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1. Introduction

Figure 1: Some recent precise numbers
for αs(MZ) in the MS scheme. From top
to bottom: lattice QCD by HPQCD [4],
hadronic τ decays (Rτ ) [5], deep inelas-
tic scattering [6], thrust [7], global elec-
troweak fit [8], hadronic decays of the Z
(RZ) [9, 10] and the world average of [11].

The strong coupling, αs, represents a fundamen-
tal parameter of the strong interactions. Its scale de-
pendence in a suitable renormalization scheme teaches
us about the connection between the strongly non-
perturbative and the dominantly perturbative regions
of QCD. Its value at high energy is needed for phe-
nomenology, for example for the prediction of Higgs
production cross sections for the LHC. The uncertainty
on αs is not negligible in this context [6].

For this conference we had compiled a plot of pre-
cise determinations of α ≡ αs with the renormaliza-
tion scale set to the mass of the Z-boson and in the
MS scheme. It is shown in Fig. 1. We do not claim
completeness but rather want to illustrate that the many
determinations do not agree well within the estimated
uncertainties.

Indeed, the spread of results in Fig. 1 is not that
surprising, since a precision determination of αs(MZ)

is difficult and so far compromises on various sources of errors had to be made despite an ever
increasing sophistication in the analysis. Sources of errors are:

• Low energy: most determinations are not done from a process with an energy scale of order
MZ but at significantly lower energies and are then evolved perturbatively to µ = MZ. A
prominent example is the determination from τ-decays, labeled Rτ .

• Sophisticated analysis involving simultaneous fits to αs(µ) and non-perturbative parameters
of QCD, such as structure functions [6] and parameters of SCET [7].

• Global fits to many processes (EW fits) [8], which of course means that the correctness and
theoretical mastering of the standard model enters in detail.

• The use of bare, unrenormalized, perturbation theory of Wilson loops at the cutoff scale in
the lattice determination [4] shown in the figure. We discuss this further below.

• None of these applies to the extraction from the hadronic cross section on the Z-peak, RZ,
but this is experimentally more difficult, resulting in a larger quoted error.

The present world average by S. Bethke is dominated by the lattice determination [4]. We find
this worrying due to several reasons. First there is the use of bare perturbation theory. There the
problem is that successive terms do not show a convincing ‘convergence’ pattern. Either there are
large coefficients of higher order terms (expansion in the original bare coupling) or the (modified)
coupling itself “lives” at a quite low energy scale where it is large (“tadpole improved” coupling,
coupling in “potential scheme”). In either case errors due to left out remainder terms are difficult
to quantify. The continuum limit is in this way only reached at an asymptotic rate proportional to
1/| lna| and can in practise not be taken. Furthermore, rooted staggered quarks with their doubtful
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theoretical status are employed. In spite of this, a phenomenological observation adds support to
the analysis of [4]: there is agreement of results from several different variations of the theme.

The above mentioned difficulties have been a motivation for the ALPHA collaboration to work
on a program which essentially is based only on the assumptions that the continuum limit of the
lattice theory exists and asymptotic freedom is present non-perturbatively. The resulting errors in
αs are dominantly statistical and also the systematic component can be reduced further when the
overall precision is improved in the future. In particular, as has been explained many times [12–14],

• α is defined non-perturbatively in a physical (regularization independent) scheme,

• this running can be efficiently computed numerically by a finite size strategy,

• the continuum limit can be taken in individual steps free of multi-scale problems,

• renormalized perturbation theory is used only at large scales, where its precision is further-
more validated non-perturbatively.

These properties come with a price. Since a specific scheme had to be devised in order to make
precise non-perturbative computations possible, the β -function at 3-loop order needed to be cal-
culated [15–22]. The same perturbative calculations are also important to remove dominant parts
of the discretization errors (see section II.2 of [14]). Furthermore a controlled non-perturbative
running clearly has to include the strange and charm quarks; this step has only been carried out
recently and we report on it here. Still, as will be discussed in the conclusions more work is needed
before a numerical value for αs(MZ) can be given for phenomenology. It is also for these reasons
that the ALPHA collaboration has so far not been able to publish a value of α in the physical theory
with all quarks which we would like to be taken into account in the world average.

2. Computation of the step scaling function
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Figure 2: Interpolation eq. (2.1).

In our finite size strategy, the coupling
ḡ2 is defined in a Euclidean space-time of
size L4 with Schrödinger functional bound-
ary conditions [15,16] and a renormalization
scale µ = 1/L. The discrete scale evolution
defines the step scaling function σ via

ḡ2(sL)=σ(s, ḡ2(L))= lim
a/L→0

Σ(s, ḡ2(L),a/L),

which can be computed non-perturbatively
as the continuum limit of the lattice approxi-
mant Σ as indicated. We chose a scale factor
s = 2 for practical reasons and omit this ar-
gument from now on. In the Schrödinger functional, Dirichlet boundary conditions are imposed
in Euclidean time and therefore the O(a) Symanzik improvement of the theory requires boundary
terms. Their coefficients are taken from perturbation theory, exactly as in [23], where we deter-
mined the crucial bulk O(a) improvement coefficient csw non-perturbatively.
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The computation of the lattice step scaling function, Σ(u,a/L) requires to tune the bare mass
and the bare coupling of the theory such that the PCAC mass (defined exactly as in [2, 24]) van-
ishes and ḡ2(L) = u. At the same bare parameters one then computes Σ(u,a/L) = ḡ2(2L). An
explicit 2-dimensional tuning is rather cumbersome. We therefore followed [25], picked a se-
ries of bare couplings g2

0 = 6/β and tuned the PCAC mass to zero. For those bare parame-
ters we then compute ḡ2(β ,L/a) and ḡ2(β ,2L/a) and interpolated to the desired values of u via
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Figure 3: Constant fit continuum extrapolation.

