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Metastability bounds on flavour-violating trilinear soft terms in the MSSM
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The vacuum stability bounds on flavour-violating trilinear soft terms are revisited from the view-
point that one should not ban a standard-model-like false vacuum as long as it is long-lived on
a cosmological timescale. The vacuum transition rate is evaluated numerically by searching for
the bounce configuration. Like stability, a metastability bound does not decouple even if sfermion
masses grow. Apart from being more generous than stability, the new bounds are largely inde-
pendent of Yukawa couplings except for the stop trilinears. With vacuum longevity imposed on
otherwise arbitrary LR insertions, it is found that a super flavour factory has the potential to probe
sparticle masses up to a few TeV through B and τ physics whereas the MEG experiment might
cover a far wider range. In the stop sector, metastability is more restrictive than any existing ex-
perimental constraint such as from electroweak precision data. Also discussed are dependency on
other parameters and reliability under radiative corrections.

I. INTRODUCTION

Flavour physics is an important means to test any the-
oretical description of elementary particles. Among nu-
merous proposals, the one still most compelling would be
the Minimal Supersymmetric Standard Model (MSSM)
that offers solutions to problems not addressed by the
Standard Model (SM). In the MSSM, the Lagrangian
has soft supersymmetry breaking terms. Among them,
the scalar mass and the trilinear terms are two rep-
resentative sources of flavour/CP violation apart from
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Un-
less tuned in a particular way, they could add to an ex-
isting flavour-changing-neutral-current (FCNC) process
such as B → Xsγ or create a new one, e.g. µ → eγ,
through loop corrections. In this way, flavour physics
provides an invaluable input to the construction of an
underlying theory that implements spontaneous super-
or flavour symmetry breaking.

For the same reason, flavour physics has been a tradi-
tional tool to unveil supersymmetry. Now that the Large
Hadron Collider (LHC) has started its successful opera-
tion, the significance of this role has diminished. Nev-
ertheless, there are at least two areas in which flavour
studies could make contributions. The first is to scruti-
nise the flavour structure of newly discovered particles.
This is a complement to the LHC that is less sensitive
to extra flavour/CP violation. The second is to continue
the search for supersymmetric particles. This should be
vital particularly in a scenario where sparticle masses are
around the LHC reach or beyond. In either case, the
crucial quantity is the size of a flavour-violating term in
the Lagrangian, often represented by the dimensionless
quantity δ to be defined in the next section.

According to the chirality structure, a mass insertion
(MI) can be classified as either chirality-preserving or
chirality-flipping. In a high sparticle mass region, the
latter type becomes generically more important than
the former [1]. Taking for example the ratio of the
one-loop B → Xsγ amplitudes caused by the LR and
the LL insertions, one finds a quantity proportional to

(M3/mb)[(δ
d
23)LR/(δ

d
23)LL] (see e.g. Ref. [2]). It shows

that the relative contribution from the LR insertion
grows linearly as the gluino mass M3. This is one of
the reasons why the subject of this study is the trilinear
terms.

The obvious problem is that one needs to get an idea of
the flavour structure of particles that might yet be found.
A popular strategy is to employ a model or ansatz that
leads to a particular pattern of the soft terms. There
are many works in this approach, and this article is not
going to be another. The plan here is the following. The
most optimistic scenario is presumed in which any LR
insertion can take an arbitrary value as long as it stays
within existing experimental and theoretical limits. Us-
ing this input, one can estimate the maximum possible
new signal in an FCNC process. Then it is compared
with sensitivities of running or forthcoming experimen-
tal searches.

As for the input mentioned above, one would learn
nothing new if only the present FCNC limits were used.
One needs information from outside flavour physics.
There are such theoretical bounds that arise from vac-
uum stability. If a trilinear term is too large, the
MSSM scalar potential develops a charge-and/or-colour-
breaking (CCB) vacuum deeper than the the standard-
model-like (SML) local minimum [3, 4] or an unbounded-
from-below (UFB) direction in the field space [4]. Most
notably, the conceptual design report of a super flavour
factory (SFF) has made an assessment of its ability to re-
construct a LR squark insertion, imposing these bounds
[5].

However, it is questionable whether the vacuum stabil-
ity is an essential requirement in particular when one is
performing an analysis of generic soft terms that is sup-
posed to be objective. More sensibly, one could use the
lifetime of the SML vacuum as the criterion. This view-
point would not make sense if the universe were driven
away from there in its history. In the case of a squark
direction, its temperature-dependent mass [6] may defer
the formation of a CCB minimum until the electroweak
phase transition has happened [7, 8]. Supersymmetry
breaking by inflation provides a more general mechanism
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to lift flat directions so that relaxation to the symmetric
phase can take place [9]. The bottom line is that there
seems to be no definite reason to preclude a lower energy
CCB state just for its existence. In this approach, there
have been attempts to obtain a viable parameter space
of the flavour-conserving stop trilinear [7, 10] or the stau
trilinear coupling [11], the sparticle [12, 13] or the Higgs
soft masses [14], or messenger couplings for gauge medi-
ation [15]. This work is an application of the same idea
to the flavour-violating trilinear couplings.

The rest of the article begins with an abridged account
of theoretical backgrounds in section II. In section III,
more practical details of the analysis method are given.
The metastability bounds thus obtained are presented in
section IV in which their behaviours are also explained.
Section V is devoted to an application of the findings
to flavour physics. Finally, the article is summarised in
section VI.

II. THEORY

For concise presentation, the following notations shall
be employed. The species of a given matter field is de-
noted by f which can be one of e, d, u, standing for
charged leptons, down-, and up-type quarks, respec-
tively. A field symbol without the superscript c refers
to a component of the SU(2) doublets, L = (ν, e), Q =
(u, d), Hd = (H0

d , H
−
d ), Hu = (H+

u , H
0
u). Also, another

redundant symbol for the down-type Higgs doublet is in-
troduced, i.e. He ≡ Hd.

