.

A charged black hole is dual to a fluid at finite temperature T and chemical potential µ.
Both the Hawking temperature and the chemical potential are given in terms of r+ by [21]

T = − 1

4π
g′vv(r+) , µ =

√
3q

2r2+
. (2.6)

These relations can be inverted to give m and q as functions of T and µ [15],

m = r4+
3γ − 1

γ + 1
, q =

2µ√
3
r2+ , (2.7)

with

r+ =
πT

2
(γ + 1) , γ =

√

1 +
8µ2

3π2T 2
. (2.8)

Following [9, 10], we now consider the corresponding five-dimensional boosted charged
black brane solution given by

ds2 = −2uµdx
µdr − r2

(

1− m

r4
+

q2

r6

)

uµuνdx
µdxν + r2Pµνdx

µdxν ,

A =

√
3q

2r2
uµdx

µ , Pµν = ηµν + uµuν , (2.9)

where uµ is the boost velocity along xµ (µ = 0, 1, 2, 3), andm = m(µ, T ) and q = q(µ, T ) as
given by (2.7). From this solution we may deduce a time-dependent solution by choosing
the frame uµ = (1, 0, 0, 0) and introducing an Eddington-Finkelstein proper time-like
coordinate τ̃ and rapidity-like coordinate y. We also substitute the asymptotic late-time
behaviour of T [22] and µ,

T = Λτ̃−1/3 and µ = µ̃0τ̃
−1/3 , Λ, µ̃0 = const. , (2.10)

into the explicit expressions for m and q. Here we assumed µ ∝ T , as one would expect
for a perfect fluid, such that the quotient µ/T = µ̃0/Λ = const. is independent of time.

4



This leads to the following metric1

ds2 = −r2(1− m(τ̃ )

r4
+

q(τ̃)2

r6
)dτ̃ 2 + 2dτ̃dr + (1 + rτ̃ )2dy2 + r2dx2

⊥ ,

A = −
√
3q

2r2
dτ̃ , (2.11)

with coefficients

m(τ̃) = b(τ̃)−4 ≡ r+(τ̃)
43γ − 1

γ + 1
, q(τ̃ ) =

2µ̃0√
3τ̃ 1/3

r+(τ̃ )
2 , (2.12)

r+(τ̃) =
πΛ

2τ̃ 1/3
(γ + 1) , γ =

√

1 +
8µ̃2

0

3π2Λ2
. (2.13)

For q = 0 (or µ̃0 = 0), this metric reduces to the uncharged (zeroth-order) late-time
solution in Eddington-Finkelstein coordinates found in [10, 11, 12] (m = b−4 = π4Λ4τ̃−4/3

there). Note that the size of the outer (and inner) horizon r+ (r−) decreases with time.

2.2 Zeroth-order solution and first-order correction

The boosted metric (2.11) is not an exact solution of the Einstein-Maxwell equations. It
is a good approximation of the boost-invariant solution at large τ̃ though. At smaller τ̃ , it
receives subleading corrections corresponding to higher-order gradient corrections to the
energy-momentum tensor and U(1) current, which will be discussed in section 2.3. These
corrections to the metric (2.11) can be found by choosing the following metric ansatz for
the time-dependent solution:2

ds2 = −r2ea(τ̃ ,r)dτ̃ 2 + 2dτ̃dr + (1 + rτ̃ )2eb(τ̃ ,r)dy2 + r2ec(τ̃ ,r)dx2
⊥ ,

A = d(τ̃ , r)dτ̃ . (2.14)

As in the case without chemical potential, we may introduce the scaling variable v = rτ̃ 1/3

and expand the metric coefficients in powers of τ̃−2/3,

ea(τ̃ ,r) = A(v) + a1(v)τ̃
−2/3 + . . . , (2.15)

eb(τ̃ ,r) = B(v) exp(b1(v)τ̃
−2/3 + . . .) , (2.16)

ec(τ̃ ,r) = C(v) exp(c1(v)τ̃
−2/3 + . . .) . (2.17)

Similarly, for the coefficient of the gauge field we choose

d(τ̃ , r) = D(v)τ̃−1/3 exp(d1(v)τ̃
−2/3 + . . .) . (2.18)

Note that the gauge field has an overall factor τ̃−1/3. The existence of a late-time scaling
variable v will be shown in section 3.2.

1There is an additional 1 in the factor (1+ rτ̃ )2 in front of dy2 which is not expected from the boosted
solution (2.11). This is to ensure an asymptotic AdS space in the limit Λ → 0, see [11] for details.

2For this particular ansatz, the Maxwell equation reduces to 1√−g
∂β(

√−gF βα) = 0. The Chern-Simons

term is absent, since only Frτ̃ and Fτ̃ r are non-vanishing.
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The system of Einstein-Maxwell equations (2.2) and Maxwell equations (2.3) can then
be solved order by order in τ̃−2/3. At zeroth-order in τ̃−2/3, we find the coefficients

A(v) = 1− m0

v4
+

q̃20
v6

, B(v) = C(v) = 1 , D(v) = −
√
3q̃0
2v2

, (2.19)

where we defined the time-independent variables

m0 = b−4
0 ≡ τ̃ 4/3m(τ̃ ) , q̃0 = τ̃ q(τ̃) (2.20)

with m(τ̃) and q(τ̃) as in (2.12). In the same way, we also define the variable

ζ+ = r+(τ̃)τ̃
1/3 (2.21)

from the (outer) horizon r+ as given by (2.13). A(v), ..., D(v) are in agreement with the
metric (2.11) deduced from the boosted black brane.

