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Metastable supersymmetry breaking without scales
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We construct new examples of models of metastable D = 4 N = 1 supersymmetry breaking in
which all scales are generated dynamically. Our models rely on Seiberg duality and on the ISS
mechanism of supersymmetry breaking in massive SQCD. Some of the electric quark superfields
arise as composites of a strongly coupled gauge sector. This allows us to start with a simple cubic
superpotential and an asymptotically free gauge group in the ultraviolet, and end up with an infrared
effective theory which breaks supersymmetry dynamically in a metastable state.

I. INTRODUCTION

Low-energy supersymmetry (SUSY) can alleviate the
electroweak hierarchy problem in two distinct senses.
First, softly broken SUSY protects the Higgs potential of
the supersymmetric Standard Model from quadratic di-
vergences. The hierarchy between the electroweak scale
and some high fundamental scale, e.g. the grand-unified
scale or the Planck scale, is thus stabilized against ra-
diative corrections. Second, if SUSY is unbroken at tree-
level, then by the renormalization theorem it can at most
be broken by non-perturbative effects. These are typ-
ically exponentially small in units of the fundamental
scale, so one may hope to explain not just the stability,
but also the origin of the hierarchy without appealing to
the details of the UV physics.1

This second point serves as a major motivation to
study models of dynamical SUSY breaking (DSB) [1, 2].
In DSB models, the SUSY breaking hidden sector con-
tains a gauge theory which becomes strongly coupled at
some infrared scale Λ. While the tree-level superpoten-
tial preserves SUSY, non-perturbative effects such as in-
stantons or gaugino condensation can generate additional
terms leading to SUSY breakdown. The SUSY breaking
scale will then involve Λ, which can naturally be many
orders of magnitude below the fundamental scale.

The models we will be analysing in this Note are DSB
models relying on the now classic ISS mechanism of
SUSY breaking [3]. An essential ingredient of the ISS
mechanism is Seiberg duality [4]: Certain asymptotically
free gauge theories, most notably supersymmetric QCD
with suitable matter content, are dual to infrared-free
gauge theories at energies below their strong-coupling
scale Λ. Under this duality a superpotential mass term
µ qq̃ for the elementary matter superfields q, q̃ turns into
a linear term µΛM for the composite infrared field M .
The presence of this linear term eventually triggers SUSY
breaking in a metastable vacuum at M = 0.

∗Electronic address: felix.bruemmer@desy.de
1 One might of course disregard the second point altogether and

be content with a model of tree-level SUSY breaking whose di-

mensionful parameters happen to be many orders of magnitude

below fundamental scale, relegating an explanation to the un-

known UV completion. In this Letter we shall however take se-

riously the prospect of understanding the origin of the hierarchy

purely within effective field theory.

In a strict sense the ISS mechanism does not offer a
fully dynamical explanation of why the scale of SUSY
breaking is small, since µ ≪ Λ must be put in by hand
(for µ & Λ the matter fields would decouple before the
theory can become strongly coupled). Several models
have been constructed to remedy this situation, gener-
ating µ from strong gauge dynamics of some auxiliary
sector [5–7]. Here we take the idea somewhat further
by constructing models whose q degrees of freedom are
themselves composites of a strongly coupled gauge sec-
tor. We are thus making use of two strong-coupling tran-
sitions, by which an originally cubic superpotential term
in the UV is mapped first to a quadratic and then to a
linear operator in the effective IR theory.
Schematically, we will proceed as follows. Consider

the gauge group SU(n) × SU(N) and matter superfields
q̃, Φ, and Q transforming as � ⊗ 1, � ⊗ �, and 1 ⊗ �
respectively. This allows for a marginal operator

W = λQΦq̃ , (1)

where λ is a dimensionless coupling. The SU(N) factor
becomes strongly coupled at a scale ΛN . In certain cases
its infrared dynamics can be described by means of a dif-
ferent, weakly coupled dual theory involving a composite
“meson” field q ∼ QΦ/ΛN . Then the effective superpo-
tential will contain a term

