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Abstract

The framework of Higgs–dependent Yukawa couplings allows one to eliminate

small couplings from the Standard Model, which can be tested at the LHC. In this

work, I study the conditions for CP violation to occur in such models. I identify a

class of weak basis invariants controlling CP violation. The invariant measure of CP

violation is found to be more than 10 orders of magnitude greater than that in the

Standard Model, which can be sufficient for successful electroweak baryogenesis.
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1 Introduction

The flavor puzzle of the Standard Model (SM) remains one of the outstanding issues in

modern particle physics. The observed hierarchy of the fermion masses is not explained

in the SM, but instead parametrized in terms of small Yukawa couplings. One possibility

that has been put forward independently in [1] and [2] is that the Yukawa couplings are

effective couplings dominated by higher dimensional operators involving the Higgs field.

This eliminates small fundamental couplings in favor of O(1) parameters. The smallness

of the fermion masses is then due to the smallness of the Higgs vacuum expectation value

(VEV) compared to the new physics scale (of order TeV). This idea can be tested at the

LHC by measuring the Higgs decay branching ratios.

In the present work, I study the conditions for CP violation to occur in this frame-

work. It is helpful to formulate the problem in a basis-independent way, making use of

CP violating basis invariants which generalize the Jarlskog invariant [3–5]. This approach

has been employed in various new physics models, including the seesaw [6], supersym-

metric [7] and 2 Higgs doublet models [8]. The basis independent formulation allows

one to obtain an invariant measure of CP violation, which can be relevant to electroweak

(EW) baryogenesis (see [9] for a review). Indeed, it is the smallness of the Jarlskog invari-

ant (and the Higgs sector constraints) that makes electroweak baryogenesis essentially

impossible in the SM. The structure of the invariants with Higgs-dependent Yukawa cou-

plings is very different from that of the Standard Model and bears some similarity to the

supersymmetric case [7]. It is therefore plausible that successful EW baryogenesis can be

achieved.

2 Higgs-dependent Yukawa couplings

The main assumption of our framework is that the Yukawa couplings are functions of the

Higgs field. They are effective quantities which can be expanded in powers of H†H/M2

with M being the cutoff of the effective theory,

Yij(H) = c
(0)
ij + c

(1)
ij

H†H

M2
+ ... (1)

In the Standard Model, many of the Yukawa couplings are very small, down to 10−5. It

is therefore plausible that the higher order terms are comparable or even dominant. A

particularly interesting possibility would be to have no small fundamental couplings at

all. For that the above expansion has to start with some non-zero power of H†H/M2.

That is, all c
(n)
ij vanish until some integer nij,

Y u,d
ij (H) = cu,dij

(

H†H

M2

)n
u,d
ij

. (2)
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This can happen due to symmetries of the UV completion of our effective theory. Such

symmetries are particularly easy to realize in supersymmetric (or 2 Higgs doublet model)

extensions of the Standard Model, whereH†H is replaced by H1H2. The latter can have a

(possibly discrete) charge à la Froggatt-Nielsen [10] such that the vanishing of some c
(n)
ij

is dictated by charge conservation. In the SM case, the analog would be some non-abelian

symmetry acting on H†H.1

In this framework, the smallness of the Yukawa couplings is explained by the small-

ness of the Higgs VEV compared to the new physics scale M ,

ǫ ≡ 〈H†H〉
M2

≃ 1

60
, (3)

with the numerical value being fixed by ǫ = mb/mt. In terms of ǫ, the Yukawa matrices

are expressed as [2]

Y d ∼







ǫ3 ǫ2 ǫ2

ǫ3 ǫ2 ǫ2

ǫ2 ǫ1 ǫ1






, Y u ∼







ǫ3 ǫ1 ǫ1

ǫ3 ǫ1 ǫ1

ǫ2 ǫ0 ǫ0






. (4)

This texture reproduces the observed quark masses and mixings. The new feature is

that the couplings to the physical Higgs boson are modified dramatically. The relevant

Lagrangian is given by

−L = Y u
ij (H) q̄LiuRjH

c + Y d
ij(H) q̄LidRjH + h.c. , (5)

whereHc = iσ2H
∗ and Y u,d

ij (H) are given by Eq. (2). The quark couplings to the physical

Higgs increase by a factor 2nij + 1 compared to that of the SM,

yu,dij = (2nu,d
ij + 1)

(

yu,dij

)

SM
, (6)

where
(

yu,dij

)

SM
= mu,d

ij /(
√
2v) and the integers nu,d

ij can be read off from the texture (4).