At first order in τ̃−2/3, we find the coefficients

a1(v) = −4q20
3v7

+
2m0

3v5
+

C2

v4
,

b1(v) = −2c1(v) = − 4

3v
+ C3 +

1

6

6
∑

i=1

3C1 log[v − ζi]− 4 log[v − ζi]ζ
3
i

3ζ4i −m0
,

d1(v) = − 2

3v
+

1

2
v2C1 ,

(2.22)

where ζi are the solutions of

ζ6i −m0ζ
2
i + q̃20 = 0 . (2.23)

The resulting expression for b1(v) is real, even though we need to consider all six roots
of (2.23) including the imaginary ones. Explicit expressions for these roots can be found
in appendix A. Note that one of the six roots of this equation corresponds to the outer
horizon ζ+. In Reissner-Nordström solutions there is always an upper bound on the
charge q̃0, at which the discriminant of the equation (2.23) vanishes,

q̃0 ≤ q̃extr.0 =
4

√

4

27
m3

0 . (2.24)

For larger values of q̃0, there would be a naked singularity at the origin. Remarkably, this
bound is satisfied for any value of the quotient µ̃0/Λ and saturated in the limit µ̃0/Λ → ∞,
as can be seen by substituting (2.20) with (2.12) into the bound (2.24). In other words,
there is no bound on the chemical potential. Nevertheless, let us assume that µ̃0 ≪ Λ in
order to avoid potential stability problems [23], which arise when the black hole is close
to extremality.
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We still need to fix the integration constants C1,2,3. C1 can be found by requiring
regularity of the first-order solution (2.22) at the outer horizon, i.e. C1 should be a function
of the positive root ζ+. More precisely, by choosing

C1 =
4

3
ζ3+ , (2.25)

we cancel the log[v − ζ+] terms in b1(v), which are singular at v = ζ+. The metric then
still contains singularities but they are hidden behind the outer horizon.

The constant C3 is fixed by the requirement that the metric reduces to a pure AdS
space in the limit Λ → 0. This simply sets C3 to zero,

C3 = 0 . (2.26)

There is one remaining integration constant C2 which can not be fixed at first order.
Note that, in general, at each order k there is one integration constant which can only
be fixed by regularity at order k + 1 [10], C2 in our case. Nevertheless, we may guess
the correct value for C2 by comparing with the uncharged solution [10, 11, 12], in which
C2 =

2
3
ζ3H = 2

3
π3Λ3. As for C1, it seems natural to replace the horizon ζH of the uncharged

solution by the outer horizon ζ+ of the charged solution such that

C2 =
2

3
ζ3+ . (2.27)

Later in section 2.3 we will justify this value again. It will turn out to correctly reproduce
the expected transport coefficients.

We have checked that for q̃0 = 0 (or, equivalently, µ̃0 = 0) the metric reduces to
the first-order corrected uncharged solution found in [10, 11, 12]. Moreover, for the
Kretschmann scalar we find

R2
µνρσ =

4(127q̃40 − 90m0q̃
2
0v

2 + 18m2
0v

4 + 2q̃20v
6 + 10v12)

v12
(2.28)

+
8(254q̃40 − 150m0q̃

2
0v

2 + 24m2
0v

4 + 2q̃20v
6 − 45q̃20v

3C2 + 18m0v
5C2)

v13
τ̃−2/3 + ... ,

which is only singular at v = 0. In the limit q̃0 → 0, we have m0 → π4Λ4 and R2
µνρσ

reduces to the corresponding expression in the uncharged case, see [11].
We have thus constructed a natural extension of the first-order corrected boost-

invariant plasma geometry of [10, 11, 12] to the corresponding one with non-trivial U(1)
gauge field.

2.3 Transport coefficients from the background

In the hydrodynamic approximation, the energy-momentum and U(1) current are given
by

〈Tµν〉 =
ε

3
(4uµuν + ηµν) + Πµν , 〈Jµ〉 = ρuµ +Υµ , (2.29)
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where the first terms on the right hand side correspond to a perfect fluid with chemical
potential. Since the velocity field uµ, energy density ε and charge density ρ vary slowly
with the spacetime coordinates, the energy-momentum tensor and current receive higher-
order gradient corrections given by (up to first order)

Πµν = −ησµν , Υµ = −σPµ
α∂α

µ

T
+ ξǫµ

ρστuρ∂σuτ , (2.30)

where η, σ and ξ denote the viscosity, conductivity and vorticity coefficient, respectively.
The corrections satisfy uνΥν = 0 and uνΠµν = 0. The transport coefficients of the fluid
entering these corrections were holographically computed in [15, 16, 17] (up to second
order) by slowly varying uµ, q and m in the boosted solution (2.9) with the space-time
coordinates xµ. In this way the hydrodynamic equations are obtained from AdS/CFT
without constructing an explicit solution.