The scalar potential of the MSSM is in the form

V = VD + VF + Vsoft, (1)

where the D-, the F -, and the soft term contributions
read

VD =
1

2

∑
a

g2a

(∑
α

φ†αT
aφα

)2
, (2)

VF =
∑
α

∣∣∣∣ ∂W∂φα
∣∣∣∣2 , (3)

Vsoft = L̃†i (M
2
L)ij L̃j + ẽc†i (M2

ec)ij ẽ
c
j

+ Q̃†i (M
2
Q)ij Q̃j + d̃c†i (M2

dc)ij d̃
c
j + ũc†i (M2

uc)ij ũ
c
j

+ 2 Re
[
Hd L̃iA

e
ij ẽ

c
j +Hd Q̃iA

d
ij d̃

c
j −Hu Q̃iA

u
ij ũ

c
j

]
+m2

Hd
|Hd|2 +m2

Hu |Hu|2 + 2 Re
[
bHuHd

]
, (4)

with the superpotential

W = Hd Liλ
e
ij e

c
j +HdQiλ

d
ij d

c
j −HuQiλ

u
ij u

c
j

+ µHuHd.
(5)

The index α in (2) and (3) runs over each superfield in
the model and φα is its scalar component.

For discussion of supersymmetric flavour violation, it
is convenient to use the language of mass insertion ap-
proximation [16]. In order to specify the families of a
given species f , one should take the super-CKM basis

that leads to the diagonal Yukawa matrix, λfij = λfiδij
with positive eigenvalues. In this article, a LR mass in-
sertion is related with a trilinear coupling by

(δfij)RL =
Afji〈H0

f 〉
(M2

av)fji
, (6)

(M2
av)fij ≡

1

2

[
(M2

f )ii + (M2
fc)jj

]
. (7)

Note that this definition of average mass is different from
that in Ref. [2], i.e. the geometric mean. Nevertheless,
this variance does not matter since the soft scalar masses
shall be assumed to be nearly degenerate. A trivial but

useful identity obeyed by the LR insertions is (δfij)LR =

(δfji)
∗
RL, which follows from the Hermiticity of a sfermion

mass matrix.
It should be instructive to review the stability bounds

on flavour-violating trilinear couplings [4], as the poten-
tial along a CCB direction helps to understand qualita-
tively many of the properties of the tunnelling bounds.
Suppose that the scalar fields take on values such that∣∣H0

f

∣∣ =
∣∣f̃i∣∣ =

∣∣f̃ cj ∣∣ = a, (8)

for one particular set of f , i, and j, where i, j = 1, 2, 3,
are family indices with respect to the super-CKM basis.
The other fields are all assumed to vanish. Then one
can check that VD = 0 and the lowest potential energy
subject to the above condition is

VL.E. =
[
2 (M2

av)fij +m2
Hf

+ |µ|2
]
a2

− 2
∣∣Afij∣∣ a3 +

(
λ2fi + λ2fj

)
a4.

(9)

Due to the cubic term in a, a minimum can appear that
is deeper than the SML vacuum unless∣∣Afij∣∣2 < λ2fmax(i,j)

[
2 (M2

av)fij +m2
Hf

+ |µ|2
]
. (10)

By imposing this inequality, one can avoid a CCB mini-
mum.

This theoretical bound does not decouple even if
sfermions grow heavier. On the contrary, it gets stronger.
This property is most easily demonstrated in terms of a
δ parameter. Using (6), one can translate (10) into the
form

∣∣(δfij)LR∣∣ < mfmax(i,j)

[
2 (M2

av)fij +m2
Hf

+ |µ|2
]1/2

(M2
av)fij

, (11)

where mfk is the mass of fermion fk. This bound scales
as the inverse power of the average sfermion mass. This

behaviour is at variance with an FCNC limit on |(δfij)LR
∣∣

that grows as sfermions become heavier. Another point
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to notice is that the above restriction is independent of
tanβ. As will be shown, this is not the case with a
metastability bound.

In addition to the CCB minima, UFB field directions
can appear due to large trilinear couplings [4]. If one
is worried only about the existence of a deeper point in
the field space, both types of constraints should be taken
into account. As far as a tunnelling process is concerned,
however, a UFB direction is most likely irrelevant for the
following reasons. As one traces this direction starting
from the SML vacuum, the potential barrier is generically
thicker than along a CCB direction. Moreover, there is
a section of path in which VD does not vanish thereby
making the barrier much higher as well. Therefore, a
tunnelling process prefers a path close to a CCB direction
that obeys D-flatness all the way.

Even though expressed in a nice analytic form, the role
of a CCB condition as a phenomenological constraint is
rather unclear. Instead, the lifetime of the SML vacuum
shall be required to be long enough. In a semiclassical
approximation [17], the decay probability of a metastable
vacuum per unit time per unit volume is given by

Γ/V = A exp(−S[φ]), (12)

where A is a prefactor that needs to be guessed, S is the
Euclidean action, and φ is its bounce with O(4) symme-
try [18]. This symmetry allows one to use a single coor-
dinate, i.e. the radial distance ρ, with respect to which
the action can be written

S[φ(ρ)] = 2π2

∫ ∞
0

dρ ρ3
[∣∣∣∣dφdρ

∣∣∣∣2 + V (φ)

]
. (13)

Note that the normalisation of the kinetic term is that
of complex fields, as φ is intended to be eventually the
MSSM scalars. The field configuration φ(ρ) is a station-
ary point of S[φ(ρ)] subject to the boundary conditions,

φ(ρ→∞) = φ+,
dφ

dρ
(ρ = 0) = 0, (14)

where φ+ is the false vacuum.
In the context of the MSSM, φ represents the vector

of scalar fields in the model, and φ+ is the metastable
SML vacuum. One can evaluate the action by replacing
V in (13) with the scalar potential (1) plus a constant
term such that V (φ+) = 0.