As a result, the Higgs decay rate into quarks increases by a significant factor ranging

from 9 for the bottom quark to 49 for up- and down- quarks leading to observable effects

at the LHC.

Since the mass matrices and the physical Higgs couplings differ by a flavor-dependent

factor, they cannot be diagonalized in the same basis and Higgs-mediated FCNC are in-

duced. These however are suppressed by the quark masses and, for the texture (4), satisfy

the experimental bounds (apart from ǫK which sets a mild constraint on a CP phase).

On the other hand, the flavor changing effects involving the top quark are significant and

can be observed at the LHC [2].

1In general, one may separate the (low energy) Froggatt-Nielsen field and the Higgs (see, e.g. [11]).

In this case, the breaking of the Froggatt-Nielsen symmetry a priori has no relation to the electroweak

scale.
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Along with extra flavor violation, this framework brings in additional sources of CP

violation. The extra CP phases reside in the quark couplings to the physical Higgs boson

and can be relevant to baryogenesis. In what follows, I study the conditions for CP

violation and construct the corresponding CP violating weak basis invariants.

3 CP violating invariants with 2 quark species

Consider a system of 2 quark species, say a top quark and a charm quark. We have two

relevant flavor objects: the mass matrix and the matrix of the physical Higgs couplings.

These are proportional to

Yij , Ỹij ≡ NijYij , (7)

respectively, with integer Nij = 2nij + 1. This corresponds to a special (“symmetric”)

basis in which ArgYij = ArgỸij. Under quark basis transformations Y and Ỹ transform

as

Y → U †
L Y UR ,

Ỹ → U †
L Ỹ UR , (8)

where UL, UR are unitary matrices. It is clear that, in general, these matrices are not

diagonal in the same basis. This provides us with sources for FCNC and CP violation.

It is easy to see that CP violation originates from a single CP phase. Indeed, 3

complex phases in Y and Ỹ can be eliminated by a quark phase redefinition (8) with

UL = diag(eiα1 , eiα2) ,

UR = diag(eiβ1 , eiβ2) . (9)

In other words, CP violation is sourced by a reparametrization invariant combination

Im
(

Y11Y22Y
∗
12Y

∗
21

)

. (10)

This quantity induces CP phases in the couplings of the quark mass eigenstates to the

physical Higgs. In the mass eigenstate basis,

Y →
(

y1 0

0 y2

)

, Ỹ →
(

ỹ11 ỹ12

ỹ21 ỹ22

)

, (11)

with positive y1 and y2 (proportional to the quark masses), the matrix of the Higgs

couplings has 3 CP phases: Arg ỹ11, Arg ỹ22 and Arg ỹ12ỹ21. Note that since this basis

is only defined up to a phase transformation UL = UR = diag(eiδ1 , eiδ2), the physical

phases must be invariant under this residual symmetry.
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The presence of CP violation in the theory can be formulated in a basis independent

way. For that one needs a quantity which is invariant under the U(2)×U(2) transforma-

tions (8) and odd under the CP transformation

Y
CP−−→ Y ∗ . (12)

Such invariants can be constructed systematically by forming an object that transforms

under one of the U(2)’s and taking a trace.2 For example, Y Ỹ † and Y Y † transform under

UL only. Then, a trace of an anti-hermitian matrix formed out of these objects will have

the required properties. The simplest non-zero invariants are

Tr
[

A2 − h.c.
]

,

Tr
[

AB − h.c.
]

, (13)

where A ≡ Y Ỹ † and B ≡ Y Y †. Note that the invariant Tr
[

A− h.c.
]

vanishes identically

for real Nij . In terms of Yij and Nij , these invariants can be expressed as

Im Tr
[

A2
]

= 2(N12N21 −N11N22) Im
(

Y11Y22Y
∗
12Y

∗
21

)

,

Im Tr
[

AB
]

= (N12 +N21 −N11 −N22) Im
(

Y11Y22Y
∗
12Y

∗
21

)

. (14)

Note the appearance of the reparametrization invariant quantity Im
(

Y11Y22Y
∗
12Y

∗
21

)

. If

it is zero, all CP odd invariants vanish. Since there is only one independent CP phase,

the vanishing of one CP odd invariant in the non-degenerate case guarantees that there

is no CP violation.