In the following we will compute the first-order corrections directly from our time-
dependent solution using holographic renormalization techniques [24]. Recently, a rigorous
holographic renormalization of the Einstein-Maxwell-Chern-Simons theory, including the
full back-reaction of the gauge field, has been performed in [25]. The energy-momentum
tensor can be obtained from

〈Tµν〉 = lim
r→∞

[

N2
c

4π2
r2
(

Kµν −Kγµν − 3γµν +
1

2
Gµν

)]

, (2.31)

where γµν is the induce metric on a constant-r hypersurface, which regularizes the bound-
ary. Kµν is the extrinsic curvature of on this hypersurface, K the corresponding scalar
K = Kµνγ

µν and Gµν the boundary Einstein tensor with respect to the metric γµν . Sub-
stituting our explicit first-order solution into (2.31), we find the time-dependent energy
density3

ε(τ̃) =
ε0
τ̃ 4/3

− 2η0
τ̃ 2

, (2.32)

with

ε0 ≡
3N2

c

8π2b40
, η0 ≡

3N2
c

16π2
C2 =

N2
c

8π2
ζ3+ , (2.33)

and b0 = bτ̃−1/3 as in (2.20), see appendix B for more details on the computation. The
first term in ε(τ̃) is the zeroth-order energy density and is in agreement with that in [15],
see Eq. (20a) therein. The second term is the first-order correction and formally agrees
with that in the uncharged case [10, 11, 12] but now with a more general shear viscosity
η0 = η0(µ̃0,Λ).

4 This correction is also in exact agreement with the first-order gradient
correction to the energy-momentum tensor computed in [15]. There [15], the viscosity
was found to be

η =
s

4π
=

N2
c

8π2
r3+ =

N2
c

8π2
ζ3+τ̃

−1 , (2.34)

3Asymptotically, τ̃ can be identified with the proper time τ , τ̃ ≈ τ , see section 3.4 below.
4In order to check η0 in the limit of vanishing chemical potential, we note that the viscosity is differently

normalised in [11]. Consider η0

ε0
= 1

3
ζ3+b

4
0 → 1

3πΛ for µ̃0 = 0. This is identical with ηKMNO
0 = 1

3w found
in [11] since πΛ = w there.
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with r+ as in (2.8) (The N = 4 plasma saturates the KSS bound [26]). Here we have
already substituted the asymptotic behaviour T = Λτ̃−1/3 and r+ = ζ+τ̃

−1/3. Given that
η0 is defined as η0 = ητ̃ , we get the same η0 as in (2.33) and thus agreement with [15].

Similarly, the expectation value of the R-charge current can be computed from

〈Jµ〉 = N2
c

4π2

(

ηµρA(2)
ρ − κ

2
ǫµνσρA(0)

ν F (0)
σρ

)

, (2.35)

where A
(n)
ρ is the r−n coefficient of the large-r expansion of the gauge field Aρ. Since the

spatial components of the gauge field are zero, the second term proportional to κ is absent
in our case. Substituting the solution for the gauge field into (2.35), we read off the U(1)
charge density

ρ(τ̃ ) =
N2

c

4π2

√
3q̃0
2

1

τ̃
(2.36)

with q̃0 = qτ̃ as in (2.20). Recalling
√
3q/2 = µr2+, we find agreement with the zeroth-

order charge density in [15], see Eq. (20b) therein. The asymptotic 1/τ̃ behaviour of the
charge density was also found in [14]. There are no first-order corrections to the charge
density in our case.

More generally, for gauge fields with vanishing spatial components, there are no higher-
order gradient corrections. This follows directly from the relation uνΥν = 0. The correc-
tions Υν are orthogonal to uν and cannot come from the near boundary expansion of a
gauge field proportional to uν .

3 Late-time solution in Fefferman-Graham coordi-

nates

In this section we seek for a time-dependent solution of the Einstein-Maxwell equations
(2.2) and (2.3) in Fefferman-Graham coordinates.

3.1 General ansatz and near-boundary behaviour

In Fefferman-Graham coordinates, we choose the same metric ansatz as in the uncharged
case [2] given by

ds2 =
1

z2
(

−ea(τ,z)dτ 2 + eb(τ,z)τ 2dy2 + ec(τ,z)dx2
⊥ + dz2

)

. (3.1)

Of course, the warp factors a(τ, z), b(τ, z) and c(τ, z) will be modified due to the effects
from the back-reaction of the gauge field. As before, we set the spatial components of the
gauge field to zero and assume a non-vanishing time-component,

A0 = −d(τ, z) , Ay = Az = Ax⊥
= 0 . (3.2)
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Let us first study the general behaviour of the solution near the boundary at z = 0.
Following [3], we choose the small-z expansions

a(τ, z) = −ε(τ)z4 + a6(τ)z
6 + a8(τ)z

8 + ... ,

b(τ, z) = b4(τ)z
4 + b6(τ)z

6 + b8(τ)z
8 + ... ,

c(τ, z) = c4(τ)z
4 + c6(τ)z

6 + c8(τ)z
8 + ... (3.3)

and

d(τ, z) = ρ(τ)z2 + d4(τ)z
4 + d6(τ)z

6 + ... (3.4)

