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We study the electric conductivity of a quenched SU (2) lattice gauge theory in both confinement
and deconfinement phases in the presence of constant external electromagnetic field. The con-
ductivity is extracted from the current-current correlation functions using the Kubo formulas and
the Maximal Entropy Method. We find that at small but nonzero temperatures in the confinement
phase the external magnetic field induces nonzero electric conductivity along the direction of the
magnetic field, transforming the system from an insulator into an anisotropic conductor. In the
deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic
field.
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1. Introduction

The so-called Chiral Magnetic Effect (CME) [1] in hadronic matter has attracted recently a
lot of attention. This is the name for the phenomenon of the generation of electric current along
the direction of the external magnetic field in the background of topologically nontrivial gauge
field configurations. Experimentally, the effect manifests itself as the dynamical enhancement
of fluctuations in the numbers of charged hadrons emitted above and below the reaction plane
in off-central heavy-ion collisions. The STAR collaboration at RHIC claimed the experimental
observation of this effect.

The signatures of the CME have been also studied on the lattice, and the evidence for enhanced
charge fluctuations in magnetic field has been found [2, 3]. In [2] it was found that the fluctuations
of the electric current along the magnetic field are strongly enhanced as compared to the fluctuations
of current in the perpendicular directions. This conclusion was also confirmed by an analytical
calculadtion in the instanton gas model [4].

As is well known, the fluctuational spectra of the electromagnetic current can be related to
the conductivity of the media via the fluctuation-dissipation theorem. The low-frequency part of
the spectrum corresponds to the standard ohmic DC conductivity [5]. In this paper we calculate
the tensor of electric conductivity in SU (2) lattice gauge theory with quenched chirally invariant
quarks [6] and study its volume dependence. We find that in the magnetic field the vacuum state of
this theory acquires electric conductivity in the direction of the field, thus becoming an anisotropic
conductor [7].

Electric conductivity can be calculated from the correlator of vector currents ji (x)= q̄(x)γiq(x):

Gi j (τ) =
∫

d3~x〈 ji
(
~0,0
)

j j (~x,τ)〉 (1.1)

According to the fluctuation-dissipation theorem, let us define the spectral function ρ (w)
which corresponds to the correlator (1.1) [8]:

Gi j (τ) =
+∞∫
0

dw
2π

K (w,τ)ρi j (w) , (1.2)

K (w,τ) =
w

2T
cosh

(
w
(
τ− 1

2T

))
sinh

( w
2T

) , (1.3)

where T is the temperature. This definition differs from the standard one with K (w,τ)=
cosh(w(τ− 1

2T ))
sinh( w

2T ) ,

but has an advantage that the value of the conductivity is related to the value of the spectral density
ρi j (w→ 0) rather than to its slope and is thus numerically more stable [8]. The Kubo formula for
the electric conductivity then reads [5, 8]:

σi j = lim
ω→0

ρi j (ω)
4T

. (1.4)

The correlator (1.1) is measured on an equilibrium ensemble of SU (2) gauge fields. Since
the origin of charge fluctuations in CME is associated with chirality fluctuations [1], we use the
overlap lattice Dirac operator D with exact chiral symmetry [6] to measure the vector currents. We
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consider the two-current correlator in the meson channel, which is represented in terms of Dirac
propagators in a fixed Abelian and non-Abelian gauge fields and is then averaged over non-Abelian
gauge fields:

〈 q̄(x)γiq(x) q̄(y)γ jq(y)〉=

=
∫

DAµ e−SY M[Aµ ] Tr
(

1
D +m

γi
1

D +m
γ j

)
, (1.5)

where SY M
[
Aµ

]
is the lattice action for non-Abelian gauge fields Aµ . Uniform magnetic field is

added to the Dirac operator by substituting su(2)-valued vector potential Aµ with u(2)-valued one
Aµ i j → Aµ i j + 1/2 Fµν xνδi j. In order to account for periodic boundary conditions we introduce
an additional boundary twist for fermions [2, 9]. We use the tadpole-improved Wilson-Symanzik
action on the lattice (see, e.g., the expression (1) in [10]). To obtain the Dirac propagator, we imple-
ment the Shifted Unitary Minimal Residue method (SHUMR) described in [11]. The parameters
of equilibrium gauge field ensembles which we use are summarized in Table 1. Uniform magnetic
field is introduced into the Dirac operator as described in [2].