In the degenerate case, i.e. when there are special relations among Nij’s or eigenval-

ues, the situation is more subtle. For example, Im Tr
[

A2
]

vanishes if Det N = 0. Yet,

Im Tr
[

AB
]

can be non-zero. However, if both vanish, no CP violation is possible. To see

this, note that Det N = 0 means that the columns (or rows) of N are linearly dependent,

which in conjunction with N12 +N21 −N11 −N22 = 0 implies that N has the form

N =

(

N1 N2

N1 N2

)

, (15)

up to a transposition. Then, Ỹ factorizes as

Ỹ = Y diag(N1, N2) . (16)

2 This is analogous to constructing gauge invariant operators [12]. For instance, in the SM the flavor

group U(3)L×U(3)Ru
×U(3)Rd

can be gauged with Y u, Y d transforming as bifundamentals. A choice of

Y u, Y d breaks this symmetry à la Higgs, with 26 degrees of freedom being eaten by the SU(3)3×U(1)2

gauge bosons (one U(1) is decoupled). The remaining 10 represent the observable masses, mixing angles

and the CP phase. This also gives the dimension of the moduli space in the corresponding SUSY gauge

theory.
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In the mass eigenstate basis (11), it has the form

Ỹ → diag(y1, y2) U
†
R diag(N1, N2) UR . (17)

Since U †
Rdiag(N1, N2)UR is hermitian and y1,2 real, the only phase of the resulting matrix

can be removed by phase redefinition with UL = UR = diag(eiδ1 , eiδ2). In other words,

Arg ỹ11, Arg ỹ22 and Arg ỹ12ỹ21 all vanish. Since the flavor objects are real in this basis,

all possible CP violating invariants vanish.

The reparametrization invariant Im
(

Y11Y22Y
∗
12Y

∗
21

)

can vanish due to hidden sym-

metries. In the mass eigenstate basis, it can be written as

Im
(

Y11Y22Y
∗
12Y

∗
21

)

= y1y2(y
2
1 − y22) Im

(

U∗
L11

UL12
UR11

U∗
R12

)

, (18)

where y1,2 are the eigenvalues of Y and U †
LY UR = diag(y1, y2). It is then clear that there

can be no CP violation if there is a massless eigenstate or degenerate spectrum. In the

latter case, there is an extra U(2) symmetry which eliminates the CP phase. Similarly,

there is an extra U(1) associated with phase redefinition of the massless state. This is

qualitatively different from CP violation in the Standard Model. Recall that only in the

degenerate (and not in the massless) case can one rotate away the CKM phase. This has

to do with the fact that CP violation in the SM is associated with the relative phases

in Y uY u† and Y dY d† which both transform under UL, whereas in our case CP violation

is due to the phases between Y and Ỹ which transform under biunitary transformations

UL and UR.

4 Generalizations

4.1 3 flavor case

Although CP violation comes predominantly from the mixing of 2 flavor states, it is

instructive to consider the 3 flavor case. The Yukawa matrix has 9 phases, 5 of which

can be eliminated by quark phase redefinitions leaving 4 physical phases. These can be

chosen as

Arg
(

YijYi+1,j+1Y
∗
i+1,jY

∗
i,j+1

)

(19)

with i, j = 1, 2. The corresponding weak basis invariants can be taken to be

Tr
[

Ak − h.c.
]

,

Tr
[

AlBm − h.c.
]

, (20)

with A ≡ Y Ỹ † and B ≡ Y Y † and integer k, l,m (k > 1). In the non-degenerate case, the

vanishing of 4 independent invariants would ensure absence of CP violation.3

3The resulting equations are non-linear in CP phases and may have spurious solutions for special

values of the mixing angles. Here we ignore this possibility (for a related discussion, see [13]).
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The degenerate case is rather complicated. For a special class of N -matrices, no CP

violation is possible. The analog of Eq. (15) is

N =







N1 N2 N2

N1 N2 N2

N1 N2 N2






, (21)

up to a transposition and permutations of the columns. In this case, Ỹ has the following

form in the mass eigenstate basis:

Ỹ → diag(y1, y2, y3) U
†
R diag(N1, N2, N2) UR . (22)

The only reparametrization invariant phase of the hermitian matrix

U †
Rdiag(N1, N2, N2)UR can be removed due to the U(2) symmetry of the lower

2× 2 block. Note that it is not sufficient to have a rank 1 structure and 2 columns of N

must be identical to ensure absence of CP violation. Unlike in the 2 × 2 case, it is not

clear what is the minimal set of CP odd invariants, vanishing of which would ensure

absence of CP violation since the resulting equations are highly non-linear in Nij .