ḡ2(β ,L/a) = 6
β

[
M

∑
m=0

cm,L/a

(
6
β

)m
]−1

(2.1)
motivated by perturbation theory. We do not
fix the known perturbative expansion coeffi-
cients, not even c0,L/a. The interpolations for
L/a = 8 are illustrated in Fig. 2. Σ(u,1/8)
is given by the value of the upper curve at
the β where the lower one passes through
ḡ2(β ,8) = u. Stability of the interpolations
with respect to M was checked.

Using Σ from the interpolation, we form
the 2-loop improved lattice step scaling func-
tion [26]

Σ
(2)(u,a/L) = Σ(u,a/L)

1+δ1(a/L)u+δ2(a/L)u2 (2.2)

with δ1,δ2 known from [19–22, 27]. We ex-
pect Σ(2) to have smaller overall cutoff ef-
fects. Asymptotically, they still start at or-
der a× u4 but terms of order am × un are
removed for all m and for n ≤ 3 (in fact
non-perturbatively in a). As mentioned pre-
viously, the order a× u4 terms are due to
the only perturbatively known boundary im-
provement terms. Their influence was ex-
plicitly checked for Nf = 2 and found to be minor [2, 14] for our action, at least when ct is known
to 2-loop order. We therefore assume that the step scaling function converges effectively at a rate

Σ
(2)(u,a/L) = σ(u)+O(a2). (2.3)

To study the continuum limit and its uncertainty we carried out three different analysis.

• Constant fit: A fit of Σ(2)(u,a/L) for L/a = 6,8 to a constant, for each u.

• Global fit: A fit Σ(2)(u,a/L) = σ(u)+ρ u4 (a/L)2 , with a separate, independent parameter
σ(u) for each value u but a common parameter ρ modelling the cutoff-effects.

• L/a = 8 data: Using directly σ(u) = Σ(2)(u,1/8).
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The three different ansätze yield results which are in complete agreement with each other. The
global fit returns ρ = 0.007(85) which is a good indication that cutoff effects are negligible in the
data for L/a = 6,8. In order to have a safe error estimate on the continuum limit we chose just the
L/a = 8 data as our present result.

3. The running of the coupling

A polynomial interpolation σ(u) = u+ s0u2 + s1u3 + 0.0036u4− 0.0005u5, with the coeffi-
cients up to u3 fixed by perturbation theory represents σ(u) in the range 0.9≤ u≤ 2.7 with negli-
gible interpolation errors. The running of the coupling is then obtained by solving the recurrence

ui = σ(ui+1), i = 0, . . . ,n, u0 = umax = ḡ2 (Lmax) (3.1)

for ui = ḡ2(Li), Li = 2−iLmax. As Fig. 4 shows, agreement with perturbative running at the 3-loop
level is found at the highest scales in agreement with standard estimates of remainder terms. This
allows us to relate u9 to L9×Λ by using the 3-loop β -function [for couplings up to u9 only]. Then
with the non-perturbative σ(u) used in eq. (3.1) we can connect to larger values of u, for example

ln(ΛLmax) =−2.294(83) at ḡ2(Lmax) = umax = 3.45 . (3.2)

While a precise MeV value still has to be determined we clearly expect Lmax to lie in the range
of hadronic scales. The (uncorrelated) errors of our primary MC data for ḡ2(β ,L/a) are propa-
gated through all steps of the analysis as described in [24]. Note that some steps, in particular
eq. (3.1), introduce correlations into the final results. The errors of the points Fig. 4 are therefore
not independent.

4. Conclusions
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Figure 4: Non-perturbative running coupling compared to pertur-
bation theory.

At the present level of sta-
tistical errors, systematic errors
from the continuum extrapola-
tion are almost certainly negli-
gible. In the future, in partic-
ular with further reduced sta-
tistical errors, data with larger
L/a clearly have to be added.
It will also be interesting to
compare the efficiency of com-
putations with different regu-
larizations of the Schrödinger
functional, such as chirally ro-
tated boundary conditions [28,
29] and staggered quarks [30,
31].
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We do observe a small but significant deviation from 3-loop perturbation theory at the largest
coupling reached in Fig. 4. It is about 10% (three standard deviations) and the Schrödinger func-
tional coupling has a value of αSF ≈ 0.28. For Nf = 2 a similar effect was visible only for larger
coupling [2]. These findings underline the necessity of going to weak coupling before applying
perturbation theory.

We are now a good step closer to the computation of the Λ-parameter in 4-flavor QCD, which
may then be perturbatively connected to e.g. the 5-flavor αMS(MZ). However the low energy
scale Lmax that was introduced for technical convenience, remains to be expressed in physical units
through large volume 4-flavor simulations and we may want to improve the precision in Fig. 4.
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