β a, fm N3
s ×Nt T/Tc #conf

3.2810 0.102 143×14 0.43 30
3.2810 0.102 163×16 0.38 30
3.3555 0.089 163×16 0.43 30
3.3250 0.095 163×6 1.12 30

Table 1: Lattice parameters used in our simulations. The critical temperature of the confinement-
deconfinement phase transition in quenched SU (2) lattice gauge theory is Tc = 313.(3)MeV [12].

The current-current correlators at different temperatures and magnetic fields are plotted on
Fig. 1. The data are for the 144 lattice with spacing a = 0.102 f m (left) and for the 163×6 lattice
with spacing a = 0.095 f m (right). For the latter lattice the temperature is T = 350MeV > Tc and
the theory is in the deconfinement phase.

Without the magnetic field the correlators have a typical exponential decay in the confinement
phase. In the deconfinement phase the decay is significantly slower for all Gii (τ). In a magnetic
field with the strength qB = (0.63 GeV)2, in the confinement phase the correlator Gzz (τ) decays
much slower and is significantly larger than zero for all τ , much like in the deconfinement phase.
On the other hand, for the perpendicular components of the current Gxx (τ) and Gyy (τ) the cor-
relators decay somewhat quicker than in the zero field case. In the deconfinement phase all the
correlators are practically unaffected by the magnetic field.

In order to extract the spectral functions (1.2) from the correlators (1.1), we apply the Maximal
Entropy Method [8, 13, 14]. Our analysis is similar to that of [8, 14], with the default model
m̄(w) = m̄0 (b+aw) [8]. Some spectral functions at different temperatures and magnetic fields are
shown on Fig. 1.

In the absence of magnetic field below the deconfinement phase transition, the spectral func-
tion has a distinct peak near w≈ 1GeV , which corresponds to the mass of the ρ meson in quenched
SU (2) lattice gauge theory [14, 15]. The width of this peak in quenched approximation is a lattice
artefact [14], and should decrease for finer and larger lattices. The spectral function in the limit
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Figure 1: The correlator (1.1) in the confinement (left) and in the deconfinement phases (right) at T =
350MeV .
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Figure 2: On the left: Spectral functions ρi j (w) in the confinement and deconfinement phases. On the right:
electric conductivity as a function of external magnetic field in the confinement and deconfinement phases.
The points for σzz and σxx at T > Tc coincide within error range.

of zero frequency, ρi j (0), is compatible with zero. Correspondingly, in the absence of external
magnetic field the vacuum of quenched QCD does not conduct DC current, in agreement with the
previous lattice results [7, 13, 14]. When the external magnetic field is applied, the peak becomes
more pronounced and the spectral density at small frequencies becomes nonzero. For other com-
ponents of ρi j (w) nothing changes qualitatively, but the peak which corresponds to the ρ-meson
becomes somewhat smaller and shifts slightly to larger w. The conductivity remains equal to zero
within error range. Thus when the external magnetic field is applied to quenched vacuum of SU (2)
lattice gauge theory, it acquires nonzero conductivity, but only in the direction of the magnetic field.