4.2 Inclusion of up- and down-sectors

4.2.1 2 generations

A different class of CP violating phases result from an interplay of the up- and down-

sectors with the symmetry group U(2)L×U(2)Ru×U(2)Rd
. In our framework, we have 4

flavor objects Y u, Ỹ u, Y d, Ỹ d with the following transformation properties :

Y u → U †
L Y u URu , Ỹ u → U †

L Ỹ u URu ,

Y d → U †
L Y d URd

, Ỹ d → U †
L Ỹ d URd

, (23)

as required by the SU(2)L symmetry. Out of these matrices one can form various objects

that transform under one of the symmetries. For instance, Y u†Y u, Y u†Ỹ u and Ỹ u†Ỹ u

all transform under URu . Their misalignment results in the CP phase studied in the

previous section. On the other hand, quantities transforming under UL involve both up-

and down- sectors: Y uY u†, Y dY d†, etc. They are responsible for the extra CP phases.

Consider our “symmetric” basis (7). 5 out of 8 phases in Y u, Y d can be eliminated

by

UL = diag(eiα1 , eiα2) , URu = diag(eiβ1u , eiβ2u) , URd
= diag(eiβ1d , eiβ2d) . (24)

The 3 physical phases can be chosen as

φu = Arg
(

Y u
11Y

u
22Y

u∗
12 Y u∗

21

)

,
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φd = Arg
(

Y d
11Y

d
22Y

d∗
12 Y

d∗
21

)

,

φ = Arg
(

Y u
11Y

u∗
21 Y

d∗
11 Y

d
21

)

. (25)

The phase φ is a new object resulting from a misalignment of the two sectors. The

corresponding CP violating basis invariants (in a non-degenerate case) are

Tr
[

(Y uỸ u†)2 − h.c.
]

,

Tr
[

(Y dỸ d†)2 − h.c.
]

,

Tr
[

Y uY u†, Ỹ uỸ u†, Y dY d†
]

, (26)

where [A,B,C] denotes a completely antisymmetric product of A,B and C. While the

first two invariants are proportional to sinφu and sinφd, the last one is sensitive to sinφ.

Invariants of this type have appeared before in the context of supersymmetry [7]. Note

that there is no Jarlskog-type invariant since Tr[Y uY u†, Y dY d†]3 = 0 for 2 generations.

An explicit calculation gives

Tr
[

Y uY u†, Ỹ uỸ u†, Y dY d†
]

= ia sin φu + ib sinφ+ ic sin(φ+ φd)

+ id sin(φ− φu) + ie sin(φ+ φd − φu) , (27)

where

a = 6f(Y d) (N12N22 −N11N21)
∣

∣Y u
11Y

u
12Y

u
21Y

u
22

∣

∣ ,

b = 6
(

f(Y u)N11N21 − f(Ỹ u)
)

∣

∣Y u
11Y

u
21Y

d
11Y

d
21

∣

∣ ,

c = 6
(

f(Y u)N11N21 − f(Ỹ u)
)

∣

∣Y u
11Y

u
21Y

d
12Y

d
22

∣

∣ ,

d = 6
(

f(Y u)N12N22 − f(Ỹ u)
)

∣

∣Y u
12Y

u
22Y

d
11Y

d
21

∣

∣ ,

e = 6
(

f(Y u)N12N22 − f(Ỹ u)
)

∣

∣Y u
12Y

u
22Y

d
12Y

d
22

∣

∣ ,

and f(Y ) is defined by

f(Y ) ≡ |Y11|2 + |Y12|2 − |Y21|2 − |Y22|2 . (28)

We see that this invariant is controlled by sinφ. In the non-degenerate case, the vanish-

ing of the 3 invariants (26) implies absence of CP violation. The first 2 invariants are

proportional to sinφu and sinφd, respectively, while for φu = φd = 0, the last invariant

is proportional to sinφ.