Weff = λΛN qq̃ + . . . (2)

which corresponds to a mass µ = λΛN for q and q̃. At a
scale Λn the SU(n) factor becomes strongly coupled, and
in the far infrared we end up with the desired linear term
for the composite M ∼ qq̃/Λn,

Weff = λΛNΛnM + . . . (3)

The coefficient λΛNΛn eventually sets the scale of SUSY
breaking; it does not involve any fundamental mass pa-
rameters, so supersymmetry is broken truly dynamically.
The marginal parameter λ must however be chosen small
enough to guarantee λΛN < Λn.
It is the aim of this Letter to flesh out the above con-

struction in detail. In its simplest version (which is the
one we are concerned with), with a single bifundamental
Φ, there are strong constraints on the remaining matter
content and on the ranks of the gauge groups. The only
choices which do not suffer from instabilities turn out to
require N = F = f , where F and f are the overall num-
ber of SU(N) and SU(n) flavours respectively, andN > n
(with N = n also potentially allowed but uncalculable).
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SU(N) SU(n) SU(F ) SU(F − n) SU(f) SU(f −N)

Φ � � 1 1 1 1

Q � 1 � 1 1 1

q̃ 1 � 1 1 � 1

P̃ � 1 1 � 1 1

p 1 � 1 1 1 �

TABLE I: Gauge symmetries and non-abelian flavour sym-
metries for vanishing superpotential. The symmetries in the
four rightmost columns are global, while SU(N) and SU(n)
are gauged.

II. GENERAL FRAMEWORK

The basic ingredients of the models we are investigat-
ing are the gauge group SU(n) × SU(N), where we take
n ≤ N without loss of generality, and some matter fields
allowing for a superpotential resembling Eq. (1). We thus
introduce a bifundamental field Φ along with f copies of
SU(n) antiquarks q̃ and F copies of SU(N) quarks Q.
We also allow for SU(n) fundamentals p and SU(N) an-

tifundamentals P̃ . The matter content is summarized in
Table I. It is restricted by the absence of gauge anoma-
lies: Anomaly cancellation for SU(n) requires f ≥ N ,
with f − N spectator fields p present if f > N . Anal-
ogous statements hold for SU(N). One could include
more SU(N) × SU(n) bifundamentals, or fields in larger
representations, but we will refrain from that for now.

A superpotential will explicitly break some of the
flavour symmetries of Table I. The most general renor-
malisable superpotential respecting the gauge symme-
tries is

W = λI
j QIΦq̃

j + µI
A QIP̃

A +mb
j pbq̃

j (4)

where λI
j is an F × f matrix, µI

A is an F × (F − n) ma-

trix, mb
j is an f × (f − N) matrix, and where we have

suppressed gauge indices.2 In keeping with the principle
that all dimensionful parameters should be of the order
of the fundamental scale, the last two terms in Eq. (4)

will only lead to the decoupling of rank (µI
A) pairs of Q, P̃

and rank (mb
j) pairs of p, q̃ in the UV. We will therefore

omit them (and redefine the fields and parameters ac-
cordingly). Tree-level masses for the remaining fields can
be forbidden by a Z3 or R-symmetry, or by imposing that
SU(F−n) and SU(f−N) should be classically preserved.
The superpotential we are working with is then

W = λI
j QIΦq̃

j . (5)

Flavour rotations permit a singular value decomposi-

2 For N = 2, 3 or n = 2, 3 one could also include renormalisable

baryonic operators, without affecting our conclusions.

tion of λI
j , bringing it into the form

(λI
j ) =




λ1

. . .

λf

0




or (λI
j ) =




λ1

. . . 0

λF




(6)

(depending on whether f < F or f ≥ F ). For simplicity
we will from now on consider the case where all λi are
equal, λ1 = λ2 = . . . ≡ λ; it is straightforward to extend
the analysis to the more general case where all λi are
nonzero and of similar magnitude. Situations where there
are large hierarchies among the λi, or where some of the
λi vanish, are less interesting as will become clear below.
Both gauge factors are required to be asymptotically

free, so 3N > F and 3n > f . They run to strong cou-
pling in the infrared. We now distinguish two cases,
namely SU(N) becoming strongly coupled at higher en-
ergies than SU(n) and vice versa.