In the deconfinement phase, the spectral function is nonzero at w = 0 already at zero magnetic
field and has a smooth peak near w ≈ 2GeV. Thus the deconfined phase of the quenched SU (2)
lattice gauge theory is a conductor [7, 8, 13]. Since the shape of the correlator Gi j (τ) is practically
unaffected by the magnetic field, the spectral function ρi j (w) and the conductivity σi j are also
independent of the magnetic field.
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The dependence of the electric conductivity σi j on the external magnetic field is illustrated
on Fig. 2 both below and above the deconfinement phase transition. In the deconfinement phase
the temperature is T = 350MeV. The value of the conductivity was extracted from the value of
the spectral function at w = 0 using (1.4). In the confinement phase and at zero magnetic field
the conductivity is zero within error range. As the magnetic field is turned on, the conductivity
σzz in the direction of the magnetic field grows, while all other components of σi j remain equal to
zero within error range. In the deconfinement phase the conductivity is isotropic and is practically
independent of the magnetic field. One can not exclude, of course, that there is a weak anisotropy,
which cannot be seen at the small number of configurations that we have. It should be also noted
that in our simulations the value of conductivity σ = 15± 2MeV at T = 350MeV > Tc is still
much smaller than the results obtained in [8, 13] in quenched SU (3) lattice gauge theory with
light staggered fermions. This difference is likely to be an artefact of a quenched theory, since in
this case different probes of the confinement-deconfinement phase transition might give different
transition temperatures. In particular, while in quenched SU (2) lattice gauge theory the Polyakov
loop goes to zero at Tc = 313.(3)MeV [12], the chiral condensate is not zero above this temperature
[16]. The situation might be similar for the insulator-conductor transition, which in the quenched
case might be replaced by a soft crossover with much smaller conductivity at T > Tc.

The transport coefficients typically have rather strong dependence on lattice parameters. To
ensure that the nonzero conductivity is not a finite-volume artefact, we have also performed the
simulations at different lattice volumes and lattice spacings (see Table 1). The values of conductiv-
ity σzz for different lattice parameters are plotted on Fig. 3. One can see that as we go to finer and
larger lattices, the conductivity does not change within statistical errors.
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Figure 3: On the left: electric conductivity in the direction of external magnetic field σzz for different
lattice parameters. On the right: a comparison of current-current correlators (1.1) calculated at 143×14 and
203×14 lattices at equal values of the lattice spacing and magnetic field strength

√
qB = 0.45GeV .

Strictly speaking, the expressions (1.1) and (1.4) are only valid at finite temperature, while we
work with the 144 lattices which are symmetric in all space-time directions and hence correspond
to zero temperature in the standard lattice lore. However, one can still apply the expressions (1.1),
(1.4) with some small but finite temperature T = (Nta)−1, since real lattices have finite extent Nt

in time direction. In this case one should make sure that the effects of the finite spatial volume
in the nonlocal observables such as the current-current correlator are insignificant. To this end,
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we plot the correlators (1.1) calculated on the 143× 14 and 203× 14 lattices at magnetic field
strength

√
qB = 0.45GeV on Fig. 3. The correlators calculated on different lattices indeed agree

within error bars for the currents both parallel and perpendicular to the magnetic field. Thus for
the correlators under consideration finite-volume effects seem to be negligible. Correspondingly,
the results presented here and in [7] refer to the case of small but finite temperature (below the
deconfinement phase transition) rather than to exactly zero temperature.

Thus a strong magnetic field can turn a vacuum state of non-Abelian gauge theory from in-
sulator into an anisotropic conductor. According to some models, this new state can be even a
superconductor above some critical magnetic field [17]. Such transitions are often encountered
in condensed-matter physics. The deconfined phase of non-Abelian gauge theory, at least in our
quenched SU (2) case, is an isotropic conductor, and the conductivity is practically independent of
the magnetic field. Instanton models also suggest that at higher temperatures the instanton contri-
bution to the CME becomes negligible [4].

Finally, let us comment possible experimental indications of anisotropic conductivity of hadronic
matter. The v.e.v. 〈 jk (x) jl (y)〉 is related to the polarization of soft virtual photons and, hence, to
the angular correlations of soft dilepton pairs emitted in the collision process [13, 18, 19]. Accord-
ing to the results presented above, the conductivity tensor can be represented as σi j ∼ Bi B j. The
dilepton emission rate in the dilepton center of mass frame is [18, 19]:

R
V
∼
∫ d3 p

E (p)

(
~B2−

(
~B ·~n

)2
)
∼ sin2 (θ) (1.6)

where~n is the unit vector in the direction of the momentum of one of the leptons and θ is the angle
between~n and the direction of the magnetic field. Therefore, there should be more dileptons in the
direction perpendicular to the reaction plane, which can be observed as a negative elliptic flow for
soft photons and leptons.
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