Here the lowest coefficients are determined by the energy and charge density, respectively.
For instance, solving the Einstein-Maxwell equations to lowest order in z, we obtain

b4(τ) = − (ε(τ) + τε′(τ)) , c4(τ) = ε(τ) + 1
2
τε′(τ) , (3.5)

as in [3]. There is no back-reaction of the gauge field on the geometry at this order
(ρ(τ) does neither appear in b4(τ) nor c4(τ)). Likewise, the metric does not enter the
Maxwell equations at this order. However, other than the energy density ε(τ), which can
be freely chosen (at least at early times), the charge density ρ(τ) is uniquely fixed by the
z-component of the Maxwell equations,

−2ρ(τ)

τ
− 2ρ′(τ) = 0 , (3.6)

which is solved by

ρ(τ) =
q0
τ
, (3.7)

q0 = const. Any dependence on the warp factors has dropped out in the Maxwell equations
such that ρ(τ) is independent of ε(τ). The result (3.7) for the charge density holds for all
times τ > 0. Remarkably, the charge density diverges at τ = 0.5

Solving the system of equations (2.2) and (2.3) order by order, we find the solution
up to order z8,

a(τ, z) = −ε(τ)z4 +

(

−ε′(τ)

4τ
− ε′′(τ)

12
+

10ρ(τ)2

9

)

z6

−
(

1

6
ε(τ)2 +

1

6
τε′(τ)ε(τ) +

1

16
τ 2ε′(τ)2 − ε′(τ)

128τ 3
+

ε′′(τ)

128τ 2

+
ε(3)(τ)

64τ
+

1

384
ε(4)(τ) +

ρ(τ)2

36τ 2

)

z8 + ... ,

d(τ, z) = ρ(τ)

(

z2 − ε(τ)

3
z6 +

(

2ρ(τ)2

9
− ε′(τ)

16τ
− ε′′(τ)

48

)

z8 + ...

)

(3.8)

5Generic solutions of viscous fluid dynamics are not expected to be regular in the infinite past (see
footnote 4 in [15] in this context): The volume element on the boundary at constant proper time scales
linearly with τ . Integrating the charge density (∝ 1/τ) over this volume element (∝ τ) yields a constant
total charge. Thus, even though the charge density is divergent, the total charge is regular, even at τ = 0,
ensuring the validity of the hydrodynamic approximation.
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and similar expressions for b(τ, z) and c(τ, z). These expressions for the warp factors
generalise the corresponding ones for q0 = 0 found in [3]. They describe the all-time near
boundary behaviour of the background as a function of the energy and charge density.

3.2 Late-time ansatz for the background

A full analytical all-time solution is difficult to find, even in the uncharged case (q0 = 0).
It is however possible to find a late-time solution. The general late-time behaviour of the
energy and charge densities can be found as follows (For the energy density the derivation
is very similar to that in [2, 5]). In the local rest frame the energy-momentum tensor is
diagonal with elements Tττ , Tyy and Txx = Tx2x2

= Tx3x3
and the current has only a time-

component Jτ while Jy = Jx2
= Jx3

= 0. Moreover, we assume that these components
depend only on τ .

Using proper time and rapidity coordinates in flat Minkowski spacetime, defined by
x0 = τ cosh y and x1 = τ sinh y,

ds2 = −dτ 2 + τ 2dy2 + dx2
⊥, (3.9)

the tracelessness condition T ν
ν = 0, energy-momentum conservation T µν

;ν = 0 and charge
conservation Jν

;ν = 0 have the form

−Tττ +
1

τ 2
Tyy + Txx = 0 , (3.10)

τ∂τTττ + Tττ +
1

τ 2
Tyy = 0 , (3.11)

τ∂τJτ + Jτ = 0 . (3.12)

Here we assumed that the anomaly in the U(1) current is absent, which is true for our
simple ansatz of the gauge field.

Comparing with the zeroth-order energy-momentum tensor and current given in (2.29),
in the frame uν = (1, 0, 0, 0) we obtain

ε(τ) =
ε0
τ 4/3

, ρ(τ) =
q0
τ
. (3.13)

We observe that the asymptotic charge density (3.13) is in exact agreement with the
expression (3.7) for the charge density, which is valid for all times. In other words, the
late time charge density (3.13) does not receive any higher-order gradient corrections, in
agreement with our findings in the previous section.