A. The case ΛN > Λn

Suppose first that SU(N) becomes strongly coupled at
a scale ΛN , where SU(n) gauge couplings are still neg-
ligible. We are then dealing with SU(N) SQCD with F

flavours of quarks Q and antiquarks Φ, P̃ . SQCD with
N colours and F flavours has a known and calculable
weakly coupled infrared description if N ≤ F < 3

2
N in

terms of its Seiberg dual theory [4], so we restrict our-
selves to the case where N and F are in this range. Some
of the mesonic degrees of freedom q in the dual theory
can be identified with the QΦ composites, qI ∼ QIΦ/ΛN .
Here we have absorbed a factor ΛN in the definition of
the fields q so that they have canonical dimension. Be-
low the scale ΛN the degrees of freedom are those of the
magnetic dual of SU(N), and the SU(N) singlet fields we
started with. In the infrared, where the magnetic gauge
dynamics becomes negligible, they constitute an SU(n)
gauge theory with F + f − N flavours. The effective
superpotential contains a term

Weff = λI
jΛN qI q̃

j + . . . (7)

descending from Eq. (5). It gives a supersymmetric mass
λΛN to rank (λI

j ) pairs of quarks and antiquarks.
The infrared structure of this theory does not appear

to be very interesting at first sight, since for λ of order
one the massive SU(n) flavours should be integrated out,
and one is left with an SU(n) gauge theory with massless
matter. Instead we now keep all quarks light by dialling
λ ≪ 1. The SU(n) gauge coupling will become strong at
some lower scale Λn; if λ is chosen such that λΛN < Λn,
all flavours will remain dynamical to below that scale.
Supposing that SU(n) is in the free magnetic range as
well, we end up with the ISS model of metastable SUSY
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breaking. After another Seiberg duality on the SU(n) fac-
tor we obtain a low-energy effective theory which breaks
SUSY in a metastable vacuum.
There are two possible issues here. First, choosing λ

small may be regarded as problematic in view of natu-
ralness. We stress however that λ is merely a marginal
parameter, as opposed to a relevant one. Furthermore,
the tuning is used to overcome the discrepancy between
the two dynamically generated scales Λn and ΛN , which
could in principle be close together. The naturalness
problem we eventually aim to solve with dynamical su-
persymmetry breaking, by comparison, involves the po-
tentially much larger hierarchy between the SUSY break-
ing scale and the UV completion scale.
Second, for generic choices of F , f , N and n one ends

up with both massive and massless SU(n) flavours. This
is because the superpotential Eq. (7) gives masses to only
F or f of the F + f −N quarks and antiquarks (and to
even less if some of the λi in Eq. (6) are zero). An effec-
tive ISS model with both massive and massless flavours
still gives rise to supersymmetry breaking at tree-level.
However, some of the pseudo-moduli will no longer be
stabilized at one-loop [10]. Indeed it was found in [11]
that along the directions where this happens, the two-
loop contribution to the effective potential causes a run-
away towards the supersymmetric vacuum. A runaway
may also appear if there are large hierarchies between
the quark masses, in which case the tachyonic two-loop
contributions from the heavier quarks may overwhelm
the one-loop contributions from the lighter ones. It has
subsequently been argued [12] that higher-dimensional
operators in the superpotential may stabilize these run-
aways away from the point of maximal unbroken symme-
try, and that phenomenologically promising metastable
vacua may appear as a consequence (for some recent de-
velopments see e.g. [13]). While such ideas may lead to
interesting generalizations when applied to our model,
for now our aim is to build a hidden sector that is by
itself as UV-complete as possible. We should therefore
demand that the quark mass matrix is square and has
full rank, such that all quarks become massive.
This, together with the restrictions F ≥ n, f ≥ N

(from anomaly cancellation) and N ≥ n (by convention)
translates into the condition

F = f = N. (8)

The resulting models are discussed in Sects. III and IV.