CP violation in this system exists even if the N -matrix has the degenerate form (15)

in both sectors, as long N1 6= N2. In this case, Tr
[

Y uY u†, Ỹ uỸ u†, Y dY d†
]

generally does

not vanish. There is no CP violation if N has equal matrix elements, as it should be,

since all the coefficients a to e vanish.
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It is instructive to consider the above invariant in the mass eigenstate basis. Di-

agonalizing Y uY u† → diag(yu21 , yu22 ) and parametrizing Ỹ uỸ u† = Udiag(ỹu21 , ỹu22 )U †,

Y dY d† = V diag(yd21 , yd22 )V † in this basis, we have

Tr
[

Y uY u†, Ỹ uỸ u†, Y dY d†
]

= 6i(yu21 −yu22 )(ỹu21 −ỹu22 )(yd21 −yd22 )Im
(

U11U
∗
21V

∗
11V21

)

.(29)

More generally, for hermitian A,B and C, the invariant Tr[A,B,C] is proportional to

the sine of Arg(B12C
∗
12), which is the only reparametrization invariant phase in this basis

(the basis is defined up to UL = diag(eiδ1 , eiδ2)). If the invariant vanishes, the phase is

zero (or can be rotated away) and no other CP violating invariant out of A,B and C

can be constructed.

Consider the degenerate case. The above invariant vanishes if there are degenerate

eigenvalues. In this case, the residual symmetry is U(2) instead of U(1) and two matrices

can be diagonalized simultaneously. Therefore, all objects can be made real in this basis

and all CP violating invariants vanish. Another possible degeneracy lies in the N -matrix.

If all matrix elements of N are the same, two matrices can be diagonalized simultaneously

and no CP violation occurs. This is not generally the case for N -matrices of the form

(15) with N1 6= N2, and there is CP violation.

We have so far considered the system of Y uY u†, Ỹ uỸ u† and Y dY d†. The discussion

can be repeated for other choices of the 3 hermitian objects, including Ỹ dỸ d†. It is easy to

see that if both Y u (or Ỹ u) and Y d (or Ỹ d) have degenerate eigenvalues, no CP violation

is possible. This is also the case when N in the up sector has identical matrix elements

and, at the same time, N in the down sector has the same property.

4.2.2 3 generations

The generalization to the case of 3 generations is straightforward. The symmetry group

is U(3)L×U(3)Ru×U(3)Rd
. Out of 18 phases of Yu,d, 3×3-1=8 can be eliminated, leaving

10 physical. 4+4=8 of them have the form (19), while the last two are analogs of φ in

(25),

Arg
(

Y u
11Y

u∗
21 Y

d∗
11 Y

d
21

)

, Arg
(

Y u
22Y

u∗
32 Y d∗

22 Y
d
32

)

. (30)

In addition to the invariants (20) in each sector, one can take further two of the form

Tr
[

Ak, Bl, Cm
]

(31)

as the invariants sensitive to the above 2 phases. Here k, l,m are integer and A,B,C are

hermitian matrices from the list {Y uY u†, Ỹ uỸ u†, Y dY d†, Ỹ dỸ d†}.4 This completes the

list of 10 relevant CP violating invariants in the non-degenerate case.

4One can form further hermitian matrices, but this list would suffice in the non-degenerate case.
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Some discussion of the degenerate case can be found in Ref. [7]. Clearly, CP viola-

tion exists even if the N -matrices have identical elements. In this case there is a CKM

phase and the Jarlskog invariant replaces (31). Also, there have to be many degenerate

eigenvalues to eliminate CP violation. For example, even if Y u and Y d have all degener-

ate eigenvalues, one can still form the Jarlskog-type invariant Tr[Ỹ uỸ u†, Ỹ dỸ d†]3, which

would not vanish in general. A complete study of the degenerate case is beyond the scope

of this work.

5 Applications

In the Standard Model, CP violation is controlled by the Jarlskog invariant of order 12

in quark masses,

Im Tr[Y uY u†, Y dY d†]3 = (y2u − y2c )(y
2
c − y2t )(y

2
t − y2u)(y

2
d − y2s)(y

2
s − y2b )(y

2
b − y2d)

× J ∼ 10−22 , (32)

where J ∼ 10−5 is a combination of the CKM matrix entries. Its smallness is due to the

fact that one must have at least 3 generations and both up- and down-sectors in order

to have CP violation. In the context of electroweak baryogenesis, the Jarlskog invariant

appears in the calculation of the CP asymmetry [14], with the factor v12/T 12 ∼ 1,

where v = 174 GeV and T is the temperature of the electroweak transition. One of the

problems with the SM baryogenesis is that it is very difficult if not impossible to generate

the observed baryon asymmetry η ∼ 10−10 out of such a small number (see however [15]).

