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We study the production of heavy quarks in deep-inelastdtaing within perturbative QCD.
As a novelty, we employ for the first time the running mass d&dim in the MSscheme for

deep-inelastic charm and bottom production. We observengmnaved stability of the perturba-
tive expansion and a reduced theoretical uncertainty dwariations of the renormalization and
factorization scales. As our best estimate we extract fragtobal fit to fixed-target and HERA
collider data for the charm-quark &tS mass ofm(me) = 1.01+ 0.09 (exp)+ 0.03 (th) GeV.

le-mail: sergey.alekhin@ihep.ru
2email: sven-olaf. moch@desy.de


http://arxiv.org/abs/1011.5790v1

1 Introduction

The production of heavy quarks in deep-inelastic scaggiiiS) is an important reaction and has
been measured with high accuracy in several fixed-targegranpnts and at the HERA collider.
Within perturbative QCD, the production of charm and bottguarks proceeds in neutral (NC)
or charged current (CC) reactions via lepton-parton scéagi@nd the exchange of a virtual boson
v*/Z or W* with space-like momentum. A detailed understanding of tteelpction mechanism
sheds light on the underlying parton dynamics in QCD. In thiClera this, perhaps, is the most
important aspect, because DIS heavy-quark productionigee\core constraints in global fits on
the parton distribution functions (PDFs) even at the texigsc

Thus, it is of paramount importance to provide precisiordmt®ons which, of course, have to
rely on higher order radiative corrections. Our theory préohs for heavy-quark production in-
clude next-to-leading order (NLO) QCD corrections [1-34igim the case of NC DIS, even partial
information at next-to-next-to-leading order (NNLO), whicomprises in particular all logarith-
mically enhanced terms near threshaold [4], and all expliegiendence on the renormalization and
factorization scales.

However, precision predictions, must also address thertaioty due to the non-perturbative
parameters, such as the aforementioned PDFs, the value sfrtbng coupling constants and
the masan of the heavy quarks charm, bottom and top. It is precisely wespect to the latter
aspect, that we wish to improve the current state-of-theNsarmely, we employ the short-distance
(so-calledMS) mass in our treatment of heavy-quark DIS. In this mannempwovide a crucial
link, which has long been missing, for the comparison of teavy-quark masses entering in DIS
and the determination of PDFs in global fits on the one hand, an the other, those obtained
from other determinations, e.g. @e -collisions or by means of lattice computations.

Traditionally, perturbative corrections to hard scattgmrocesses at hadron colliders have used
the so-called pole mass of the heavy quark as a definitioneofrithss parameter. The pole mass
is popular, because it is well defined at each finite order diipeation theory and it is introduced
in a gauge invariant way. However, as is well-known sincey]dhe concept of the pole mass in
QCD has intrinsic theoretical limitations. Because of coerfinent no free colored quarks exist, i.e.
they do not appear as an asymptotic state ofStmatrix. It has been shown that the use of the
pole mass leads to a poorly behaved perturbative seriedbfuse observables in hard scattering
processes become sensitive to momentum regions of theafrther QCD scaleé\qcp.

Alternative mass definitionsfi@r a solution to this problem. The most prominent example is
theMS masan(y, ), which is to be evaluated at the (renormalization) spalevhereu, > Agcp
and which is free of ambiguities of ordaicp. For inclusive cross sections at short distances the
appropriate scale choice for the running me¥g,) is u, = m, where the renormalization group
evolution for the scale dependence of the mass convergedav&cales as low as the charm-quark
mass. As a benefit of theory predictions usingM@mass one observes an improved stability of
the perturbative series with respect to scale variatioroagared to the result in the pole mass
scheme.