B. The case Λn > ΛN

The discussion is in large parts analogous to the pre-
ceding one. For n ≤ f < 3

2
n we can dualize the SU(n)

gauge factor at the scale Λn. Below we obtain an effec-
tive SU(N) gauge theory with F + f − n flavours. The
superpotential Eq. (5) gives rise to a mass term. Requir-
ing that all flavours acquire a mass, and that this mass
is below ΛN , implies that λ has to be chosen sufficiently
small and that

F = f = N = n. (9)

SU(n) SU(N) SU(N) SU(N − n)

Φ � � 1 1

q̃ � 1 � 1

Q 1 � � 1

P̃ 1 � 1 �

TABLE II: Matter content and symmetries for F = f = N >

n. The first two symmetries SU(n) and SU(N) are gauge sym-
metries. The SU(N) and SU(N − n) in the last two columns
represent classically unbroken global symmetries. The flavour
SU(N), in particular, corresponds to the diagonal subgroup
of SU(F )× SU(f) in Table I.

SU(n) SU(N) SU(N − n)

q � � 1

q̃ � � 1

p̃ 1 � �

B 1 1 1

B̃ 1 1 1

TABLE III: Matter content and symmetries below the SU(N)
confinement scale. SU(n) is gauged, while SU(N) and SU(N−

n) are global.

We thus obtain an even stricter condition than before.
The resulting model is discussed in Sect. IV.

III. MODELS IN THE STABLE RANGE

Postponing the case n = N until later, we now in-
vestigate models with ΛN > Λn and F = f = N > n in
detail. More precisely, to have SU(n) in the free magnetic
range we demand n < N < 3

2
n. The matter content and

non-abelian symmetries are summarised in Table II. The
unique renormalisable superpotential is

W = λQΦq̃. (10)

To the extent that the SU(n) gauge dynamics can be
neglected at the scale ΛN , the model is just SU(N) SQCD

with N flavours of quarks Q and antiquarks Φ, P̃ . This
theory has a low-energy description where the quarks
confine into a meson M = q ⊕ p̃, a baryon B, and an

antibaryon B̃. Here q and p̃ correspond to the com-

posites q = QΦ/ΛN and p̃ = QP̃/ΛN . The remaining
symmetries act as in Table III.
The fields are subject to the quantum-deformed moduli

space constraint

detM

(ΛN )N
− BB̃

(ΛN )2
= 1. (11)

The effective superpotential reads

Weff = λΛN qq̃ + (ΛN )2T

(
detM

(ΛN )N
− BB̃

(ΛN )2
− 1

)
.

(12)
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SU(N − n) SU(N) SU(N − n)

M̃ 1 � ⊗� 1

p̃ 1 � �

B 1 1 1

B̃ 1 1 1

χ � � 1

χ̃ � � 1

TABLE IV: Field content after a Seiberg duality transfor-
mation on SU(n). Only the SU(N − n) listed on the left is
gauged; it is the dual magnetic gauge group of SU(n).

T is a Lagrange multiplier to enforce the constraint
Eq. (11). Note that here and in the following we are
omitting uncalculable prefactors of order one. We will
consider low-energy fluctuations on the baryonic branch
of this theory, where the constraint is satisfied with

BB̃ = −(ΛN )2 and detM = 0. The Kähler potential
for such fluctuations is approximately canonical [9].
For λ of order one, q and q̃ will decouple around the

scale ΛN and the gauge degrees of freedom will form
a pure super-Yang-Mills theory which does not break
SUSY. We instead choose λ sufficiently small, such that
λΛN ≪ Λn, so q and q̃ remain as light flavours of SU(n).
The SU(n) gauge coupling will now become strong at the
lower scale Λn. Since we chose n and N in the range
n < N < 3

2
n, this theory has an infrared-free mag-

netic dual in terms of a SU(N − n) gauge theory with
N flavours of dual quarks χ and antiquarks χ̃ and a me-

son M̃ . The SU(n) singlet degrees of freedom remain as
spectators. The field content in the infrared is given in
Table IV, and the superpotential becomes

Weff = λΛNΛn tr M̃ + χM̃χ̃

+ Λ2

N T

( √
N !