If one allows for Higgs–dependent Yukawa couplings, the situation changes dramati-

cally. CP violation exists already for 2 generations within a single (up- or down-) sector.

The corresponding weak basis invariant is of order 4 in quark masses. Taking as an

example a system of a top and an up quark, the invariant is given by

Im Tr
[(

Y uỸ u†
)2]

= ytyu(y
2
u − y2t )

× 2 DetN Im
(

U∗
L11

UL12
UR11

U∗
R12

)

∼ 10−9 sin δ , (33)

where δ is the relevant CP phase. It is more than 10 orders of magnitude larger than

the Jarlskog invariant which is likely to be sufficient to generate the required baryon

asymmetry.

Let us elaborate on the above calculation. To obtain this number, it is necessary to

assume a specific Yukawa texture. Inspection of the texture (4) shows that there is no

CP violation in the {t, c} system because it falls into the “degenerate” category (15).

However, in the {t, u} system CP violation exists. The relevant 2×2 Yukawa texture and

the N -matrix are

Y u ∼
(

ǫ3 ǫ1

ǫ2 ǫ0

)

, N =

(

7 3

5 1

)

. (34)
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Figure 1: The leading contribution to the neutron EDM.

In the mass eigenstate basis, the matrix of the Higgs couplings Ỹ u is not diagonal and

contains complex phases. The diagonalizing matrices have the form

VL ∼
(

1 −ǫ

ǫ 1

)

, VR ∼
(

1 −ǫ2

ǫ2 1

)

, (35)

such that

Ỹ u ∼
(

ǫ3 ǫ1

ǫ2 ǫ0

)

(36)

in the mass eigenstate basis. Its off-diagonal elements carry order one phases. The com-

bination Im
(

U∗
L11

UL12
UR11

U∗
R12

)

is of order ǫ3, which gives the estimate (33). Of course,

the main difference between Eqs. (32) and (33) is the absence of the large quark mass

suppression in the latter, which is independent of the Yukawa texture.

The increase in the amount of CP violation does not come for free. The same effect

generates the neutron EDM at one loop. This places a constraint on the relevant CP

phase. The leading contribution comes from the flavor off-diagonal t − u interactions

(Fig. 1), which induce the neutron EDM at order ǫ3. A simple estimate shows that the

reparametrization invariant CP phase Arg
(

Ỹ u
12Ỹ

u
21

)

has to be smaller than 10−1. (Of

course, the estimate depends on the “order 1” coefficients in the texture and reducing

the off-diagonal entries helps relax the bound). As a result, the phase δ in Eq.(33) cannot

be greater than 10−1. Nevertheless, the value of the invariant is still sufficiently large to

be compatible with the observed baryon asymmetry. A similar in spirit study of EDMs

versus EW baryogenesis can be found in [16].

One can also use other CP-violating invariants involving both up- and down- sectors.

Consider 2 heavy generations. According to Eq.(29),

Im Tr
[

Y uY u†, Ỹ uỸ u†, Y dY d†
]

∼ y4t y
2
b U21V21 sinφ . (37)

For our texture (4), this is of order ǫ4 sinφ ∼ 10−7 sinφ. Note that CP violation exists

in this system despite the degenerate N -matrix for the t − c block. The correspond-

ing CP phase φ is essentially unconstrained because the FCNC bounds from the heavy
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quark systems are satisfied for any phase, while the EDM contribution comes at two

loops. It is interesting that rephasing invariance requires interference with the SM con-

tribution mediated by the W boson. In the mass eigenstate basis Y u = diag(yt, yc),

Y d = diag(yb, ys), the CKM phase convention eliminates the residual phase symmetry

Uu
L = Uu

R and Ud
L = Ud

R. For example, consider the t− c flavor change. While the Higgs

exchange generates operators like (t̄LcR)
2, the W exchange generates (t̄LcL)

2. The phys-

ical phase between them is fixed by requiring real masses and real W -vertices. For the

light generations, an analogous physical phase is constrained by ǫK [2].