In this study, we startfdwith QCD predictions for heavy-quark DIS at NLO [1-3] and epp
imate NNLO [4], which have been computed with a pole masss&girently, we improve the per-
turbative description by converting from the pole mass sehto theMS scheme (see Refs] [6-8]
and references therein). The necessary scheme transionrfatows closely similar recent work
for top-quark production at hadron colliders, ¢f.[[9, 10f implementation details. From a global
fit of the parton distribution functions to fixed-target anBRIA collider data we extract for the first
time anMS mass for the charm-quark.(m¢). Our best estimate fan.(m) is consistent with the



world averagel [11] within the quoted range of errors. MoexpDFs determinations can benefit
from reduced uncertainties due to precise heavy-quarkesdes charm and bottonmy, andmy,
and we comment on the implications ff= andZ gauge boson production at the LHC.

2 Heavy-quark DISin perturbative QCD
For NC DIS pair-production at leading order (LO) proceedstigh photon-gluon fusion as

g(p) +y" (@ — g2+ 02, (1)

which is a 2— 2 process startingfbat orderasin QCD and, of course, involving the overall power
a for the QED coupling and the quark fractional charges.

For CC DIS, on the contrary, heavy-quark production at pelegel proceeds in Born approx-
imation in a 2— 1 reaction as

da(p) + W*(q) — a2, (2)

where the initial quarky, is light, the final state quartp is heavy and the coupling to tVg-boson
involves the usual parameters of the Cabibbo-Kobayashkistaa (CKM) matrix.

The well-known kinematical variables are Bjorkeand Q? defined by the momentaandq
of the incoming parton and thefeshell boson,
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and the cross sections is conveniently parametrized insterirthe heavy-quark DIS structure
functionsFy, k = 1,2, 3, which depend o, Q? and the heavy-quark mass In the standard fac-

torization approach to perturbative QCD the structure fions Fx can be written as a convolution
of PDFs and cocient functions,

Q=-°>0 (3)

Zmax
Rty = 3 [ Za(5) calzent.if). @)
i=0,0.9 %

where the renormalization scale is denotegiaand the PDFs for the parton of flavoat the
factorization scalg:; as fi(x, ,uf) Depending on the kinematics in Egsl (1), (2), the intéegnat

range over the parton momentum fractipextends tagg = 1/(1+ n?/Q?) or Z ey = 1/(1+
4m?/Q?). The kinematical variablé in Eq. (4) is given as
QZ
== 5
§=3 (5)

The codficient functionCy; of the hard parton scattering process in E¢. (4) can be cardput
in a perturbative expansion in the strong coupling constant as(«,). Currently, we have for
both cases, NC and CC, the complete NLO corrections aveilaith full dependence on the
heavy-quark mass, see Refs![1] and_[2] 3], which we use in our description eflieavy-quark
structure functiong-x. Specifically, in the NC case, we use the code of Ref. [12] [§8¢for
minor corrections).

Beyond NLO, partial results are available, although the glete NNLO corrections are not
known to date. In the asymptotic limit?/Q? — 0 fully analytic results have obtained at NLO,
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see [14=16] and at NNLO for the lowest even-integer Mellimmeats [17]. For parton energies
close to the production thresholsl 4, soft gluon improvements at NNLO are long known to
be important/[18, 19]. For NC heavy-quark production thevoduttion of the coéicient functions
(especiallyC2 g) and the gluon density is dominated by rather low partonimats energiesand
the corresponding soft logarithms = (1 — 4n?/s)Y/? at NNLO have recently been completely
determined(]4]. In our description of the NC structure fumies Fi (which supersedes our earlier
studies[[19]) we include these latest improvements [4]tdogrewith complete dependence on the
renormalization and factorization scales, see €!@. [9, TB]s approximation to NC DIS we call
NNLOapprox Soft logarithms have also been studied for the CC case26}¢e lHowever, in the
kinematical range of the currently available CC DIS dataytare numerically less important and
we do not include them here. Hence, for CC DIS, we confine brgséo NLO accuracy only.

The mass parameter in the structure functiésn Eq. (4) is the pole mass of the heavy
qguark, which requiresn to coincide with the pole of the heavy-quark propagator ahdamite
order in perturbation theory. In this way, that value of thassnitself is strongly depended on
the perturbative order. Moreover, it has intrinsic undettes of orderAgcp/m. The perturbative
description of heavy-quark DIS can be improved, howevepdyorming a scheme change from
the pole mass to thélS scheme.