On the other hand, the prefactor A in (12) is prac-
tically impossible to compute. Based on dimensional
grounds, it is guesstimated to be the fourth power of
the mass scale appearing in the problem. In this work,
A = (100 GeV)4 shall be used with which one can esti-
mate the smallest acceptable action. The lifetime of the
whole observable universe staying at the SML vacuum
is roughly V/(Γt30) where t0 ≈ 10 Gyr is the age of the
universe. One can keep this longer than t0 by demanding
that [10]

S > 400. (15)

The above value of A may be regarded a little small in
view of the sfermion masses in the TeV range. Choosing a
small A implies a conservative parameter space exclusion.
Nonetheless, the constraint is much less sensitive to the
variation of A than of S. If desired, one could translate
the multiplicative uncertainty of A into the additive one
of S by taking the logarithm. For instance, taking A
instead to be the fourth power of the reduced Planck
scale would push up the lower bound on S by 150.

Another type of uncertainty arises from radiative cor-
rections. It is important to estimate their effects espe-
cially because the numerical analysis uses the tree-level
potential. One can implement the one-loop correction to
the tunnelling rate simply by using the one-loop effective
potential

V1L = V +
1

16π2
V (1) + Ω, (16)

instead of the tree-level potential V in (13). The constant
Ω should be adjusted so that V1L(φ+) = 0. The one-loop

correction in the DR
′

scheme is [19]

V (1) =
∑
n

(−1)2sn(2sn + 1)
m4
n

4

(
ln
m2
n

Q2
− 3

2

)
, (17)

where m2
n is the field-dependent mass-squared eigenvalue

of the n-th degree of freedom with spin sn. The renor-
malisation scale Q should be chosen so that it minimises
V (1). This means that the optimal scale is a function of
φ. Taking this scale would be satisfying but technically
involved. For numerical computation, the scale shall be
set equal to the common diagonal component of the soft
sfermion masses. This is to be supplemented with error
estimation. Fortunately, the bounce consists of φ limited
within a range not too far from the sfermion mass scale
[7]. Therefore, V (1) does not diverge even if the CCB
minimum is taken to infinity.

One could estimate the uncertainty due to ignoring
loop corrections to the action by evaluating the shift
made by one-loop,

S1L[φ1L]− S[φ], (18)

where S1L is given by (13) with V replaced by the real
part of the one-loop effective potential V1L in (16) [20],
and the functional argument of each action is its bounce.
One can approximate the difference (18) by

∆S ≡ S1L[φ]− S[φ]

= 2π2

∫ ∞
0

dρρ3 Re[∆V (φ(ρ))],
(19)

where

∆V = V1L − V, (20)

keeping only the leading order term in ∆V . Note that
∆V is not simply equal to V (1)/(16π2) + Ω as may be
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suggested by (16) since the parameters entering V and
V1L in (20) have different values. In particular, those pa-
rameters pertinent to the electroweak symmetry breaking
must deviate. Otherwise it would be impossible for both
V and V1L to result in realistic Higgs vacuum expectation
values.

III. PROCEDURE OF ANALYSIS

The method of numerical analysis is spelt out in detail.
The same procedure is repeated for each of the species
f = e, d, u and for each of the six flavour-off-diagonal
trilinear couplings.

The families of the scalars f̃ and f̃ c are defined in
the super-CKM basis where the corresponding Yukawa

matrix λfij is diagonal. The CKM mixing is neglected so

that both λu and λd are diagonal at the same time. This
simplifies the computation as the flavour-mixing Yukawa
couplings are dropped from the superpotential. They are
of O(Vtsλt) ∼ λ2 or less, and presumably are not very
important in view of the fact that a coupling of similar
order λb ∼ 0.1 does not make a sizeable difference as will
be demonstrated later in this article.

As the focus is on flavour-violation by the trilinear cou-
plings, the soft masses shall be assumed to be in a uni-
versal form,

(M2
f )ij = (M2

fc)ij = m2
f̃
δij . (21)

Among the trilinear couplings, one Afij with i 6= j is
scanned with the step size of 0.1 TeV while all the other
components are kept zero. The diagonal, of no interest,
is set to zero. One might well imagine a situation where

more trilinears are turned on in addition to Afij . The
additional couplings do not block an existing tunnelling
path but may open more [21]. In this sense, the bounds
obtained in this work should be regarded as generous.

The phase of a single Aeij can be rotated away by
a lepton-flavour number transformation. Similarly, the
phase of Adij or Auij may be absorbed into the squark fields
by ‘quark-family number’ transformation in the limit of
no CKM mixing that is taken here.

The gauge and the Yukawa couplings are set at the

renormalisation scale Q = mf̃ . Therefore, Afij presented

later are also supposed to be at this scale. The other
parameters shall be set as follows unless stated otherwise:

tanβ = 10, µ = 0.5 TeV, mH0 = 0.5 TeV,

mq̃ = ml̃ = 3 TeV.
(22)

The Higgs mass parameters, m2
Hd

, m2
Hu

, and b, are deter-
mined from these by the tree-level electroweak symme-
try breaking condition. More parameter space is also ex-
plored by varying each of the above. A remark is in order
regarding the sign of µ. The only non-negligible term af-

fected by this in the scalar potential is 2 Re[µHdQ̃
∗
3λtũ

c∗
3 ].

Therefore, negating µ can be compensated for by flipping

the sign of either Q̃3 or ũc3. Note that this can be done
without touching the trilinear term in question. In the
case of a flavour-conserving trilinear, by contrast, the
signs of Au33 and µ cannot be disentangled [21].

For faster computation, every scalar field is constrained
to be real-valued. This is not completely general in that
for a given set of real-valued {φα},

min
0≤θα<2π

V (eiθαφα) ≤ min
θα=0,π

V (eiθαφα), (23)

even if all the parameters in V are real. One may worry
that there can be a complex-valued path in the field space
that costs less potential energy. Nevertheless, it can be
checked that the equality holds as long as {φα} stays
sufficiently close to one of the directions in (8), and thus
the potential is dominated by a few terms including the
activated trilinear term in particular. It turns out that
the numerical bounce does reveal this property.

Under the same condition, one can show that it costs
less potential energy for the squark colour directions to
be aligned. This justifies retaining only one colour com-
ponent of each squark assuming that the others are all
zero.