Substituting the asymptotic behaviour (3.13) into the general solution (3.8) and ex-
panding the resulting expressions for large τ , we get (ε0 = 1)

a(τ, z) = − z4

τ 4/3
+

2 + 30q0
2τ 4/3

27τ 10/3
z6 +

10− 27q0
2τ 4/3 − 54τ 8/3

972τ 16/3
z8 + · · · , (3.14)

b(τ, z) =
z4

3τ 4/3
− 14 + 18τ 4/3q20

81τ 10/3
z6 +

−130 + 243τ 4/3q20 − 162τ 8/3

2916τ 16/3
z8 + · · · , (3.15)

c(τ, z) =
z4

3τ 4/3
+

(

4

81τ 10/3
− 2q20

9τ 2

)

z6 +
50− 81τ 4/3q20 − 162τ 8/3

2916τ 16/3
z8 + · · · , (3.16)
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d(τ, z) =
q0
τ
z2 − q0

3τ 7/3
z6 +

(

q0
54τ 13/3

+
2q0

3

9τ 3

)

z8 + · · · . (3.17)

We find that the dominant terms at large τ scale as

an(τ)z
n ∼ zn

τn/3
, dn(τ)z

n ∼ 1

τ 1/3
zn

τn/3
, (3.18)

and similarly bn(τ)z
n and cn(τ)z

n. As in [2], it is therefore useful to introduce the scaling
variable6

v =
z

τ 1/3
. (3.19)

This suggests the following ansatz at late times,

a(τ, z) = a0(v) + a1(v)
1

τ 2/3
+ ...

d(τ, z) = τ−1/3

(

d0(v) + d1(v)
1

τ 2/3
+ ...

)

(3.20)

and similarly for b(τ, z) and c(τ, z). Inserting the ansatz (3.1) and (3.2) with (3.20) into
the combined system of Einstein-Maxwell and covariant Maxwell equations (2.2) and (2.3)
will turn the equation of motions into a system of nonlinear ordinary differential equations
for the coefficients ai, ..., di (i ≥ 0). In principle, this system can then be solved order by
order in τ−2/3.

3.3 Zeroth-order solution

In the following we restrict to give an exact solution for the zeroth-order coefficients
a0(v), ..., d0(v). The non-vanishing components of the Einstein-Maxwell equations are

(ττ) : 4e−a0(v)v3d0
′(v)2 = 6b0

′(v)− vb0
′(v)2 + 12c0

′(v)
−2vb0

′(v)c0
′(v)− 3vc0

′(v)2 − 2vb0
′′(v)− 4vc0

′′(v) ,

(yy) : 4e−a0(v)v3d0
′(v)2 = −6a0

′(v) + va0
′(v)2 − 12c0

′(v)
+2va0

′(v)c0
′(v) + 3vc0

′(v)2 + 2va0
′′(v) + 4vc0

′′(v) ,

(⊥⊥) : 4e−a0(v)v3d0
′(v)2 = −6a0

′(v) + va0
′(v)2 − 6b0

′(v) + va0
′(v)b0

′(v) + vb0
′(v)2

−6c0
′(v) + va0

′(v)c0
′(v) + vb0

′(v)c0
′(v) + vc0

′(v)2

+2va0
′′(v) + 2vb0

′′(v) + 2vc0
′′(v) ,

(zz) : 4e−a0(v)v3d0
′(v)2 = 6a′0(v) + 6b′0(v)− va′0(v)b

′
0(v)

+12c′0(v)− 2va′0(v)c
′
0(v)− 2vb′0(v)c

′
0(v)− vc′0(v)

2 ,

(zτ) : 6a′0(v)− 4b′0(v)− va′0(v)b
′
0(v) + vb′0(v)

2 + 4c′0(v)
−2va′0(v)c

′
0(v) + 2vc′0(v)

2 + 2vb′′0(v) + 4vc′′0(v) = 0 .
(3.21)

6With hindsight, this justifies the introduction of the scaling variable v = rτ̃1/3 in the previous section
for the late-time solution in Eddington-Finkelstein coordinates.
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At zeroth order, the z- and τ -components of the Maxwell equation both lead to the same
equation,

(2 + va0
′(v)− vb0

′(v)− 2vc0
′(v)) d0

′(v) = 2vd0
′′(v) . (3.22)

The other components are zero.
These equations can be simplified a lot. Note that only four out of the five plus one

equations are independent. We also find from a linear combination of the ττ - , zz- and
zτ -components of the Einstein-Maxwell equations that b0(v) = c0(v). Next, the Maxwell
equation (3.22) can be solved for d0(v),

d0(v) = S4

v
∫

0

ṽe
1

2
(a0(ṽ)−b0(ṽ)−2c0(ṽ)) dṽ, (3.23)

where S4 is some integration constant which will be fixed below.
Substituting this back into the Einstein equations, the two remaining independent

equations are given by the ττ - and zz-components. The first one (ττ) is an equation for
b0(v),

3vb′′0(v) + 3v(b′0(v))
2 − 9b′0(v) + 8q20v

5e−3b0(v) = 0 . (3.24)

while the second one (zz),

a′0(v) = −v
(b′0(v))

2 + 2b′′0(v)

2− vb′0(v)
, (3.25)

can be used to find a0(v) as soon as a solution for b0(v) is known. Our primary goal will
be to solve (3.24) for b0(v). a0(v) and d0(v) can then easily be obtained from (3.25) and
(3.23).