The starting point of this conversion is the well-known tigla between the pole massand
the running mass(y, ) in theMS scheme

m=m(u,) (1+as(u )dD () + s 2dP () + .. (6)

where the cofiicientsd() of the perturbative expansion ins are actually known to three-loop
order [6+8].

Let us start with the NC case. We will derive explicit formaitdarough NNLO for the depen-
dence of the structure functions on & massm(m). In doing so, we follow similar recent work
for the pair-production of top-quarks at hadron collidé9s10]. For the pole mass we have
(suppressing all other arguments),

F(m) = asFO(M) +as? FO(m) +as* FO(m), (7)

which we can convert with Ed.](6) to ti\&S massn(m) (for simplicity abbreviated &) according
to

F(@ = asFOm) (8)

+ars (Fl(j)(m) +m o(l)c’)mFl((O)(m)' )
m=m
+ars® (Ff)(m)ﬂ_no(z)amFl((O)(m)’ +r_no(1)6mFl((1)(m)’
m=m m=m
42 (M) 52 F(O)(m)‘ ,
2 K e

where the cofiicientsd!) have to be evaluated far = M (corresponding to the scale @f).
In the NC case, the cfigcient functions in Eq.L(4) have a perturbative expansion.® in
the strong couplings = as(u,),

q
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wheren denotes the distance to partonic threshold. The partomtecef-mass energy reads

s=Q?(1/z-1), so that ,
_ S -1
1@ = 7 l_4m2(z 1) 1 (10)

Mass dependence resides in thefiornt functions implicitly inn andf as well as in the
factorization scale dependent part (commonly appearirgigh the ratiqus 2/m?). Thus

My
OmCui (1D, &, 12, 142) = (Omin) 8,Chj + (Omg) FCi - ﬁﬁnyk,i- (11)

In this way the explicit expression for the first-order datived, in Eq. (8) becomes

Zmax
Z(1-z 2 Hg
mFPm = f —f. { ( )zc(')—agagcﬂ}—ﬁaﬂfcﬂj} (12)
i=0.09 Y
)
o™ 3 (2 Jedl .

i=0,0.9

where we have suppressed all arguments in théicnt functiongCy; for brevity. The derivative
0, has been turned into the derivati@gthanks to Eq.[(1I0) and all partial derivatives in Hq.l(11)
have been made explicit.

The boundary term in EqLL(1.2) vanishes explicitly for the Nsk€heme transformatlon in
Eq. (8), i.e. foramF (m) because the Born contribution behavesfder 0 asC ~0(B) and

C(O) O(3%). Thus, C(Og)J vanishes in the last line of EJ._(12) if evaluatedzat zmax We note
however that the boundary term may be completely removeddl torders by means of partial
integration with respect to the PDFs. With integrationgarts inzwe find for Eq. [(12),

Zmax

InFO(m) = Z f;fu( ){Ezc(k,)i_ﬁfafc(k,)i_ﬁaﬂfc(k,)i} (13)
=009 %
dz 2
-y f 2act(3)){ 2 -0}
i=6.0.9

The NNLO scheme transformatlon |n EQl (8) requires as thg adtitional ingredient the
second derivativé?, for the Born terrrF O(m), i.e.

2 (m 2 m
FEOM = 5 {ZFO ]+ om{ Z0nF ). (14

which can be qwckly evaluated using Elqt](13) and compumegeixplicit derivative of the coef-
ficient functlonsC(kg] We note, thab, C( ~O(B) andc’)gc O(83), so that they also vanish if
evaluated ag = Z"®,

Thus, we are finally in a position to put everything togetteotigh NNLO and we arrive at
the following explicit expression for Ed.](8),