As the problem is concerned with a flavour-off-diagonal
coupling, one should put at least two families of scalar
fields into action as variable degrees of freedom in ad-
dition to the Higgs doublets. For the lepton sector, the

following 10 variables are used: Hd, Hu, L̃i, ẽ
c
i , where the

index i runs over the two families involved. Right-handed
sneutrinos are not taken into account. The quark sector

needs two more variables: Hd, Hu, Q̃i, d̃
c
i , ũ

c
i .

The bounce is computed numerically. The Euclidean
action (13) is approximated by a function of the fields
that are put on the discretised ρ axis. Each lattice point
has an independent set of the aforementioned 10 or 12
degrees of freedom. One can find a stationary point con-
strained by the boundary conditions (14) using a method
derived from that in Ref [22]. The original series of steps
had to be modified since it is not suitable for a prob-
lem in which the true vacuum is very far from the false
vacuum in comparison to the thickness of the potential
barrier. This happens if the Yukawa couplings in (9) are
small which is mostly the case except for λt. The details
of the revision are presented in a separate article [23].
With this method, one does not have to know where the
true minimum is, or even whether or not the potential is
bounded from below. The price to pay is that one needs
to minimise a function obeying constraints given in im-
plicit forms. This can be done for instance by using the
Ipopt package [24].

At the first stage of the computation, one needs to
choose an initial field configuration. The above method
needs a trajectory in the field space that connects φ+ to
any point φe over the barrier such that V (φe) = V (φ+).
To find a φe, a point leaves the SML vacuum and hikes
along a valley in the direction of increasing |φ| until it
goes down and touches the initial altitude.
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FIG. 1. Upper bounds on flavour-violating Af
ij as functions

of mf̃ for f = e, d, u and i, j = 1, 2, 3. They correspond to
the following choice of parameters: tanβ = 10, µ = 0.5 TeV,
mH0 = 0.5 TeV. Each group of four vertical lines shares the
same value of mf̃ given by the average of their horizontal
coordinates.

Finally, the SML vacuum lifetime is compared with
the age of the universe using (15), to accept or reject the
given parameter set.

Apart from the scanning procedure described above,
error estimation is performed for a few selected cases by
evaluating the approximate one-loop effect (19). The pa-
rameters entering the effective potential (16) are gener-
ated by softsusy [25] with options set for one-loop Higgs
masses and tadpoles.1 Unlike the tree-level potential,
V1L depends on the gaugino masses as well. They are
picked up so that M1,2,3 = mf̃ for order-of-magnitude
estimation.

IV. UPPER BOUNDS AND
INTERPRETATIONS

Requiring that the bounce action obey the condi-
tion (15), one gets the upper bounds on the off-diagonal
trilinear couplings shown in Fig. 1. It turns out that
the six components of Aeij have almost the same bounds
(falling within 100 GeV from one another), and therefore
a single vertical line is used to display them all together.
The same is true of the six components of Adij . As for
Auij , the upper bounds highly depend on whether either
of the family indices is 3 or not. The bounds on Au12 and
Au21 can be displayed together, and likewise the other four
couplings.

One can notice several features on the plot. First of
all, the upper bound on an off-diagonal A grows as the

1 There is a bug in softsusy version 3.1.7 that discards even one-
loop tadpoles when the option numRewsbLoops is set to 1. This
problem does not appear with the default setting.

Panel in Figs. 2 (a) Ae
23 (b) Au

12 (c) Au
23

ST 781 763 749

SD 12 22 41

SF 39 116 529

Ssoft −446 −524 −947

SV −395 −385 −377

S 386 378 372

∆S −6 8 11

TABLE I. The Euclidean action S decomposed into parts
coming from the kinetic term, VD, VF , Vsoft, and V , respec-
tively labelled ST , SD, SF , Ssoft, and SV , in each of the three
cases shown in Figs. 2. The last row shows the estimated
one-loop effect.

corresponding sfermion mass is increased. The depen-
dence turns out to be almost linear although not exactly.
Second, the bound is symmetric under the interchange
of the two family indices. Third, the bound on Aeij is
independent of i and j as mentioned above. This fam-
ily independence is discovered also in Adij . This property
contrasts with the Yukawa dependence of the stability
bounds (10). Fourth, the bound on Aeij is nearly the

same as that on Adij . Fifth, the bound on Au12 is slightly

lower than that on Ae,dij . Sixth, the bound on Au13,23 is
higher than that on Au12 and also tend to be higher than
the other bounds for mf̃ & 1 TeV. Interpretations of

these observations shall be given in what follows.

For understanding the results, it should be instruc-
tive to examine contributions from different components
of the scalar potential separately. Three instances are
shown in Figs. 2, one with lepton flavour violation (LFV)
and the other two with up-type quark flavour change.
The figure for the down-quark sector is nearly identical
to Fig. 2(a) and therefore has been omitted. Each plot
displays the differential action that arises from each of
VD, VF , Vsoft, and their sum denoted by V , as one moves
along the trajectory of the bounce profile. The horizontal
axis is the distance traversed in the field space starting
from the point of ρ = 0. Every curve arrives on the right
at the false vacuum. Therefore, the area under (or over)
each curve is the action coming from the given potential
component. Also shown is the (positive-definite) differ-
ential action from the kinetic term. Obviously, the total
Euclidean action is given by the sum of the area under
the light grey curve and the area of the light grey region
(yellow online). The parameters used in Figs. 2 are as
in (22) besides the trilinear couplings indicated in the
caption. Each parameter set leads to the action S ≈ 400,
that is, the A coupling is around the metastability limit.