Later, in order to fix some integration constants, we will need the asymptotic solution
close to the boundary which can be expanded in powers of v as (here we present it up to
O(v10))

a0(v) = −ε0v
4 +

10q0
2

9
v6 − ε20

18
v8 − 2q0

2ε0
45

v10 + · · · ,

b0(v) = c0(v) =
ε0
3
v4 − 2q0

2

9
v6 − ε20

18
v8 +

14q0
2ε0

135
v10 + · · · ,

d0(v) = q0v
2 − q0ε0

3
v6 +

2q30
9

v8 +
q0ε

2
0

9
v10 + · · · .

(3.26)

It shows us that the solution exists and is uniquely fixed by parameters ε0 and q0. Com-
paring the expression (3.23) with the boundary behaviour (3.26), we may immediately fix
the integration constant S4 as

S4 = 2q0 . (3.27)
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We now solve (3.24) for b0(v). By setting

b0(v) = log(β(v)) , (3.28)

we simplify this equation to the form

vβ ′′ − 3β ′ +
8

3
q20v

5β−2 = 0 , (3.29)

which turns out to be the modified Emden-Fowler equation [27]. Its solution can be
written in the parametric form

β(v) = pS2
3 exp







S2

p
∫

p+

(

p̃2

4
+ S1 +

q20
3

1

p̃

)−1/2

dp̃







(3.30)

and

v = S3 exp







S2

2

p
∫

p+

(

p̃2

4
+ S1 +

q20
3

1

p̃

)−1/2

dp̃







. (3.31)

Here S1, S2, S3 and p+ are some integration constants. One can in principle absorb p+ in
S3 but we separate them for the moment. There are two useful expressions for β(v) and
β ′(v),

β(v) = pv2 (3.32)

and

dβ(v)

dv
=

2v

S2

√

p2

4
+ S1 +

q20
3

1

p
+ 2pv . (3.33)

From (3.26), we get the near-boundary conditions

β(v) = 1 +O(v4) , β ′(v) =
4ε0
3

v3 +O(v5) , (3.34)

which will be used to fix the integration constants S1 and S2.
Comparing (3.32) with (3.34), we find that near the boundary v should behave as

v ≈ 1√
p
, (3.35)

which is small if p is large. This should be compared with the general large-p behaviour

v = S3 exp







S2

2

p
∫

p+

(

p̃

2
+ · · ·

)−1

dp̃







≈ const. pS2 . (3.36)
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This fixes S2 as

S2 = −1

2
. (3.37)

Substituting (3.35) into (3.34), we extract the expected asymptotics for β ′(v) as a
function of p,

β ′(v) ≈ 4ε0
3

1

p3/2
. (3.38)

Generically, at large p, (3.33) is approximated by

β ′(v) = −4v

√

S1 +
p2

4
+ · · ·+ 2pv ≈ −4S1

p3/2
, (3.39)

which fixes S1 as

S1 = −ε0
3
. (3.40)

Remarkably both constants S1 and S2 do not depend on q0.
Let us now relate S3 and p+ by setting S3 = v+ with v+ ≡ v(p+). v+ will be fixed by

the requirement that the outer horizon of the geometry is located at v = v+. Formally,
the horizon v+ is defined as the largest zero of the denominator on the right hand side of
(3.25),

2− v+
β ′(v+)

β(v+)
= 0 . (3.41)

This can be rewritten in terms of p+. Using (3.33), (3.32) and the expressions for S1 and
S2, we get the condition

p3+ − 4ε0
3

p+ +
4q20
3

= 0 , (3.42)

which can be solved by Cardano’s formula. The largest solution of this equation is7

p+ =

(

2

3

)1/3




(

−q20 +

√

q40 −
16

81
ε30

)1/3

+

(

−q20 −
√

q40 −
16

81
ε30

)1/3


 . (3.43)

The last step is to fix v+ in (3.31). This can be done by substituting the p+ solution
(3.43) (and all the constants S1,2,3) back into (3.31) and expand v(p) for large p. In this
way we determine the constant on the right hand side of (3.36) as a function of v+. Since
this constant must be one, we get

v+(ε0, q0) = exp







1

2
lim
p→∞





p
∫

p+

dp̃
√

4U(p̃)
− log p











, (3.44)

7 In order to extract the roots correctly we use the following standard convention:

a+a− =
(

2

3

)4/3
ε0, where a± =

(

−q20 ±
√

q40 − 16

81
ε30

)1/3

.
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where U(p̃) is defined as

U(p̃) =
p̃2

4
− ε0

3
+

q20
3p̃

. (3.45)

For q0 = 0, the integral can be performed analytically and v+ reduces to the well-known
result for the horizon [2],

v+(ε0, q0)|q
0
→0

= 4

√

3

ε0
. (3.46)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
q00.0

0.5

1.0

1.5

2.0

2.5

3.0
v+

Ε0=1.0Ε0=0.7Ε0=0.1 Ε0=0.3

Figure 1: The outer horizon v+ = v+(ε0, q0).