Fo = asFQ+alFP +alFP (15)



dz _(x m
wd 3 [ 50(3) 20 {Foncl)
dz , /x 2\ (m
3 2 1 0
vos® ), f 7 1(5) (262 (@)} {Z0nc0)}
s Y d—z»f-(f) 20—t g +’—(f-'(§)(1—z) 2d®c®
s . 7 _I 7 & 2 Hi 71 \Z i,k

+ozs3__Z fd?z:fi(lz(){z—fc’ig}+)—Z(fi’()—z()(1—z)]2(d(1))2{gc’)mc(kf’i)},

where the renormalization scale has been fixed, at m(m), i.e. as= as(m(m)) for the strong
coupling constant. The full dependencegrcan be constructed using the renormalization group
equation. With the standard expression for the running leogiéand the cofficients of the QCD
beta function), it is easy to restore the complete renomattin scale dependenceafin Eq. (15),

as(m(m) = ers(uy) (1+ as(ur)LrBo + as(uy)*(Bilr + B3LR)) . (16)

where we have abbreviatég = In(u,2/m(m)?).

As explained above, Ed. (115) is exact to NLO. At the NNLO Ieﬁéﬁ) is currently unknown.
Our approximation NNL@yproxin Eq. (I5) uses the threshold enhanced terms of Ref. [4]tto es
mate the dominant corrections at two loops. All explicit élegence on the renormalization and
factorization scales and the terms accounting for the seheamsformation from the pole to the
running mass at NNLO are, however, exact in Eql (15).

The CC case is conceptually much simpler. Moreover, in oalyais, we confine ourselves to
the NLO case only so that the relevant formulae is much shdtee commonly defines structure
functions¥k which are related to thEy’s via the following relations:

Fi= %1 =af1, (17)
Fo= 2vFo = ax¥o, (18)
Fs= 2F3 =ag¥fs, (19)
i.e.a; =1, a» = 2y andag = 2 and where we have introduced the quantity
X
==, 20
X=7 (20)
so that Bjorkerx varies in the range @ x < 1 and
1 £
A= = —. (21)
1+ % 1+¢

In the CC case, the céiient functions corresponding to EQl (4) can be expanded.td M
the strong coupling witlrs = as(y,),

Cui@éptu?) =CQ +asC, (22)
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whereC(koé ~ §(1-2) (up to the CKM parameters) alqogj =0fork=1,23 due to Eq.[(R). The
expressions foc!") are all given in Refs[[2)3]. As in the NC case, the conversioiheMS mass

starts ¢f from a perturbative expansion as in Eg. (7), which we can edrte theMSmass as in
Eqg. (8). Restricting ourselves to NLO, we relate

Fi(m) = FO(m) + asFM(m), (23)
to
F@® = FOmM)+as (Fl(})(r—n) +r_no(1)6mFl(<O)(m)' _) : (24)

where matching is done again at the sgale mand we just have to provide the explicit expression

m(.'1(1)(9mak|:l((0)(m)‘m:m — Z(X_X)d(l)z |Viq2|2(a)(akfi (X))' s (25)

: m=m
1=01

where the sum ranges over all light flavois while o is heavy.Vy, q, denotes the respective CKM
matrix element and the cfiwientsay are defined in Eqs[_(17)=(19). The partial derivative from
Omy has again been made explicit.

This completes our discussion on the explicit conversiomhef heavy-quark DIS structure
functions from the pole to th&1Smass. Note, that we have confined ourselves entirely to the
so-called fixed-flavor-number scheme (FFNS), i.e. to a sdnawhere we work with a fixed
numbems of light-quark flavors. This is an absolutely adequate apgince.g. for the analysis of
existing DIS data. In contrast, there exist variable flavamber schemes (VFNS) which relate
the DIS structure functions far; light flavors to those fons + 1 light flavors (see [21, 22] for an
extensive discussion). In a VFNS the necessary matchimgvi@es certain massive operator matrix
elements which, for consistency also need to be evaluatdteinenormalization scheme with a
running mass. To NNLO, all relevant formulae has been gineRef. [17]. Also, in practice, one
often relates the matching scale of the strong couplingedgavy-quark mass, i.e<")(xm) —
a™M*D(km) with some constant. Then the necessary decoupling fiméents depend beyond
NLO on the chosen mass renormalization (see e.g. [23]). tmzary, the implementation of a
running mass for heavy-quark DIS in a VFNS can be performedstraight forward manner and
poses no further problems.