On each plot, the area under the VD curve is tiny com-
pared to that under V . This means that VD does not play
a very important role in determining the action among
the different components of the total scalar potential V .
This point appears more concrete in Table I which lists
the numerical value of each area. Examining the field
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FIG. 2. Contributions of different potential components to the Euclidean bounce action. The nonzero trilinear coupling is (a)
Ae

23 = 4 TeV, (b) Au
12 = 3.8 TeV, or (c) Au

23 = 5.3 TeV. The (signed) light grey areas (yellow online) display the action coming
from the total potential energy density V that is the sum of VD, VF , and Vsoft, represented by the dashed (green online), the
dot-dashed (blue online), and the solid grey (red online) curves, respectively. A black dotted curve is the estimated one-loop
correction. The kinetic term is also displayed as a light grey curve.

configuration, one can indeed find that the trajectory of
the solution almost follows one of the D-flat directions
in (8). The same holds in every case considered in this
work in either the lepton or the quark sector. This al-
lows one to understand the qualitative features of the
metastability bound on a trilinear coupling by looking at
the potential (9). One property of VL.E. is that it is sym-

metric under the interchange of i and j if both (M2
av)fij

and Afij are symmetric. This makes it understandable

that the bound on Afij is symmetric. However, this ap-
parent symmetry stems from the assumed form of the
sfermion mass matrix in (21). Nevertheless, one could
make a straightforward guess at the behaviour for a more
general mass matrix: the bound should be a function of

(M2
av)fij . This property has been verified numerically.

The second smallest contribution comes from VF . It is
totally negligible in a case for Aeij or Adij . This explains

why the upper bounds on Aeij and Adij nearly coincide
in Fig. 1. They do not depend on i or j, and are even
independent of whether they are for charged sleptons or
down-type squarks. The only differences between the
two species are their gauge couplings provided that their
masses and trilinear couplings are equal and that their
Yukawa couplings are ignored. Since both SF and SD are
negligible, the Yukawa and the gauge couplings do not
make a noticeable difference between the bounds on Aeij
and Adij . This should be clear from the potential in (9)
with the Yukawa terms discarded. As for Au12, SF is not
as small but still minor compared to Ssoft. Its bound in
Fig. 1 is quite close to but a little stronger than those on

Ae,dij , although the charm Yukawa is small as well. This
split stems from the fact that Au12 is associated with the

up-type Higgs unlike Ae,dij . This point shall be elaborated

on later.

A trilinear coupling including a stop is allowed to be
substantially larger than Au12 even though they involve
the same Higgs field, as can be found in Fig. 1. The
reason is the large top Yukawa coupling. It is evident
in (9) that Yukawas lift the scalar potential as quartic
couplings, and so they slow down the tunnelling process
if they are large. Therefore, large λt implies weaker re-
strictions on Au13,23. The nontrivial role of λt manifests
itself in both Fig. 2(c) and the rightmost column of Ta-
ble I which show that VF is not negligible as for the other
A terms.

The last element to be explained in Table I is the esti-
mate of one-loop effects, which was defined in (19). The
differential version is plotted in Figs. 2. The magnitude
of ∆S turns out to be roughly 3% of the tree-level S in
the case of Au23 and is less significant in the other two. By
full computation of the one-loop bounce φ1L, the validity
of ∆S as an approximation of the one-loop shift in (18)
has also been checked. The latter quantity is indeed of
the same order as ∆S for any case shown in the table.
In combination with the smallness of ∆S, this should a
posteriori support the reliability of an analysis employing
the tree-level effective potential.

Nevertheless, one should like to translate the variation

in S into that in the maximum Afij . In any case, there are
non-vanishing uncertainties coming from loop corrections
as well as from the ignorance of the prefactor. Also,
one could choose to impose a lower limit on S slightly
different from that in (15). All these variances could be
encoded as a constant added to S. Then, its influence
on a trilinear coupling can be found in Figs. 3. If one
allows for a change in S by a factor between 0.6 and 1.6

for instance, the bound on Afij is altered by +30
−20%, and
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FIG. 3. The plots show how the upper bounds change depending on the condition imposed on S. On each curve, the value of
Af

ij leads to the corresponding S shown on the right, where f = e, d, u and i, j = 1, 2, 3. The following values of parameters
were used: tanβ = 10, µ = 0.5 TeV, mH0 = 0.5 TeV.

each metastability bound presented later is weakened or
strengthened by the same fraction.

As is clear in Fig. 1, the tunnelling process gets slower
as the squark and the slepton masses increase since they
lift the potential (9) quadratically. By the same token,
one may envisage a similar effect from higher masses of
Higgs fields, as either of them also acquires a vacuum ex-
pectation value along the CCB direction (8). Concern-
ing the Higgs bosons, the parameters directly linked to
the tunnelling are not the soft masses appearing in (9)
(which can be tachyonic) but the physical mass eigen-
values which describe the positive curvature of the po-
tential around the SML vacuum. In the MSSM, one can
specify the tree-level Higgs potential by choosing tanβ,
mH0 , and µ. Once the former two parameters fix the
complete Higgs mass spectrum, varying µ makes no dif-
ference therein. The dependence on each of these three
parameters shall be discussed below.

First, mH0 and the sfermion masses are varied while
the other parameters are fixed according to (22). The re-
sults are set out in Figs. 4 as grey contours. As expected,
enlarging mH0 does provide more room for the trilinear
couplings. However, the effect is significant only on those
involving the down-type Higgs, displayed in Fig. 4(a).
Contours of maximum Auij in Figs. 4(b) and (c), do not
exhibit a noticeable dependence on mH0 . One can un-
derstand this by considering Higgs mixing. The real part
of each Higgs field can be expressed as (see e.g. Ref. [26])

ReH0
u ≈ vu + (sinβ h0 − cosβ H0)/

√
2, (24a)

ReH0
d ≈ vd + (sinβ H0 + cosβ h0)/

√
2, (24b)

in terms of the mass eigenstates. The Higgs mixing angle
α has been approximated by β − π/2 since mH0 � mZ

in most of the parameter space considered in this work.

For tanβ = 10, H0
u and H0

d are mostly h0 and H0, re-
spectively. Since the mass of the lighter CP -even neutral
Higgs boson is always restricted aroundmZ , the potential
curvature along the H0

u direction stays essentially con-
stant in comparison to the large variation in the squark
mass. This property should remain true at least qualita-
tively for any tanβ bigger than a few.