(N − n)!

(Λn)
2n−N

(ΛN )N
det(χ̃p̃)− BB̃

(ΛN )2
− 1

)
.

(13)

Here we have neglected an Affleck-Dine-Seiberg term
which is irrelevant for small meson expectation values.
We have also expressed detM from Eq. (12) in terms
of the magnetic degrees of freedom: Under Seiberg dual-
ity, baryonic operators constructed from q are mapped to
baryonic operators constructed from χ̃ in the magnetic
theory. In particular,

1

n!
ǫi1...in j1...jN−nǫc1...cn

qc1i1 · · · qcnin
(Λn)n

↔
√
N !

(N − n)!
ǫα1...αN−n

χ̃j1
α1

· · · χ̃jN−n

αN−n

(Λn)N−n

(14)

(where the ik and jl are SU(N) flavour indices, the ci
are SU(n) colour indices, and the αj are SU(N −n) dual
colour indices). Therefore

detM =
1

n!
ǫi1...in j1...jN−nǫc1...cnq

c1
i1
· · · qcnin p̃

1

j1
· · · p̃N−n

jN−n

(15)

is mapped into
√
N !

(N − n)!

1

(Λn)N−2n
ǫα1...αN−n(p̃1j1 χ̃

j1
α1
) · · · (p̃N−n

jN−n
χ̃jN−n

αN−n
)

=

√
N !

(N − n)!

1

(Λn)N−2n
det(p̃χ̃) .

(16)

On the baryonic branch the constraint Eq. (11) can

be satisfied by setting BB̃ = −(ΛN )2 and p̃ = 0. Then
Weff in Eq. (13) becomes precisely the magnetic super-
potential of the ISS model, which is well-known to break
supersymmetry in a metastable state. The vacuum en-
ergy is

〈V 〉 = n |λΛnΛN |2. (17)

All scales are generated by dimensional transmutation.
The only small parameter, λ, is dimensionless.
The need for a small marginal parameter is common in

models which use the ISS mechanism in SUSY-breaking
models without scales [7, 8]. To gain some intuition on
a realistic upper bound on λ, let us construct a limiting
case for which our approximations can still be considered
reliable. Take for instance n = 8, N = 10, and assume
that the SU(n) coupling is gn ≈ 1 at the scale ΛN ; with
this value SU(n) is still perturbative but on the brink
of strong coupling. With gn(ΛN ) = 1.1 and the naive
one-loop estimate

g2n(Λn) =
g2n(ΛN )

1− 3n−N
8π2 g2n(ΛN) log(ΛN/Λn)

, (18)

the scale Λn where gn diverges is about two orders of
magnitude below ΛN . For ΛN = 108 GeV and Λn = 106

GeV, with λ = 10−3, one obtains a SUSY breaking scale
of a few · 105 GeV, in the correct range for low-scale
gauge mediation. Of course, there are always uncalcula-
ble O(1) factors involved (which may or may not work
in our favour). To really trust our model it seems more
reasonable to demand at least λ . 10−4, also since the
vacuum becomes more long-lived for small λ.
The model still contains various massless fields, which

should be decoupled if it is to serve as a realistic hid-
den sector. To this end we can introduce an additional
gauge singlet field S, transforming as � ⊗ � under the
SU(N) × SU(N − n) flavour symmetry. This allows for

an operator QP̃S in the UV superpotential, so that after
the SU(N) strong-coupling transition p̃ and S obtain a
mass ∼ ΛN . As an additional benefit the model is now
forced to be on the baryonic branch. A flat direction re-
mains in the baryon sector, corresponding to a rescaling

B → ebB and B̃ → e−bB̃. We need to assume that un-
calculable Kähler terms will stabilize this direction suf-
ficiently close to the symmetric point B = B̃ = iΛN