3 Results

We are now in a position to look at the phenomenological iogtions of theSmass and also
to discuss the role of the heavy-quark mass parameter in RRFJfespite of its short-comings,
all current global fits of PDFs employ the pole mass schemé¢hiheavy quarks. To illustrate
this point, we summarize in Tabl 1 the values taken by the sixpms which are currently ac-
tive in global fits PDF: ABKM [21], HERAPDF[[24], GJR [25], MSW [26], CTEQ [27] and
NNPDF [28]. All numerical values, especially those for thaon quark mass, are systematically
lower than the pole masses obtained from the particle datspgiPDG) values for the world aver-
age [11]. Simple kinematical considerations show, thatallemcharm quark mass can potentially
compensate large missing higher order perturbative coorec The latter have been shown to be



[GeV] ‘ PDG | ABKM ‘ GJR‘ HERAPDF‘ MSTW‘ CTEQ‘ NNPDF

+0.25
1.5 -0.25

05
45752

0.09
1.66757z

0.19
4.797008

1.3
4.2

Me
My

1.4 1.4 1.3 V2
4.75 475 | 45 4.3

Table 1: The pole mass values taken as input in recent global fits ofsPDRe quoted PDG values are
obtained from théMSvalues in Eqs[(26)[ (27) using the two-loop conversioBdn (6).

sizable at NLO and even at NNlgghrox When using a pole mass. Evidently, global fits of PDFs
which incorporate heavy-quark DIS data are very sensititke theory treatment of heavy quarks
and depending on the chosen mass parameter (and schenil]dee & discussion of FFNS and
VENS) the resulting dierences in the PDFs can be sizable.

In Figs.[1 and 2 we study first the case of charm quark electrdyztion, i.e. electron-proton
scattering. We plot the NC charm structure functl%ﬁ“n at LO, NLO and NNLQpprox Using the
3-flavor PDF set of Ref[[21]. We have been careful to resthietkinematics irx and Q? (in
Figs.[1/2Q? = 10Ge\?, x = 1079) to the region, where our threshold approximation undedyi
the NNLOypprox prediction is under control, see [18/19].

Comparing the central values of the predictionsF‘rQras a function of the pole mass in Fig. 1

(left) with those for arMS massnc(m¢) in Fig.[ (right), we observe a much improved convergence
of the perturbative expansion in the latter case. AlreadylaD the size of the QCD corrections
is much reduced for aMSmass. E.g. for a pole massmf = 1.5 GeV we find fong a relative
increase of 32% at NLO over the LO prediction and another 18%he NNLQupprox prediction
normalized to the NLO one. This is to be compared with the rensifor thaVlS mass. Ame(me) =

1.3 GeV we find relative corrections of 17% at NLO and only 6% atlXMpprox Likewise, as
we vary the renormalization and the factorization sgalendy, independently by a factor of two

around a central value chosen to/pé = ,ufz = Q%+ 4m¢ in Figs.[1 and2 we note a substantial
reduction in the spread to the predictions and a greatlyceditheoretical uncertainty when using
the running mass. This scale variation is illustrated byréspective bands in Figl 2.

Similar observations hold also for the NC DIS production oftbm quarks, see Figs|. 3 4.
The predictions af? = 50 Ge\? andx = 10~2 have been obtained with the 4-flavor PDF sefof [21].
Again, in the case of thMISmass the apparent convergence is much improved and, tinyar,
the relative size of NNL@hprox COrrections is a few per cent only over the whole mass range
considered fomy(my).