A metastability bound should be easier to use if one
has its algebraic expression. Within the parameter region
shown in the figures, the bounds can be approximated by
the empirical inequalities,

Ae,dij < 1.61mf̃ + 0.59mH0

− 0.45m0.93
f̃

m0.07
H0 + 37 GeV,

(25a)

Au12,21 < 1.27mq̃ − 44 GeV, (25b)

Au13,31,23,32 < 1.76mq̃ − 32 GeV. (25c)

These are the least-squares fits to the numerical data
using the form, amf̃ + bmH0 + cmp

f̃
m1−p
H0 + d. They are

plotted as dashed black curves in Figs. 4 which reveal that
the fits are indeed faithful approximations of the data.
These inequalities should remain nearly the same even
for different values of tanβ and µ since the bounds are
insensitive to them as will be shown below. It should also
be remembered that m2

f̃
should be replaced by (M2

av)fij
if the diagonal soft masses are highly nondegenerate.

Next, the dependence on tanβ is illustrated in Figs. 5.
There are two origins of change as tanβ varies. One is
the Higgs mixing mentioned above. This works in the
same way on all the species that couple to each type of
Higgs. As tanβ increases, H0

d in (24b) acquires more frac-
tion of the heavier Higgs which impedes the tunnelling

caused by Ae,dij . This effect appears as the slight rise of

the Ae,d12 points for higher tanβ in Figs. 5(a) and (b). For
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FIG. 4. Contours of upper bounds on flavour-violating Af
ij on the (mf̃ ,mH0) plane for f = e, d, u and i, j = 1, 2, 3. The

grey contours [which look wiggly in Fig. (a)] are based on the data from grid scanning and the dashed black curves are the
least-squares fits. They correspond to the following choice of parameters: tanβ = 10, µ = 0.5 TeV.
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following choice of parameters: µ = 0.5 TeV, mH0 = 0.5 TeV, mf̃ = 3 TeV. Each pair of vertical lines shares the same tanβ.

Auij , the change is in the opposite way but too small to
be visible on the points for Au12 in Fig. 5(c). Remember
that increasing mH0 renders the tunnelling less probable.
Therefore, the influence of Higgs mixing should be en-
hanced by higher mH0 . The other origin is the variation
of Yukawa couplings, which dominates the tanβ depen-
dence of the trilinear couplings involving the third family.
A higher value of tanβ implies larger down-type quark
and charged lepton Yukawas. This gives rise to slower
tunnelling as explained before. This splits to some ex-
tent the upper bounds that were close together for lower
tanβ. The up-type Yukawas do not change as much as
the down-type ones, and this leads to the milder depen-
dence of Au13,23 in Fig. 5(c). After all, the alteration is at

most 10%, found in Ad23, as tanβ is increased from 3 to

30, which does not seem very significant.

Finally, one should discuss the dependency on µ. As
already stated, the Higgs mass eigenvalues and mixing
angle do not rely on µ after tanβ and mH0 have been
fixed. Therefore, the metastability bounds should remain
the same while µ is altered. This has been checked by
trying two values of µ of different orders of magnitude:
0.5 TeV and 3.0 TeV. For each µ, mH0 has been scanned
from 0.5 TeV to 5.0 TeV, with the other parameters set
as (22). At these parameter points, the two choices of µ
do lead to identical upper bounds.
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Mode Current bound Future bound

µ→ eγ 1.2 · 10−11 [27] 1 · 10−13 [28]

τ → eγ 3.3 · 10−8 [29] 2 · 10−9 [5]

τ → µγ 4.4 · 10−8 [29] 2 · 10−9 [5]

TABLE II. Present and future experimental sensitivities to
the branching ratios of the lepton flavour violating decay
modes that probe (δeij)LR.

MI Current bound Future bound

(δd12)LR,RL 1.4 · 10−3 [32]

(δd13)LR,RL 2.9 · 10−2 [32, 33] 2 · 10−3 [5]

(δd23)LR,RL 1.4 · 10−2 [32] 5 · 10−3 [5]

(δu12)LR,RL 1.6 · 10−2 [32]

TABLE III. Experimental sensitivities to flavour-violating
mass insertions in the squark sector for mq̃ = M3 = 1 TeV.
Expectations of future searches are quoted if available.

V. IMPLICATIONS FOR FLAVOUR PHYSICS

Having obtained the limits on flavour-violating trilin-
ear couplings, one should consider what consequences
they have for physical processes. In what follows, the
metastability bounds shall be contrasted with other exist-
ing constraints. They are based primarily on new physics
searches within FCNC processes, of which prospects at
running and planned experiments are also discussed.
Other indirect bounds are compared together such as
those coming from the vacuum stability, the ρ parameter,
and naturalness of the CKM matrix. In this section, the
degree of flavour-violation is expressed as a δ parameter,
defined in (6), that is normally used for flavour physics.

The strongest experimental constraints on the LR
mass insertions in the slepton sector come from radiative
LFV decays. The restrictions on their branching ratios
are collected in Table II. The current upper limits are all
at 90% confidence level (CL). The quoted future sensi-
tivity to µ→ eγ is anticipated at 90% CL from the MEG
experiment [28]. According to Ref. [5], a SFF is expected
to provide the displayed 90% CL bounds on τ → eγ and
τ → µγ, whereas Ref. [30] projects the τ → µγ bound of
3 · 10−9.

Each bound is translated into that on the correspond-
ing mass insertion and presented below. For this, one
should choose the other parameters on which the LFV
decay rate depends. In the case of (δeij)LR or (δeij)RL with
j > i, fixing the bino mass M1 is enough to determine
B(lj → liγ) in the mass insertion approximation [31]. As
a demonstration, it shall be assumed that M1 = ml̃.