For general q0, this integral can in principle be written as a lengthy expression of
elliptic integrals of the first and third kind, F (φ, k) and Π(n;φ|m), respectively, which we
will not do here. Instead, in Fig. 1 we show the dependence of v+ on the charge q0 for
some particular choices of ε0. We note that for each ε0 there is some maximal allowed
value of the charge at which the black hole becomes extremal. This value can be found
from the condition that the discriminant ∆ of (3.42) vanishes,

∆ =

(

−4

9
ε0

)3

+

(

−2

3
q20

)2

= 0 , (3.47)

which leads to the bound

q0 ≤ qextr.0 =
2

3
ε
3/4
0 . (3.48)

In Fig. 2 we present some plots of the exact solution and compare them with the power
expansions (3.26). For the particular choice ε0 = 1 and q0 = 0.6 . qextr.0 the difference
between both curves is clearly visible. The function a0(v) by definition has a singularity
on the horizon, as can be seen in Fig.2(a). The other functions b0(v), c0(v) and d0(v) are
regular on the horizon and their power expansions are valid up to v . 1. Note also that
d0(v) grows quadratically near the boundary, which reflects the Coulomb law in D = 5
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0.5 1.0 1.5
v

-8

-6

-4

-2

0

a0HvL

(a)

0.0 0.5 1.0 1.5
v0.0

0.5

1.0

1.5

2.0

b0HvL, c0HvL

(b)

0.0 0.5 1.0 1.5
v0.0

0.2

0.4

0.6

0.8

1.0

d0HvL

(c)

Figure 2: Exact solutions (red curves) and their near-boundary power expansions (blue
curves) for ε0 = 1 and q0 = 0.6 . qextr.0 . The black dashed lines correspond to the horizon
v+(ε0, q0) ≃ 1.685.

dimensions. Near the horizon it approaches some finite constant value µ0 related to the
chemical potential as

µ = A0|boundary − A0|horizon =
d0(v+)− d0(0)

τ 1/3
=

µ0

τ 1/3
, (3.49)

which confirms the scaling behaviour (2.10).

In summary, the zeroth-order solution b0(v) is given by

eb0(v) = pv2+ exp
(

− 1

2

∫ p

p+

U(p̃)−1/2dp̃
)

,

v = v+ exp
(

− 1

4

∫ p

p+

U(p̃)−1/2dp̃
)

, (3.50)

with v+ and U(p̃) given by (3.44) and (3.45), respectively. a0(v) and d0(v) are obtained
by substituting b0(v) in (3.25) and (3.23).

3.4 Fefferman-Graham vs. Eddington-Finkelstein coordinates

The zeroth-order solution in Fefferman-Graham (FG) coordinates can be related to that
in Eddington-Finkelstein (EF) coordinates by the coordinate transformation

τ̃ = τ , r =
1

z
eb(τ,z)/2 . (3.51)

Transforming the Eddington-Finkelstein metric (2.14)-(2.18) and comparing the result
with the power expansion (3.26), we find

q0 =

√
3

2
q̃0. (3.52)
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Comparing also the bound (3.48) with that in Eddington-Finkelstein coordinates given
by (2.24), we find some relation between ε0 and m0 using (3.52):

ε0 =
3

4
m0 . (3.53)

For q0 = 0 this relation can be easily checked by our solution with the general form of the
metric in [2, 5, 12]. In this case, we find that our solution (3.50) reduces to

eb0(v) = 1 +
ε0
3
v4 , (3.54)

and similarly a0(v), such that

ds2
∣

∣

q0=0
=

1

z2

[

dz2 − (1− m0

4
v4)2

1 + m0

4
v4

dτ 2 + τ 2
(

1 +
m0

4
v4
)

dy2 +
(

1 +
m0

4
v4
)

dx2
⊥

]

. (3.55)

We also note that the transformation (3.51) relates the outer horizons, ζ+ in EF
coordinates and p+ in FG coordinates, as ζ+ =

√
p+. The chemical potential µ0 can

therefore be written as a function of ε0 and q0. Using (2.12) and (3.52), we find

µ0(ε0, q0) = µ̃0 =

√
3

2

q̃0
ζ2+

=
q0

p+(ε0, q0)
. (3.56)

This dependence is shown in Fig. 3 for some particular values of ε0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
q00.0

0.2

0.4

0.6

0.8

1.0

Μ0

Ε0=1.0

Ε0=0.7

Ε0=0.1

Ε0=0.3

Figure 3: The chemical potential µ0 = µ0(ε0, q0). The dotted line corresponds to the
upper bound for µ0.

Using this expression with the definition (3.42) for p+ and substituting there the
maximal value for q0 (3.48) we find the following bound for the chemical potential:

µ0(ε0, q0) ≤ µextr.
0 =

(

3

2
qextr.0

)1/3

= ε
1/4
0 . (3.57)

This is not in contradiction with our earlier statement that the disappearance of the
horzion does not impose a bound on µ̃0/Λ. Note that if we identify ε0 with m0 as in
(3.53), then ε0 explicitly depends on µ̃0 = µ0 and therefore (3.57) is not a bound on µ̃0/Λ.
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4 Conclusions

We constructed a natural extension of the late-time boost-invariant background found
in [2] (and [5]–[12]) to a background dual to an expanding N = 4 plasma with chemical
potential. The solution we found depends on two parameters, the chemical potential µ̃0

and temperature scale Λ, which are encoded in the mass parameter m0 and charge q̃0 of a
time-dependent AdS Reissner-Nordström-like solution. In Eddington-Finkelstein coordi-
nates the first-order solution is given by the expansion (2.14)–(2.18), with the zeroth-order
and first-order coefficients given by (2.19) and (2.22), respectively. We showed that the
viscosity of the boundary theory computed from the time-dependent solution is in agree-
ment with that in [15]. We also constructed a zeroth-order solution in Fefferman-Graham
coordinates, which we presented in parametric form, see the general ansatz (3.1) and (3.2)
with (3.50). FG coordinates may be the preferred choice, when strings [28] or branes
[29, 30] are embedded into the geometry. Finally, we found the coordinate transformation
which maps the zeroth-order solution in FG coordinates to that in EF coordinates.