In Figs.[5 and b we investigate charm quark production in m&ainucleon DIS assuming
an isoscalar target. We plot the CC charm structure fund%igﬂrfor a nucleon at LO and NLO
for Q% = 10Ge\?, x = 101 which corresponds to the typical kinematics of fixed-tarmitrino-
nucleon experiments. In comparison, the impact of highdewoperturbative corrections is less
than in the NC case discussed before.

We compare the central predictions using a pole mass [Figftpwith those that employ
the running mass (Fi@l 5 right) and the observetedences are rather marginal. This can easily
be understood because the conversion toM8mass only involves (e.g. for W*-boson on
isoscalar nucleon target) the derivatives of the up, dowhtha strange quark PDFs, which are
all numerically rather small. Again, we also vary the renalization and the factorization scale
p; andy, independently by a factor of two around the central valpfe= 1% = Q?+ mgé. The
comparison is shown in Fig] 6 and the are no significant crmrlgesummary, we observe that the
impact of the scheme change from a pole to a running mass ie mace pronounced in the case
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of NC DIS than in the case of CC DIS.

We have demonstrated a clear improvement of the theorgtiedlctions for DIS heavy-quark
structure functions by using the running mass. An immedgigication of our results consists
therefore in the direct determination of heavy-quit® masses from the available DIS data. For
reference in the following, we list the values for the chamd Aottom masses in tHdS scheme
as quoted in the 2010 edition of the POG][11],

me(me) = 1.27+39%7Gev, (26)
my(my) = 4.19*08GeV. (27)

To start with, we can use the manifest dependence of thetsteuitinctionsFx on the heavy-
guark mass to estimate the prospects of this approach. Tdieseeuncertainty of such a mass
determination is related to the corresponding uncertantyhe measurements Bf as follows.
Neglecting non-linear terms, a fit to the central prediceéan fong in NC DIS (see Fid.]1) yields,

AR
0.75—%. (28)
p
I:2

Ame

This implies that a measurement of the proton structureti‘undzg with an accuracy of 10%
translates into a.05x 10%= 7.5% uncertainty of the charm-quark mass. Thus, given theracgu
of current collider data from HERA (especially from HERA-Hn error onmc(m¢) of O(few)%
seems to be the ultimate precision one can aim at in this appro

For a quantitative comparison we conduct a phenomenollggiody similar to[[19,29], i.e. we
perform a global fit of fixed-target (CCFR [30], NuTeV [31])dcollider datal[32,33] in the FFNS
(with n = 3) as a variant of ABKM[]21]. In the analysis we have taken thme 25 parameters
as in [21] which include also the strong couplimgand the massas. andm, besides the usual
PDF parameters. Interestingly, our fit does not return angiteity to the value ofn,. Therefore
we have constrained the bottom masggmy) to its PDG value, i.e. Eq.(27). For the running mass
of the charm-quark, however, our analysis displays vendgamsitivity and yields (depending on
the order of perturbation theory) the following values

me(me) 1.26 +£0.09(exp) = 0.11(th) GeV at NLQ (29)

me(me) 1.01 +0.09(exp) = 0.03(th) GeV at NNLQpprox, (30)

where the renormalization scale has been chpsenm.. We consider our mass determination
at NNLOgpprox accuracy as our best estimate. Hql (30) is the central rebtlits study and our
determination is consistent with the world average at thiellef +1.50 for the quoted uncertain-
ties. Our NNLQpprox predictions are, of course, reliable only in a restricteneknatical range.
However, given that they are generally rather small, we icenshe agreement between the deter-
minations at NLO and NNLg}proxalso a very good indication on the stability of the pertuirtzat
description.