(parametrically large values for either |B| or |B̃| are un-
acceptable, since they would lead to a loss of control over
higher-dimensional operators coupling baryons to other
fields).
We are now in a position to couple our model to the

visible sector. There are many models of direct gauge-
mediated or messenger gauge-mediated SUSY breaking,
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SU(N − n) SU(N) SU(N) SU(N − n)

Q̃ 1 � � 1

Q 1 � � 1

χ � 1 � 1

χ̃ � � 1 1

P̃ 1 � 1 �

TABLE V: The field content for Λn > ΛN , after a Seiberg
duality transformation on SU(n). As before, the first two
columns represent gauge symmetries and the last two columns
represent global flavour symmetries.

relying on ISS-like metastable vacua (for some examples,
see [14]). It would be especially interesting to see if the
common problems of direct gauge mediation (such as the
gaugino mass problem and the Landau pole problem)
can somehow be overcome in an extension of our model,
possibly even while preserving its nice UV properties.
For now we leave this issue for future work.
It is instructive to see how the model fails to give rise

to a metastable vacuum in the case Λn > ΛN . Below
the scale Λn we should use the Seiberg dual of SU(n),
which is a SU(N −n) magnetic gauge theory. It contains

a meson Q̃ = Φq̃/Λn and two dual quarks which we call
again χ and χ̃. The full field content is listed in Table V.
The superpotential becomes, up to Affleck-Dine-Seiberg
terms generated by the dual gauge dynamics,

Weff = χQ̃χ̃+ λΛn QQ̃. (19)

If λ is of order one, then Q and Q̃ decouple supersym-
metrically at the scale Λn. The remaining fields form an
SU(N − n)× SU(N) gauge theory with massless matter
and no superpotential, which does not break SUSY.
Considering instead again the case that λ ≪ 1, so

that Q and Q̃ are kept light up to scales < ΛN , the
theory becomes effectively SQCD with N colours and

2N − n flavours of quarks Q, χ̃ and antiquarks Q̃,

P̃ . It is in the free magnetic range, which is eas-
ily checked to follow from n < N < 3

2
n. It there-

fore has a Seiberg dual description at energies be-

low ΛN in terms of mesons M = QQ̃/ΛN , η̃ = χ̃Q̃/ΛN ,

η = QP̃/ΛN , and ζ = χ̃P̃ /ΛN , as well as mag-
netic quarks ρ, σ and antiquarks ρ̃, σ̃. There is a
SU((2N − n)−N) = SU(N − n) magnetic gauge sym-
metry, in addition to the SU(N − n) gauge symmetry
which is the magnetic gauge symmetry of the first du-
ality transformation, and a SU(N)× SU(N − n) flavour
symmetry. The symmetry properties of the various fields
are listed in Table VI. The superpotential is

Weff =λΛNΛn trM + ΛN χη̃

+ ρMρ̃+ ρη̃σ̃ + σηρ̃+ σζσ̃ .
(20)

In the far infrared, χ and η̃ decouple. Supersymmetry
is broken at tree-level near the origin of field space by
the rank condition, by the F -terms of M : The rank
of ρρ̃ is N − n, while the rank of ∂(trM)/∂M j

i is N .
The SU(N) electric quark mass matrix (or equivalently

SU(N − n) SU(N − n) SU(N) SU(N − n)

M 1 1 �⊗� 1

η̃ � 1 � 1

η 1 1 � �

ζ � 1 1 �

χ � 1 � 1

ρ 1 � � 1

ρ̃ 1 � � 1

σ 1 � 1 �

σ̃ � � 1 1

TABLE VI: Fields and symmetries after a second Seiberg
duality transformation, now on SU(N). Only the first two
SU(N−n) factors are gauged (but weakly coupled in the IR).

1 2

3
X

Y

Z

FIG. 1: The F = f = N = n quiver. Circles with label i
represent SU(N)i symmetries, and arrows represent bifunda-
mental chiral superfields. Node 3 may or may not be gauged.

the linear term in the meson) does not have full rank
in flavour space, however, since there is no linear term
for ζ. As mentioned in Sect. II, this will destabilize the
SUSY-breaking point at two-loop level [11].