An insufficient amount of CP violation is not the only obstacle for baryogenesis in

the SM. The other problem is that it fails to provide a sufficiently strong first order phase

transition, which would only be possible for an unacceptably light Higgs, mh < 72 GeV.

As a result, the baryon asymmetry is erased by the sphaleron processes. This statement

is no longer true if there is a dimension six operator [17–19]

∆V =
1

Λ2

(

H†H − v2
)3
, (38)

with Λ ∼ 1 TeV. This operator changes the relation between the strength of the EW

phase transition and the Higgs mass such that EW baryogenesis becomes possible. In our

framework, such an operator is expected to be generated by integrating out TeV mass

states, for instance, gauge singlets. The details depend on a particular UV completion of

our effective theory, but the presence of the above operator is “decoupled” from the CP

and flavor physics, and can safely be assumed.

To summarize, it appears that the framework of Higgs-dependent Yukawa couplings

has the necessary ingredients to address the problem of baryogenesis. In particular, the

Higgs interactions with the top and up quarks contain a sufficient amount of CP violation.

A detailed study will be presented elsewhere.

6 Conclusion

The framework of Higgs-dependent Yukawa couplings allows one to eliminate small fun-

damental couplings from the Standard Model. In this work, I have analyzed the conditions

for CP violation to occur in such a setup. In particular, I have identified a class of basis

invariants responsible for CP violation. Unlike in the Standard Model, the CP symmetry

can already be violated in a system of 2 quark species. The invariant measure of CP vio-

lation is found to be more than 10 orders of magnitude greater than that in the Standard

Model. It is therefore plausible that this framework contains a sufficient amount of CP

violation for successful electroweak baryogenesis.

Acknowledgements. I am grateful to L. Lebedeva for enlightening discussions and

motivation.

12



References

[1] K. S. Babu and S. Nandi, Phys. Rev. D 62, 033002 (2000).

[2] G. F. Giudice and O. Lebedev, Phys. Lett. B 665, 79 (2008).

[3] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); Z. Phys. C 29, 491 (1985).

[4] J. Bernabeu, G. C. Branco and M. Gronau, Phys. Lett. B 169, 243 (1986).

[5] M. Gronau, A. Kfir and R. Loewy, Phys. Rev. Lett. 56, 1538 (1986).

[6] G. C. Branco, L. Lavoura and M. N. Rebelo, Phys. Lett. B 180, 264 (1986);

G. C. Branco and M. N. Rebelo, New J. Phys. 7, 86 (2005).

[7] O. Lebedev, Phys. Rev. D 67, 015013 (2003); H. K. Dreiner, J. S. Kim, O. Lebedev

and M. Thormeier, Phys. Rev. D 76, 015006 (2007).

[8] F. J. Botella and J. P. Silva, Phys. Rev. D 51, 3870 (1995).

[9] A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

[10] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).

[11] K. Tsumura and L. Velasco-Sevilla, Phys. Rev. D 81, 036012 (2010).

[12] A. Hanany, E. E. Jenkins, A. V. Manohar and G. Torri, arXiv:1010.3161 [hep-ph].

[13] A. Esmaili and Y. Farzan, Nucl. Phys. B 811, 98 (2009).

[14] M. E. Shaposhnikov, JETP Lett. 44, 465 (1986) [Pisma Zh. Eksp. Teor. Fiz. 44,

364 (1986)].

[15] A. Tranberg, A. Hernandez, T. Konstandin and M. G. Schmidt, Phys. Lett. B 690,

207 (2010).

[16] S. J. Huber, M. Pospelov and A. Ritz, Phys. Rev. D 75, 036006 (2007).

[17] X. m. Zhang, Phys. Rev. D 47, 3065 (1993).

[18] C. Grojean, G. Servant and J. D. Wells, Phys. Rev. D 71, 036001 (2005).

[19] D. Bodeker, L. Fromme, S. J. Huber and M. Seniuch, JHEP 0502, 026 (2005).

13

http://arxiv.org/abs/1010.3161

	1 Introduction
	2 Higgs-dependent Yukawa couplings
	3 CP violating invariants with 2 quark species
	4 Generalizations
	4.1 3 flavor case
	4.2 Inclusion of up- and down-sectors
	4.2.1 2 generations
	4.2.2 3 generations


	5 Applications
	6 Conclusion