In Egs. [29) and (30) the experimental and theoretical daitgies onm.(m;) have been quoted
separately. The former one is computed from the propagaefithre statistical and systematic errors
in the data, taking into account error correlations whenavailable. The theoretical uncertainty
is estimated from the sensitivity due to variations of theorenalization and factorization scales
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ur andu, as follows. All current global PDF determinations assyrpe p; = Q in fits to DIS
data (see e.g., the discussionlin|[26]). This is the appaitgpscale choice for massless structure
functions and, generally, for large values@fvhen massféects are negligible. In order to retain
sensitivity to massféects, especially in the region of lo@, we therefore determine the variation
of F5 for the scale choicg,? = u;? = Q%+ «n% in the rangex € [0,8]. In this way, the variation

of F2 at NLO (NNLOgpprox results in the quoted uncertainymg(me) = +0.11 GeV Amg(me) =
+0.03 GeV). For consistency, we have also checked, that thistgtal quality of our fit is not
deteriorated, if we use thesefdirent scale choices, i.e. the obtained valugfathanges by a few
units only.

In comparison to Refs. [21, 34] the shapes of the PDFs anddtlie Yor the strong coupling do
not change much in the present variant of the fit. We obsemsistency within the-1o- statistical
error. For illustration we display thelo band of absolute uncertainties for the (non-strange)ight
quark (FigLY left) and the gluon PDFs (Fig. 7 right) at thetstg scaleu = 3 GeV compared to
ABKM [21] and we observe good agreement. The PDFs in [Hig. dlréom a fit, where we
have additionally constrained the charm-quark mass by i@ Yalue of Eq.[(26). This results in
me(mc) = 1.18+ 0.06(exp)+ 0.03(th) at NNLQypproxin very good consistency with Eq$. (26) and
(30). For bottom the valuey,(my) = 4.19+0.12 with a symmetric error has been used. Since our
analysis involves fixed-target data from CQNRTeV, we have also paid particular attention to
the strange-quark PDF and a potentially asymmetric straageHowever, we find no indication.
The total integrated asymmetry with thdo statistical uncertainty at the scalé = 20 Ge\ is
obtained as

1
f dx x(s(x,u) — S(x, 1)) = 0.0011(9) (31)
0

which is consistent with previous results [29].

In Fig.[8 we confront data from NC heavy-quark DIS with theutéeg predictions using
running masses for charm and bottom(m:) = 1.18 andmy(my,) = 4.19. The ZEUS date [32]
displayed in Fig[ B has not been used in the fit. At the smallaktes ofx and Q in Fig.
the predictions rise monotonically with increasing ordefgerturbative QCD, thus improving
agreement with the data. In this region the valu§§)ﬁs sensitive to the cdicient functions for
smallg, where the threshold approximation NNLSoxis valid and can be considered as a good
approximation to the full (yet unknown) NNLO result férg. As can be seen in Figl 8, with the
chosen value for charmmg(me) = 1.18) our predictions are still slightly below data for at smal
values ofx andQ. At large values ok andQ the slope OFS flattens inQ, particularly for higher
values ofx, and the agreement with data is still very good. Future coispas to high precision
NC heavy-quark DIS data from the Run Il of HERA will be intetieg.

A couple of interesting remarks can be made at this poinstBirall, the experimental input
to the PDG determinations af. andm, originates entirely frone* e -collisions orB-decays (see
e.g. [35] 36] for recent analyses &@fe -annihilation data with QCD sum rules). While the use of
short distance masses is by now fairly standard in crosgosqutedictions for those processes, it
has not been used much in phenomenology at hadron collalérsugh it is well known that the
pole mass is plagued by large intrinsic ambiguities. Howewéh the increasing experimental
precision of hadron collider data, there is a clear needdawige perturbatively stable theory pre-
dictions and to use well-motivated definitions of fundamaégtiantities like the mass parameter.

TheMS masses of Eqd.(R9) arid[30) provide the first theoreyicalhsistent determinations of
these fundamental parameters in heavy-quark DIS, a prgoeesned by the exchange of space-
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like bosons. So the agreement with the PDG velué [11] withénquoted accuracy is very reassur-
ing also with respect to the fiierent underlying (space-like) kinematics. Previouslgraim mass
determinations in heavy-quark DIS have been performed byRM Il [37] and NOMAD [38].
They have extracted a valuem§ from di-muon events in neutrino-nucleon DIS with a rathegda
uncertainty and based on a LO QCD analysis only. Also fronQ6&RNuTeV data for neutrino-
nucleon DIS a value for the charm mass has been extracted§yB&h however is fectively LO
only, as far as the mass dependence of the cross sectiorcesroed. None of these determinations
enters the world average as quoted by the PDG.