We argued in several ways that the charge density behaves like τ−1 at all times. Unlike
the energy density, it can not be chosen freely at early times. This is basically because
the charge density behaves like τ−1 at large τ , see e.g. (2.36) or (3.13), and higher-order
corrections are absent. It also follows directly from the equations of motion, see (3.7)
which holds for all times. Naive extrapolation to early times shows a singularity in the
gauge field at τ = 0. However, this does not signal a breakdown of the hydrodynamic
approximation since the total charge is constant at all times and therefore regular even
at τ = 0 (see footnote 5 on p. 10).

A possible application of the background, when appropriately modified and extended,
could be the chiral magnetic effect (CME) [31]. The CME states that, in the presence
of a magnetic field and non-zero chiral chemical potential, an electromagnetic current of
the type J ∝ µ5B is generated in the plasma. The CME is a non-equilibrium process
and requires the introduction of gauge fields with (time-dependent) spatial components.
For instance, for an electric field E, one needs to introduce the spatial component A3 =
A3(τ, r) with boundary condition A3 → τE at r → ∞. The time-dependence of the gauge
field reflects non-equilibrium physics and requires the back-reaction on the geometry,
unless one keeps it infinitesimal [32] (see also [33, 34] for an AdS/CFT approach to the
CME). In this case one would also obtain higher-order corrections to the charge density
due the effects of the Chern-Simons term, which are absent in our solution. An attempt
to include an E field in the dual of an electrified plasma (without chemical potential) has
been made in [17].

Finally, it would be interesting to find a numerical solution of our background à la

Chesler and Yaffe [4] which would hold beyond the hydrodynamic regime.
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Appendix

A Roots of (2.23)

For completeness, we present the six roots of (2.23) in this appendix. The equation (2.23)
is depressed bicubic in ζi and, therefore, can be solved by Cardano’s formula. It has six
solutions, which can be expressed as

ζi ∈
{

±√
α+ + α−,±

√

−α+ + α−

2
− i

α+ − α−

2

√
3,±

√

−α+ + α−

2
+ i

α+ − α−

2

√
3

}

,

(A.1)

where

α3
± = − q̃20

2
±
√

q̃40
4

− m3
0

27
. (A.2)

Here we use the standard convention α+α− = m0/3. One can recognize the outer horizon
ζ+ ≡ r+τ

1/3 in the first pair of solutions and the inner horizon ζ− ≡ r−τ
1/3 in the second

one.

B The energy-momentum tensor (2.31)

In this appendix we introduce the geometric quantities used for the computation of the
energy-momentum tensor (2.31). Here we consider an r = const. four-dimensional surface
with induced metric γµν on it:8

γµν = gµν − nµnν , (B.1)

where gµν is the 5-metric and nµ is the outward-pointing unit normal vector to the surface.
For our ansatz (2.14) it is given by

nµ =

(

0, 0, 0, 0,
1√−gτ̃ τ̃

)

, (B.2)

where gτ̃ τ̃ = −r2ea(τ̃ ,r). The indices of the induced metric can be raised and lowered by
means of the 5-metric gµν ,

γµ
ν = γµαg

αν . (B.3)

The surface extrinsic curvature is given by

Kµν ≡ −1

2
((4)∇αnβ +

(4)∇βnα) = −1

2
γ α
µ γ β

ν (∇αnβ +∇βnα) , (B.4)

8Here and after all Greek letters denote a 5-index.
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where we put (4) to covariant derivatives associated with the induced metric, while the
derivatives on the right-hand side are defined with respect to the 5-metric. We also define
a scalar K = Kµνg

µν = Kµνγ
µν , which is used in the Gibbons-Hawking-York part of

(2.31).
The Einstein tensor on the surface is defined as

Gµν = (4)Rµν −
1

2
γµν

(4)R , (B.5)

where the 4-tensors can be expressed through the 5-tensors (defined with respect to gµν)
by the Gauss equations:

(4)Rα
µβν = Rκ

λρσγ
α
κγµ

λγβ
ργν

σ +Kα
βKµν −KµβK

α
ν , (B.6)

(4)Rµν = (4)Rα
µβνγ

β
α = γκ

λγ ρ
µ γ σ

ν Rκ
ρλσ +KKµν −KµαK

α
ν , (B.7)

(4)R = (4)Rµνγ
µν = R− nαnβ Rαβ +K2 −KαβK

αβ , (B.8)

where the raising/lowering rule is given by Kν
µ = Kναγ

αµ = γναK
αµ.
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