In the squark sector, there are multiple observables
that restrict a single mass insertion. These constraints
are combined to give the 95% CL upper bound on the
modulus of each mass insertion in Table III. Also pre-
sented are the moduli that in the future can be recon-
structed at the level of 3σ. They are based on the esti-

mates in Ref. [5]. An estimate in this reference is in the
form of a range and the values in Table III are those at
the lower ends, i.e. the most optimistic ones. The limit
depends on the squark and the gluino masses as it arises
from gluino-squark loops. The numerical values shown
in the table are for mq̃ = M3 = 1 TeV, and they are pro-
portional to the squark mass as long as mq̃/M3 is fixed.
This ratio shall be maintained in the following plots.

The FCNC constraints presented below should be re-
garded as rough estimates. They rely on parameters that
do not affect a metastability bound. Already at one-
loop level, they depend on gaugino masses which have
been chosen somewhat arbitrarily as stated above. More-
over, chirally-enhanced higher order corrections can sig-
nificantly strengthen or weaken a flavour constraint [34].
These corrections shall be ignored that depend on yet
more parameters.

Given the aforementioned experimental information,
one could start the comparative analysis by examining
the charged leptons. In Figs. 6, the vacuum bounds are
displayed along with the present and the projected sensi-
tivities of FCNC searches. The vacuum stability border
is given by (11), above which the corresponding trilin-
ear term gives rise to tunnelling. If one abandons the
requirement that the SML vacuum be absolutely stable,
then the limit is relaxed up to the line above which the
false vacuum decays too fast in comparison to the age of
the universe. As the sfermion masses increase, both the
stability and the metastability bounds become stronger.
However, the latter depends on tanβ unlike the former.
As Fig. 5(a) shows, maximum Aeij allowed by the vac-
uum lifetime is insensitive to tanβ. Therefore, (6) im-
plies a tighter restriction on (δeij)LR for higher tanβ. In
contrast, the FCNC constraints loosen as the sfermions
grow heavier.

More specifically, Fig. 6(a) is concerned with the µ→ e
transition. Within the displayed range, the tunnelling
process does not play a significant role in comparison to
the µ→ eγ decay. The MEGA experiment has ruled out
more region than metastability so long as ml̃ . 20 TeV
for tanβ = 30. There is even no probability of tunnelling
for up to ml̃ ≈ 3 TeV, beyond which the SML vacuum
lifetime is still permitted to be either finite or infinite.
Allowing for an arbitrary mass insertion consistent with
each vacuum bound, one can estimate what slepton mass
range may be accessible through µ → eγ. The stability
condition sets the higher end around 10 TeV. If one opens
up the possibility of a long-lived false vacuum, the terri-
tory extends up to ml̃ ∼ 60 TeV where the metastability
bound for tanβ = 30 crosses the MEG sensitivity. As
is clear in the plot, this crossing point depends on tanβ,
and is about 100, 200 TeV for tanβ = 10, 3, respectively.
Above this mass scale, the mass insertion is suppressed
too much to be observed. The metastability bound has
been numerically computed only up to ml̃ = 5 TeV, and
the preceding estimates are based on linear extrapolation.

In a similar way, one can interpret Fig. 6(b) which
shows the 1–3 and the 2–3 mixings at the same time.
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FIG. 6. Comparison of constraints on (δeij)LR. The thick black lines with negative slopes are bounds from the requirement
that S > 400, for three values of tanβ represented by different dashing styles. The thick grey lines are the stability bounds.
The thick dark grey lines (blue online) with positive slopes are the current bounds from flavour-changing processes. The thin
dotted lines (blue online) are anticipated experimental bounds.

Obviously, they are associated with τ → eγ and τ →
µγ, respectively. In contrast to µ → eγ, their current
experimental bounds are less powerful and leave ample
room for vacuum metastability even for slepton masses
as low as 500 GeV. If one were to insist on permanent
stability, it could be an explanation for why LFV in τ
decays has not been discovered yet. This requirement
would rule out even the possibility of observing τ → eγ
or τ → µγ at a SFF, provided that they arise solely from
the trilinear terms and that ml̃ & 600 GeV. Adopting
the vacuum longevity constraint instead makes the LFV
search more promising. A SFF might be able to find
the virtual effect of a LR insertion involving the third
family if sleptons are lighter than 1.0, 1.6, 2.7 TeV for
tanβ = 30, 10, 3, respectively. If one wishes to use the
projected τ → µγ bound of 3 · 10−9 from Ref. [30], one
may shift up the corresponding line in the plot by the
factor of

√
3/2.

Next, the down-type quark sector is investigated. The
structure of each of Figs. 7 is the same as a leptonic one.
The left panel is devoted to the s → d transition. The
kaon physics constraint is weaker than the stability con-
dition but stronger than metastability up to the mass
scale around a few TeV. Again, the crossing position
varies according to tanβ which can be found in Fig. 7(a).
If squarks are heavier than this mass scale, (δd12)LR,RL
are bounded to be smaller than the sensitivity of present
measurements. However, one should keep in mind that
kaon dynamics is plagued by large theoretical uncertain-
ties and so is the experimental limit.

The mass insertions relevant to the bottom quark are
shown in Fig. 7(b). The features of the 1–3 and the 2–
3 sectors are similar, with differences arising from the
FCNC constraints. The current B physics data does not
give much information with respect to whether or not

a vacuum decay can be triggered by the related trilin-
ear term. As long as one stays within the stable region,
the scope of a SFF stops around 1.4 TeV via the 1–3
mixing and a little lower via 2–3. If one goes beyond
the stability limit, the reach of new physics search in
b → d transitions is raised up to 2.1, 3.4, 5.9 TeV for
tanβ = 30, 10, 3, respectively. The respective b → s
counterparts are 1.3, 2.2, 3.7 TeV. As before, these lim-
its are set by the age of the universe. Remember that
there are hadronic uncertainties in heavy flavour physics
as well albeit less than in the kaon sector. Also, the future
bounds in Table III have rather big errors. In particular,
new physics is much easier to unveil if there is an ex-
tra complex phase, since CP violation is less affected by
hadronic uncertainties in general. These points should
be taken into account when one interprets the above nu-
merical results.

Before moving on to the up sector, it should be ap-
propriate to recall the Higgs mass dependence. The pre-
ceding graphs correspond to the choice mH0 = 0.5 TeV.
As demonstrated in Fig. 4(a), higher mH0 makes bigger

(δe,dij )LR acceptable. This can extend the boundary of
reachable mass upwards.