Another interesting issue concerns the heavy-quark PDIResd are needed at high-energy
hadron colliders for hard scattering processes at s€atean;, m,, where a FFNS withféectively
ns =4 or ns =5 light flavors is the appropriate description. The PDFs foarm- and bottom-
qguarks in 4- and 5-flavor schemes can be generated from tlseotm@&ned in a 3-flavor FFNS as
convolutions of the gluon and flavor-singlet distributiamish massive operator matrix elements.
Through the explicit mass dependence of the latter the taingr on heavy-quark PDFs is directly
related to the accuracy of the quark mass parameter. Pnalignstudies have shown that precision
input for the values of charm and bottom masses can greaflyome the accuracy of charm- and
bottom-quark PDFs. Future studies will be devoted to aneiptid investigation of the transitions
from 3- to 4- to 5-flavor FFNS with the running mass schemeé.[40]

Finally, let us address the implications for LHC processdsch are quite clear. In global PDF
fits, the predicted rate faV*- andZ-boson production is very sensitive to the chosen pole mass
value for charm in schemes with four or five active light flasoAt the VS = 7 TeV LHC, for
instance, Ref[[41], has reported shifts in the total cressiens folW*- andZ-boson production
of more than 2% resulting from small variations 019 GeV in the pole mass value fox around
a central value (see TdB. 1). For th& = 14 TeV LHC, these uncertainties increase to more than
3%. These findings are worrisome as they potentially ineddicorecision predictions for these
important high precision measurements of Standard Modelgsses.

Fortunately, as we have demonstrated, these uncertagarebe almost entirely eliminated
by adopting the running mass. By using e.g. the very precsédvaverages as constraints in
global fits, the errors om. andmy, can be greatly reduced. Moreover, these errors can belgirect
propagated to the PDF uncertainties with no need for additiassumptions. In this manner, very
accurate and precise predictions Y- andZ-boson production at the LHC are possible.

4 Summary

We have studied the production of heavy quarks in NC and CArm2i8ding higher order radiative
corrections in QCD adopting the runniiS mass and we have demonstrated the clear advantage
of using this scheme. The resulting theory predictionsldispn improved apparent convergence
through NNLQpproxas compared to the result in the pole mass scheme, especitilyNC case.
Also the stability of the perturbative series with respecttale variations is much greater.

We have used our results to determine for the first timétBenass for the charm-quani(me)
based on first principles in QCD from a fit to DIS data for hegugark production. The obtained
value is consistent with the world average as published &G and it provides complementary
information on this fundamental parameter from hadrongexpsses with space-like kinematics.

We have shown that the use MISmasses in heavy-quark DIS can also improve predictions
for hadron colliders by eliminating sizable uncertaintied?DFs. This underpins the need for
global fits of PDFs to adopt the running mass scheme. Curtebakfits of PDFs employ the pole
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mass scheme and small variations in the chosen value foihdmencmass can easily amount to
differences of a few per cent in the predicted cross sections-endZ-bosons at LHC energies.
With a physically well motivated short distance mass theseertainties can be eliminated to a
large extent. Progress in this direction will be reportesbeihere[[40].

The numerical code for the computation of structure fumdifor heavy-quark production in
deep-inelastic scattering with a running mass is publiegilable for download from [42] or from
the authors upon request.
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Figure 1: The mass dependence of the NC charm structure fun&ofor a proton withQ? = 10Ge\?,
x =103 andy, =g = \/Q2? + 4m¢ using the PDFs of [21]. The charm-quark mass is taken in thshe
scheme (left) and in th&1S scheme (right) at LO (blue), NLO (green) and NNsRox (red).
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Figure 2:Same as in Figl1. The band denotes the independent varaittbe scaleg,,u, = k YQ? +4mé
in the rangec € [1/2,2].
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