IV. THE UNCALCULABLE CASE F = f = N = n

We next turn to the case F = f = N = n, adapt-
ing our notation slightly for convenience. The non-
abelian symmetry group is SU(N)1×SU(N)2×SU(N)3.
The third factor arises as the diagonal subgroup of the
SU(F )×SU(f) in Table I which is preserved by W . Since
it is free of anomalies, it could be gauged; however its
gauge dynamics will play no role in the following discus-
sion. The matter fields are now called X , Y , and Z. The
model is summarized by the quiver diagram in Fig. 1.
We label the SU(N) factors according to their coupling
strengths in the UV. The superpotential is

W = λXY Z. (21)

We choose λ such that the strong-coupling scales satisfy
Λ1 > Λ2 > λΛ1 > Λ3. Then, at the highest scale Λ1,
SU(N)1 confines and X and Y combine into a meson
M = XY/Λ1. The superpotential becomes

Weff = λΛ1 MZ + Λ2

1 T

(
detM

ΛN
1

− BB̃

Λ2
1

− 1

)
. (22)

This is massive SQCD, where M and Z are N flavours of
the SU(N)2 gauge factor (again provided that SU(N)3
is negligibly weakly coupled at scales above Λ2). The
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quark mass term is small because λ is chosen small. The
extra baryon degrees of freedom satisfy a deformed mod-
uli space constraint, which should however be unimpor-
tant for the IR dynamics of the meson near the baryonic
branch. At the scale Λ2, SU(N)2 confines, and M and Z

combine into a meson M̃ = MZ/Λ2. The superpotential
becomes

Weff =λΛ1Λ2 tr M̃ + Λ2

1 T

(
ΛN−1

2
b

ΛN
1

− BB̃

Λ2
1

− 1

)

+ Λ2

2 T̃

(
det M̃

ΛN
2

− bb̃

Λ2
2

− 1

)
.

(23)

The theory has reduced to a “Polonyi model” for tr M̃ ,
with additional constraint terms. Whether or not there
is a metastable vacuum near M̃ = 0 depends on uncalcu-
lable higher-dimensional operators in the effective Kähler
potential. The status of this model is therefore similar to
the ISS model for equal numbers of flavours and colours,
where the existence of a metastable vacuum has been
conjectured [3], but never definitely established.
Note that we have identified the SU(N)2 baryon b with

the SU(N)1 meson determinant. This implies that, if the
theory is on the baryonic branch of SU(N)2, it will be
slightly displaced from the baryonic branch of SU(N)1.
In any case, the true vacua of the theory are super-

symmetric and located at

b = b̃ = 0, M̃ = Λ21, BB̃ = −Λ2

1. (24)

Even if the conjectured metastable vacuum exists, it
should somehow be prevented from decaying into the true
vacuum too quickly for the model to be viable.
It is amusing to note that one may recover the model

of Sect. III from the model of this Section, by breaking

SU(N)2 explicitly to SU(N − n)× SU(n) and taking the
limit of negligible SU(N − n) gauge coupling. The cor-
respondence between the matter fields is then X ≃ Q,

Y ≃ Φ⊕ P̃ , and Z ≃ q̃ ⊕ S.

V. CONCLUSIONS

In summary, we have built a model of dynamical
metastable SUSY breaking without a fundamental scale,
by taking SU(n) SQCD whose quarks are the compos-
ites of an SU(N) gauge group with n < N < 3

2
n. The

strong-coupling scale ΛN of SU(N) should be higher than
the strong-coupling scale Λn of the original SQCD gauge
group SU(n), and the overall number of SU(N) flavours
should be N . The tree-level superpotential contains a
single cubic term, whose coefficient λ has to be tuned
small to keep the composite quarks light at scales be-
low both strong-coupling transitions. Supersymmetry is
broken in a metastable state by the ISS mechanism. The
choice N = n might also give metastable SUSY breaking,
depending on uncalculable terms in the Kähler potential.
In future work, it should be interesting to study how our
model can be extended to couple to the visible sector,
and if it can be used to construct a realistic model of
gauge-mediated supersymmetry breaking.
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