Finally, Figs. 8 are allocated to flavour violation of the
up-type squarks. One finds an outstanding distinction
between the metastability bounds shown here and in the
preceding plots, i.e. the way they depend on tanβ. This
is because the up-type squarks couple to Hu unlike the
fields considered above. According to (6), the bound be-
comes looser as tanβ increases although the dependence
is much milder.

Regarding the 1–2 sector, there is a constraint from a
flavour-changing process. In Fig. 8(a), the D0–D0 mixing
bound is plotted. It does not forbid the SML vacuum
having a finite lifetime, but does restrict the tunnelling
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FIG. 7. Comparison of constraints on (δdij)LR. The thick black lines with negative slopes are bounds from the requirement
that S > 400, for three values of tanβ represented by different dashing styles. The thick grey lines are the stability bounds.
The thick dark grey lines (blue online) with positive slopes are the current bounds from flavour-changing processes. The thin
dotted lines (blue online) are anticipated experimental bounds.
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FIG. 8. Comparison of constraints on (δuij)LR. The thick black lines are bounds from the requirement that S > 400, for three
values of tanβ represented by different dashing styles. The thick grey lines are the stability bounds. The thick dark grey line
(blue online) in panel (a) is the current bound from D0–D0 mixing. In panel (b), the thick dark grey lines (blue online) are
the bounds from the ρ parameter.

rate below the acceptable level for mq̃ . 4 TeV. Beyond
this mass scale, the metastability bound is stricter than
the current data.

There is not much experimental information on the
LR insertions related to the top squark. In particular,
no FCNC constraint is available yet. Instead, Fig. 8(b)
employs another indirect limit coming from electroweak
precision observables. It is obtained by requiring that the
squark contribution to the ρ parameter [35] do not exceed
5.5 ·10−4 [36]. It is based on the assumption that (δdij)LR
is not correlated with (δuij)LR so that a large value of the
latter breaks the custodial symmetry between the up-
and down-type squarks significantly. As squarks grow

heavier, this limit does not decouple either but tightens.
However, the pace is slower than those of the vacuum
constraints. As a result, the vacuum longevity bound is
more stringent in most of the parameter space. Another
point to notice is that the stability and the metastabil-
ity curves are very close to each other compared to the
foregoing cases that do not involve the top quark. This
is mainly because the large top Yukawa coupling renders
the inequality (10) less restrictive. In the plot is shown
even a small region which is ruled out by the tunnelling
constraint for some tanβ even though it satisfies the sta-
bility requirement. Of course, a classically stable vacuum
cannot decay. This apparent nonsense stems from the
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MI Metastability Naturalness

(δd12)LR 0.026 0.0011

(δd13)LR 0.026 0.0010

(δd23)LR 0.026 0.010

(δu12)LR 0.21 0.011

(δu13)LR 0.29 0.062

(δu23)LR 0.29 0.59

TABLE IV. Metastability and naturalness bounds for mq̃ =
M3 = 1 TeV. The metastability bounds on (δdij)LR are pro-
portional to cosβ and the displayed values are for tanβ = 10.

fact that the condition (10), used for drawing the curve,
is not optimal [21]. That is, obeying this condition is
not enough to exclude any CCB minimum to which tun-
nelling can occur. It is beyond the scope of this article
to pin down the necessary and sufficient conditions for
vacuum stability with respect to the flavour-violating tri-
linear terms. In any case, the stability bound is not the
primary concern here.

There is another class of theoretical bounds that scale
as the inverse power of the sparticle masses. They
are naturalness bounds that act on half of the flavour-
changing squark mass insertions, (δd,uij )LR with i < j

[37]. They are based on the requirement that the super-
symmetric loop corrections do not exceed the measured
values of the CKM matrix elements. They are compared
with the tunnelling limits in Table IV. One can notice
that metastability is tighter on (δu23)LR and that the two
types of constraints are comparable on (δd23)LR especially
for high tanβ. For the remaining four insertions, nat-
uralness tends to be stronger. This strength depends
on the degree of fine-tuning that one is willing to allow,
which by contrast has nothing to do with the metastabil-
ity bounds. Note that the slepton sector and the other
half of the squark sector LR insertions are not restricted
by the naturalness in renormalisation of the lepton or
the quark mixing matrix. These insertions can be con-
strained by two-loop corrections to light fermion masses
but only in a combination with another insertion [38].
These multiple insertion bounds shall be left out of the
present comparison as the vacuum lifetime limits a LR

insertion even if it is the only non-vanishing component.

VI. CONCLUSIONS

In the context of the MSSM, upper bounds on the
flavour-violating trilinear soft terms have been obtained
by demanding that the standard vacuum be long-lived.
Obviously, metastability leaves more room than stability.
As with the latter, however, the former results in a limit
that does not decouple even if mf̃ increases. A distinct

property of the new bounds is that those on the 12 com-

ponents Ae,dij are nearly the same. This is because the
bounce almost follows a D-flat direction and the corre-
sponding Yukawa couplings are negligible. Dependence
on other parameters has been reported as well such as
Higgs masses, tanβ, and µ. The bounds are fairly sta-
ble against radiative corrections in view of the estimated
errors.

Prospects for indirect new physics discovery have been
discussed in a scenario where flavour-violating trilinear
terms can be arbitrarily large within the limits from vac-
uum longevity. Being sensitive to mass ranges as high
as 60 TeV or more, µ → eγ could be the most powerful
probe of new physics. The potential of a SFF has also
been considered. It should be able to cover up to a few
TeV through B physics and LFV τ decays. Lower tanβ
tends to extend the territory, but it does not seem to grow
an order of magnitude beyond the reach of the LHC. It
should be reminded that these conclusions are based on
the assumption that the LR insertions are the only source
of extra flavour violation. As for the stop couplings,
metastability provides bounds that are stronger than any
existing experimental constraints even for rather light
squarks.
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